
CS 466/666, Spring 2009

Timothy Chan

Assignment 1 (due May 27 Wednesday 5pm)

Please read http://www.student.cs.uwaterloo.ca/~cs466/policies.html first for general in-

structions.

1. [20 marks] Let G = (V, E) be an undirected graph with n vertices, where each vertex v has

a cost c[v] (a real number). In this question, you will give an algorithm that finds a cheapest

triangle, i.e., three vertices u, v, w ∈ V minimizing c[u]+c[v]+c[w] such that uv, uw, wv ∈ E.

(If no triangle exists, the output is undefined.) Fix a parameter d ≤ n to be determined later.

(a) [3 marks] Given an n× d matrix A an d× n matrix B, first show that we can multiply

A and B in O((n/d)2 ·d2.376) time. [Use the fact that we can multiply two d×d matrices

in O(d2.376) time.]

(b) [7 marks] Let v1, . . . , vn be the vertices of V in increasing order of cost. Di-

vide V into dn/de groups G1, . . . , Gdn/de each with at most d vertices, where Gk =

{v(k−1)d+1, . . . , vmin{kd,n}}. For every u, v ∈ V , let kuv be the smallest k such that there

exists a vertex w ∈ Gk with uw, wv ∈ E. Give an algorithm that computes all the kuv’s

in total time O((n/d)3 · d2.376). [Hint: use part (a).]

(c) [6 marks] For every u, v ∈ V , let buv be the minimum of c[w] over all w ∈ V with

uw, wv ∈ E. (If no such w exists, then buv =∞.) Give an algorithm that computes all

the buv’s in total time O((n/d)3 · d2.376 + dn2). [Hint: use (b).]

(d) [2 marks] What is the best choice of d (asymptotically)?

(e) [2 marks] Conclude that we can solve the cheapest triangle problem in time asymptot-

ically better than n3.

2. [24 marks] Consider the following problem which we will call union: we are given a set R of n

rectangles, all having the origin as the lower-left vertex, and we want to compute the union U

of these rectangles (which is a polygon). More formally, the input is a list of 2n real numbers

x1, y1, . . . , xn, yn > 0, where the i-th rectangle has vertices (xi, yi), (xi, 0), (0, 0), (0, yi). The

output is the sequence of vertices of the polygon U in left-to-right order.

=⇒
U

(a) [4 marks] Show that if the x-coordinates have already been sorted in decreasing order

(x1 > x2 > · · · > xn), then the union problem can be solved in O(n) time.

1

(b) [14 marks] For the general union problem (where the coordinates are not sorted), give

an algorithm that runs in O(n log h) time where h is the output size. [Hint: The idea

should be similar to an algorithm from class.]

(c) [6 marks] Prove an Ω(n log n) lower bound for the union problem. [Hint: use a reduction

involving sorting.]

3. [16 marks] Fix k. Consider the problem of maintaining a set S of n elements (n > k), to

support two operations:

• S.top-k() returns the k largest elements of S (these k elements can be reported in any

order);

• S.insert(x) inserts a new element x to S.

By explicitly maintaining a sorted ordering of S in a balanced search tree, it is possible to

solve the problem in O(k) time for top-k() and O(logn) time for insert(). However, this data

structure requires O(n) space. In this question, you will explore a different data structure

that uses only O(k) space.

Specifically, we maintain a subset Q ⊆ S stored in a linked list. Initially, Q = ∅. The two

operations are implemented as follows:

S.top-k():

1. return the k largest elements in Q

S.insert(x):

1. insert x to Q

2. if |Q| = 2k then

3. compute Q′ = the k largest elements in Q

4. reset Q← Q′

(a) [3 marks] Argue that this data structure indeed uses O(k) space at all times.

(b) [4 marks] Show that top-k() and line 3 of insert() can be done in O(k) time. [Hint: you

may use the known fact that the k-th largest element of a set Q can be found in linear

O(|Q|) time; e.g., see [CLRS, Ch9]. How would you use this subroutine to find the first

k largest elements of Q?]

(c) [9 marks] Prove that the amortized cost of insert() is O(1) by the potential method.

[Hint: the “obvious” choice for the potential should work. Consider two cases and in

both cases, express the cost of insert() in terms of the change in potential.]

[Bonus (3 marks): give a method that supports top-k() in O(k) time and insert() in O(1)

worst-case (rather than amortized) time.]

2

