
CS 466/666 
Assignment 1 

Due: Noon Friday October 1, 2010 
 
 
1) [32 marks] We have discussed the relationship between multiplication of an adjacency matrix 
and graph properties. This question explores the relation somewhat further. Throughout this 
question assume: 

a. A is the adjacency matrix of the n node (directed) graph G. B denotes the matrix 
B in which all non-zeroes are replaced by 1’s. 

b. “Words” are of length lg n bits. Multiplying two single precision words takes 1 
operation; multiplying two k precision (i.e. k lg n bit) integers takes k lg k 
operations (the fastest known method is just a little worse). 

c. n by n matrix multiplication takes M(n) arithmetic operations each of the 
precision of the largest value of the given matrices. (Single precision operations if 
the given matrices are (0,1)). 

In each part of this question give justification for all answers, including runtimes. 
 

i. [4 marks] What does the [i,j] entry of A2 indicate about graph G? What does (A2) indicate 
about G? (Square A then replace all non-zeroes with 1’s) 

ii. [4 marks] What does the [i,j] entry of An indicate about graph G? What does (An) indicate 
about G? 

iii. [8 marks] How many bits are required to represent the largest possible value in An? How 
would you (“efficiently”) compute An and how many single precision operations are 
required? An answer up to Θ notation suffices. 

iv. [8 marks] How would you, more efficiently than from An, compute (An)? How many 
single precision operations would this require? 

v. [4 marks] Justify the claim that if A has a Hamiltonian cycle, all entries on the diagonal 
of (An)  are 1. 

vi. [4 marks] Do the last two parts suggest a polynomial time algorithm for the Hamiltonian 
cycle problem? Why or why not? 
 

2) [10 marks] Prove that the dynamic programming algorithm given in class, to find the optimal 
binary search tree for a given sequence of probabilities, runs in Θ(n2) time. The key issue is in 
restricting the subrange in which we search for the root of an optimal tree for a given range. You 
may assume the lemma that the optimal subtree on the range i to j cannot have a root to the right 
of the optimal on i to j-1. For clarity of your proof, first state the algorithm in pseudo code. 
 
3) [10 marks] Recall the discussion of finding a “near optimal” binary search tree, in linear 
time. The point of this exercise is to complete a proof of the linearity, i.e. that the number of 
comparisons (in the worst case) is of the form cn ± o(n). To make things a bit cleaner, let us 
assume we are given a set of values and their probabilities of access, so the probability of falling 
between two consecutive values is 0. You are to determine the number of comparisons required 
by this method, in the worst case, as accurately as possible. The method was claimed to take 
Θ(n) time, determine the constant ( c above) , and, to the extent you can, also determine any 
lower order term (the o(n) above). Prove your claims. 



 
4) [10 marks] Suppose we want the virtues of both an optimal binary search tree and a balanced 
search tree. Give a method of producing a tree with cost “close” to optimal but with no search 
costing more than Θ(lg n). Prove your tree achieves these claims. 
 


