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Suppose we have a set of n (distinct) values and are to find the ith largest, or the elements 
of several ranks. Our model of computation will be that of simple comparisons between 
elements, and the measure of difficulty will be the number of comparisons In earlier 
courses you studied the problem of sorting, which is, essentially to find the elements of 
rank (i: i = 1 …n).  Mergesort, for example, uses n lg n - 2lg n + 1 comparisons, which 
is n lg n – n +1 if n is a power of 2. We will look at algorithms, but another key aspect of 
our study will be lower bounds: proving that any method must use at least “such and 
such” a number of comparisons. You have also seen that under the comparison model, an 
sortig algorithm must distinguish between all n! permutations of the input, and so must 
use at least lg(n!) comparisons. This lower bound holds not only in the worst case for any 
method, but also averaging over all possible input sequences. Using Stirlings 
approximation, we know that n! is “roughly” (n/e)n ((2n+ 1/3) π)1/2 , so  lg(n!) ≈ n lg n + n 
lg e + (1 + lg n+ lg π )/2, or about n lg n – 1.44.. n comparisons.  The gap between the 
upper and lower bounds is, then rather small. Indeed there are algorithms that do a bit 
better than mergesort and so close the gap even more. 
 
Let’s jump from this “hardest” selection problem to the easiest, namely finding the 
maximum of a set. The “obvious” method is  

max ← A[0] 
for i  ← 1 to n-1 do  if max<A[i] then max ← A[i] 

This technique uses n-1 comparisons, which is “clearly” the best we can do … but prove 
it. Recalling the information theoretic lower bound from sorting, we see that n elements 
could be the maximum so lg n is a lower bound. While true, this is hardly interesting. A 
better tack is to note that to know one particular element is the maximum we must 
“disqualify” the other n-1. An element is “disqualified” from being the maximum by 
being compared with another and discovered to be less than that other value. A 
comparison, then, gives at most one disqualification and so at least n-1 comparisons are 
required to discover the maximum of a set, so: 
 
Theorem: n-1 comparisons are necessary and sufficient to find the maximum of n values. 
 
Finding the largest and second largest elements of a set is a bit more interesting. Indeed 
the problem seems first to have been mentioned by Charles Dodgson (i.e. who wrote 
Alice in Wonderland etc. under the name of Lewis Carroll). Dodgson observed that the 
practice, in tennis tournaments, of giving second place to the person who lost the last 
game to the ultimate winner did not, in general, find the second best player. Indeed any 
player losing to the winner could be the second best (in a “single knockout” tournament). 
This suggests that the best approach might be to arrange a sequence of n-1 comparisons 
to find the maximum to minimize the maximum number of comparisons involving any 
one element. This is easily done by pairing elements; the applying the approach to the 
pair maxima until we are left with a single element (the maximum). lg n  elements will 



have been directly with the ultimate maximum; the second largest is the largest of these. 
It is not hard to show this is optimal. 
Next consider finding the maximum and the minimum of a set. 2n -3 comparisons clearly 
suffice. However the following method does better: 

1. Pair the elements and compare the elements in a pair (n/2 comparisons, if n is 
odd one value is left out. 

2. Find the maximum of the pair maxima (and the extra if n is odd) (n/2 -1 
comparisons) 

3. Find the minimum of the pair minima (and the extra if n is odd) (n/2 -1 
comparisons) 

This gives a total of 3n/2 -2 comparisons. The question is whether or not we can do 
better. A mildly improved version of the lower bound argument for maximum answers 
the question.. 
We have to disqualify n-1 elements from being the maximum, and n-1 from being the 
minimum. The first “win” an element has disqualifies it from being the minimum and the 
first loss disqualifies it from being the maximum. This is a total of 2n – 2 
disqualifications. We will give a strategy by which all comparisons can be answered in a 
consistent manner that leads to a lower bound on the number of comparisons required in 
the worst case. This is called an adversary argument. 
Categorize the elements by the results of their previous comparisons: 
V no previous comparisons 
W no losses, at least 1 win 
L no wins, at least 1 loss 
O at least 1 win and 1 loss 
 
Now the results of comparisons: 
VV one wins, one loses: WL 
VW the W wins: LW 
VL the V wins: WL 
LW the W wins: WL 
LL one wins: LO 
WW one wins: WO 
OW the W wins: WO 
OL the O wins: OL 
VO don’t really care, but say V wins: WO 
 
Note that, other than the VV case, none of these result in more than 1 disqualification: 
that is at most one undefeated element loses or at most one winless element wins. 
Furthermore there are at most n/2 VV comparisons (as an element loses its V status in 
its first comparison). To solve the problem we require 2n – 2 disqualifications, so 
2n-2 ≥ total_compares + n/2,  so the total number of comparisons is at least 3n/2 -2. 
Hence, 
 
Theorem: 3n/2 -2 comparisons are necessary and sufficient to find the maximum and 
minimum in a set of n elements. 
 



Next consider the problem of finding the ith  largest value. (i ≤ n/2 as the other cas e is 
symmetric). The method below is a minor modification of Quicksort: 
 
Find  ith   smallest of the elements in array segment  A[p…r] 
 Qselect(A,p,r,i) 
 if  p = r  then return  A[p] 
 Choose an element, x,  at random from  A[p..r] 
 Partition  A[p..r]  so    A[q] = x 
   values  A[p..q-1]  are  < x 
   values  A[q+1..r]  are  > x 
 k← q-p+1 
 if  i = k  then  return  A[q] 
 elseif  i < k  return Qselect(A,p,q-1,i) 
 else return  Qselect(A,q+1,r,i-k) 
 
The key issue is, of course, the runtime. The worst case is   

 

Θ(n2 ) .  However, if we 
eliminate half the elements on each path, we use about 2n comparisons.  It would seem 
the method should be linear in expected time assuming all input orders are equally likely. 
The partition value is chosen at random with all values equally likely to be taken. If we 
hit the right answer, we quit after a verifying scan, otherwise we recurse on one side or 
the other. 
 
Let T(n) denote the maximum over all i of the expected number of comparisons to find 
the ith largest of n values by Qselect. We will show T(n) ≤ cn  and then solve for c. The 
proof is by induction on n. It must be done simultaneously for both the odd  and even 
cases.  We do the odd case, the even is completely analogous. The base case is T(1)=0. 
We will assume that we always recurse on the larger side, though we do have a 1 in n 
chance of hitting the ith largest and having no more work to do. This gives an 
overestimate of the cost.  
                 T(n) ≤ (n-1) + (2/n) Σi=0.. n/2 -12T(n/2 + i)  
  ≤ n-1 (2/n) ½ ( c n/2 + c(n-1)) n/2  
(inductive hypothesis & summing an arithmetic series) 
 ≤ n-1 + ½ c 3n/2 
 ≤ n-1 + c(3n/4) 
Now if c=4, which is valid in the base case 
                 T(n) ≤ n-1 + 4(3n/4) < 4n 
This proves the result; indeed the analysis is an over estimate the right answer is that c is 
roughly 2+2 ln(2) or about 3.44. 
 
One can actually do better than this algorithm. To find the element of rank r in an array of 
n elements, we can actually do better by a more sophisticated sampling approach.  Taking 
a simple of size s, he method dues to Floyd and Rivest finds the two elements of ranks  
  

 

rs / n ± (rs / n)1−∈.  This gives us two values, one almost certainly larger than the desired 
value and one almost certainly smaller.  By symmetry we can assume 2/nr ≤ . Then 
compare all elements with the cutoff value of sample rank    

 

rs / n(rs / n)1−∈  and if 
necessary with the other value.  Assuming the cutoff values bracket the desired value, and 



there are not too many other values between them, we finish off with a selection problem 
on a small number of values. s and є have to be chosen so that the possibility of success is 
very high, but the cost of checking the sample and finishing off with the values between 
the cutoffs is not too high.  Indeed we can achieve an expected bound of n+r+o(n)  
comparisons.  A lower bound of n+r-o(n)  comparisons can be shown (though it will not 
be done in this course), so the technique is essentially optimal. 
 
A more interesting, though clearly less practical method is dues to Blum, Floyd, Pratt, 
Rivest and Tarjan. It does selection in O(n) time in the worst case. In its simplest form it 
is described in the text. The constant is “impressively high”, so as an exercise in tuning 
we give the more general version of the original authors. 

1) If n is small … sort. 
2) Otherwise choose c to be an odd positive integer. Break the n values in to groups 

of size c and sort each group or “column” 
3) Recursively find the median of the columns, call this medmed 
4) We now know the relation of medmed to each column median. Use a binary 

search to “insert” medmed into each column. Note this is a binary search on c/2 
elements performed n/c times, 

5) The relation of medmed is now known with every element. Discard all the 
elements on the “wrong side” of medmed. At least c/2  elements are discarded 
from n/(2c) columns. That means we discard at least a quarter of the elements ... 
indeed a bit more because of the ceiling in the formula. Furthermore, we have a 
lot of partial columns in sorted order, so we reconstitute the remaining elements 
into sorted columns of length c and recurse starting at step 3. 

 
We now just need a good choice of c and do some arithmetic. C=15 is a good choice. 
The initial sort can be done with 42 comparisons per column, so that is a total of 42/15 n. 
Look at the algorithm as a recursive procedure starting at step 3, so we have to enter the 
procedure with the columns already sorted. Consider the costs of the steps: 

3) 42/225 n + T(n/15) 
4) 4n/15 
5) We claim we can reconstitute the sorted columns 7*17/450  n comparisons with 

22/30 n elements … or we have eliminated enough more than the minimum to 
make up for this 

So T(n) ≤  T(n/15) +T (22n/30) + (42/225 + 4/15 + 119/450)n. which leads to a solution 
of T(n)= 3.59.. n. But don’t forget the initial column sorting which costs another 2.80 n. 
This gives a total of about 6.39 n comparisons, which doesn’t sound too bad. Of course 
keeping track of what you are doing will take a fair bit of time and space. 
 
Next consider lower bounds on finding the ith largest of n elements. As with the max-min 
problem we give an adversary argument. First we give a 3n/2 bound, which as noted 
earlier is the “right answer” for the expected case. We start with n singleton values, and 
permit pairs if singletons to be compared (clearly not caring abut the outcome). At some 
point we compare an element in a pair (say wlg the element at the top of a pair) with 
some other value. The adversary declares the pair member (if at the top of the pair) to be 
the winner. It also declares that this element is larger than any other till in the system and 



so we attribute 2 comparisons to it. It is removed from the system and its partner goes 
back as a singleton. So we have removed 1 element and forced 2 comparisons. 
Unfortunately we have to get rid of elements both “up” and also “down”, so the next time 
we have a pair, we simply declare the bottom element to be the smallest in the system, 
remove it and charge it 1 comparison. This leads to an i+n-1 lower bound for finding the 
ith largest. 
This idea can be pushed a bit farther: Rather than allowing only singletons and pairs, we 
permit several other structures: In the diagram below, comparisons are indicated by lines, 
the higher element on a line “won” the comparison. We allow the structures below, 
clearly the last two are symmetric cases of the middle two. The argument will be a case 
analysis. 
 

 
The real focus is on the triple and quadruple, as any comparison involving only 
singletons and pairs results in one of these ... with one exception. 
 
If the top of a pair is compared with the bottom of another pair ... clearly we declare the 
“top” to be the winner. We declare top winner to be the maximum and remove it, 
charging it both of its comparisons. The next time such a situation arises we declare the 
bottom element to be the minimum, remove it and charge two comparisons. 
 
Moving on to the triple: A comparison with the top value allows us to send it up 
(charging 3); the next time we have a triple we send one of the bottom elements down, 
charging 1. This gets rid of 2 elements (1 up, 1 down and a cost of 4 comparisons) 
 
Now the quadruple: A comparison involving either the top or the bottom value again 
leads to balanced removal at a charge of 2 per element. Comparing with the top of the 
quadruple lets us send it up (charge 3) and send the bottom down (charge 1). Comparing 
with the bottom sends it down, charging 2 and we also send the top up charging two. In 
either case, one element goes up, one down, and 2 singletons re-enter the system. We 
attribute 4 comparisons to the values removed. 
The other two cases are not as easy, nor as successful. A comparison with the “middle of 
three” value sends it and the element below it down, charging 3 comparisons. The next 
two times we have this quadruple, we send the maximum up charging two comparisons. 
So we send 2 elements up and 2 down charging 7 comparisons (and returning some 
singletons and pairs to the system). 
A comparison with the other element below the maximum is similar. It goes down as 
does the minimum of three. That is two go down charging 3 comparisons. Again we send 



the maximum up the next 2 times a quadruple is formed. This gives the same 2 up, 2 
down, 7 comparisons outcome. The diagram illustrates this final case: 

 
Most of our cases were leading to a 2n lower bound for medians; but the last two stall the 
argument at 1 ¾ n. 
 
Theorem: At least 1 ¾ n comparisons are necessary, in the worst case, to find the median 
of n elements. 
 
Note we have a lower bound on the worst case of the median problem that is higher then 
the expected performance of the Floyd-Rivest algorithm. This suggests the question as to 
how much better techniques can do on average than in the worst case 
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