
CS 466/666, Spring 2009

Timothy Chan

Assignment 2 (due June 10 Wednesday 5pm)

Please read http://www.student.cs.uwaterloo.ca/~cs466/policies.html first for general in-

structions.

1. [15 marks] In this question, we investigate a special case of the problem of maintaining the

minimum of a set S of numbers. (This special case arises, for example, in running Dijkstra’s

shortest path algorithm on a graph with small integer weights.) Specifically, we want a data

structure to support the following operations:

• insert-special(x): insert an element x to S where x is an integer in the range {1, . . . , U}

and x is greater than the current minimum;

• decrease-key-special(x, k): decrease x’s value to k where k is an integer in the range

{1, . . . , U} and k is greater than the current minimum;

• delete-min(): return the minimum from S and remove this element.

Note that because of the assumptions in insert-special() and decrease-key-special(), we know

that the current minimum can only increase over time.

(a) [4 marks] Give a data structure that supports insert-special() in O(U/n) amortized

time, decrease-key-special() in O(1) amortized time, and delete-min() in O(1) amortized

time, where n denotes the number of insert operations.

[Note: this method is thus superior to the methods from class when U is linear in n.

Hint: just use an array of size U . . . You may assume that n and U are known in advance,

U ≥ n, and that all keys are distinct.]

(b) [11 marks] Give a still better data structure that supports insert-special() in

O(log(U/n)) amortized time, decrease-key-special() in O(1) amortized time, and delete-

min() in O(1) amortized time.

[Hint: let d = dU/ne. Use an array of n doubly linked, unsorted lists L1, . . . , Ln, where

each list Li stores elements in the range {id + 1, . . . , (i + 1)d}. Suppose the current

minimum lies in Li∗ . Store the elements in Li∗ in a Fibonacci heap H.]

2. [15 marks] Give a data structure to support the following operations on a collection of disjoint

point sets in 2D:

• initialize(P ): create a new set P containing n points.

• count(P ): return the number of points in P .

• x-partition(P, x0): create two new sets PL = {(x, y) ∈ P | x ≤ x0} and PR = {(x, y) ∈

P | x > x0} and return (the labels of) PL and PR; the old set P is no longer in the

collection.

1



• y-partition(P, y0): create two new sets PB = {(x, y) ∈ P | y ≤ y0} and PT = {(x, y) ∈

P | y > y0} and return (the labels of) PB and PT ; the old set P is no longer in the

collection.

Your solution should take O(n logn) amortized time for initialize(), O(1) time for count(),

and O(log n) amortized time for x-partition() and y-partition().

[Hint: For each point set, simply maintain the points in two doubly linked lists, one sorted in

x-coordinates, the other sorted in y-coordinates. In partition, remove points from the smaller

side. . . For the analysis, don’t use potentials; use an argument similar to the one from class

for the weighted union heuristic.]

3. [10 marks] Give a data structure to support the following operations on a set S of intervals

in one dimension:

• insert(a, b): given two real numbers a and b with a < b, insert the interval [a, b] to S.

• query(x): given a real number x, return yes iff x lies in the union of the intervals in S.

(For example, if S contains the intervals [1, 4], [6, 10], [8, 13] and x = 9, the union of S is

[1, 4] ∪ [6, 13] and query(x) should return yes.)

Your solution should have O(log n) amortized insertion time and query time.

[Hint: Recall that standard balanced search trees can support insertions and deletions to a

set T of numbers in O(logn) time and can find the predecessor of any value x (not necessarily

in the set T ) in O(logn) time. The predecessor of x is the largest value in T smaller than x.]

4. [10 marks] In a popular form of logic puzzles, you land on an imaginary island where in-

habitants are classified into three types: “knights”, who always tell the truth; “knaves”, who

always lie; and “spies”, who sometimes lie and sometimes tell the truth.

Suppose there are n inhabitants, where 60% are known to be decent folks, i.e., knights. The

remaining 40% are bad, i.e., knaves or spies. You want to know who the good/bad guys

are, i.e., you want to determine the types of all n inhabitants. You are allowed to ask only

questions of the form, “is person A a knight/knave/spy?”, to another person B. (All the

inhabitants know each other.) Obviously, if you can find a person who you know is a knight,

the problem is solved after asking n additional questions.

(a) [2 marks] Give a (very) efficient Monte-Carlo algorithm that finds a knight. State the

probability of error. [Hint: this is supposed to be easy!]

(b) [8 marks] Give a Las-Vegas algorithm that finds a knight by asking O(n) expected

number of questions. Analyze the constant factor in the big-Oh and make it smaller

than 1.5. [Hint: use (a). How can you confirm whether a specific person is a knight by

asking O(n) questions?]

[Note: there is also a deterministic algorithm that requires O(n) questions, but it’s more

complicated and has a larger constant.]

2


