
CS 475/675 Spring 2025: Crowdmark Assignment 2

Due May 30, at 11:59 pm Eastern.
Submit all components of your solutions (written/analytical work, code/scripts, figures, plots, out-
put, etc.) to CrowdMark in PDF form in the appropriate section for each question.

You must also separately submit a single zip file containing any and all code/scripts you write to
the Crowdmark Assignment 2 DropBox on LEARN, in runnable format (that is, .m).

For full marks, be sure to show all of your work!

1. Let A =

 2 4 10
−2 −5 −8
4 6 27

.
(a) Compute the LU factorization of A, in which L is unit lower triangular. Do this com-[6]

putation by hand, not in Matlab.



(b) Compute the LDMT factorization of A. Do this computation by hand, not in Matlab.[3]
You should use your answer from part 1a.



(c) Suppose that an arbitrary square matrix, B, has two LDMT factorizations, i.e. suppose[6]
that

L1D1(M1)
T = B = L2D2(M2)

T ,

where all of L1, L2,M1,M2 are unit lower triangular, and D1, D2 are diagonal, with all
their diagonal entries non-zero. Prove that L1 = L2, D1 = D2 and M1 = M2. (Remark:
This proves that the LDMT factorization is unique.)

Hint: Use the theorem that says that if B has two LU factorizations,

L1U1 = B = L2U2,

in which L1, L2 are unit lower triangular and U1, U2 are upper triangular, with all their
diagonal entries non-zero, then L1 = L2 and U1 = U2 (i.e. the LU factorization, in
which the L is unit lower triangular and the U has non-zero diagonal entries, is unique).



2. The following algorithm, to carry out Gaussian Elimination on an n× n matrix A, is repro-[8]
duced from the Lecture Notes and Slides.

GE Algorithm

for i = 1, 2, ..., n-1
for k = i+1, ..., n

mult = aki / aii
aki = 0 not needed, but helpful for intuition
for j = i+1, ..., n

akj = akj− mult ∗aij update row k
end
bk = bk− mult ∗bi update RHS

end
end

Compute the count of the flops required to execute this algorithm, in terms of n.

You may use, without proof, the sums:

n∑
i=1

i =
n(n+ 1)

2
, and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.



3. Let A =

 9 −12 3
−12 17 −4
3 −4 5

. It is clear that A is symmetric.

(a) Verify that A is positive definite. You may use Matlab to do this. Whichever way you[4]
do your verification, show all of your work.



(b) Compute the Cholesky factor, G, of A. Do this computation by hand, not in Matlab.[8]



4. Let A =

[
1 −1
1 1

]
. It is clear that A is not symmetric.

(a) Prove that, for any 0⃗ ̸= x ∈ R2, xTAx > 0.[4]



(b) Prove that there cannot exist any lower triangular 2 × 2 real matrix G, with strictly[4]
positive entries on its diagonal, such that GGT = A.



5. As in Lecture 04, in modelling (steady state) heat flow, the temperature T = T (x, y) satisfies
the Poisson equation

−∂2T

∂x2
− ∂2T

∂y2
= f(x, y)

where f(x, y) represents the heat source function.

We approximate T (x, y) at discrete locations on a two dimensional grid with m active grid
points in the horizontal dimension and 2m + 1 active grid points in the vertical dimension
(imagine a rectangular metal plate which is 1 unit wide and 2 units tall). Let the (i, j) grid
point have location (xi, yj) where xi = ih, yj = jh, h = 1

m+1 is the grid spacing, 0 ≤ i ≤ m+1
and 0 ≤ j ≤ 2m+2. If we let Ti,j ≈ T (xi, yj), then the finite difference approximation results
in a set of linear equations

1

h2
(4Ti,j − Ti−1,j − Ti+1,j − Ti,j−1 − Ti,j+1) = fi,j . (1)

We will assume that all the boundary temperatures along the sides of the grid are zero:

T0,j = Ti,0 = Tm+1,j = Ti,2m+2 = 0

for all i, j as above. We want to analyze the heat flow with two heat sources as given by:

fi,j =


1 if ∥(xi, yj)− (0.3, 1.75)∥ ≤ 0.1
2 if ∥(xi, yj)− (0.7, 0.25)∥ ≤ 0.2
0 otherwise.

0

10

20

30

0

10

20

30
0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 1: Example plot for three heat sources

An example of a final temperature distribution for a different set of three heat sources is
shown in Figure 1.

Define a vector x such that
xk = Ti,j ,

where k = i + (j − 1)m. Similarly, define the vector b with bk = fi,j . Then we can write
equation (1) in matrix form as

Ax = b. (2)

The coefficient matrix A is sparse with size n× n, where n = m(2m+ 1).



(a) Create a Matlab function [A,b] = Lap2D(m). The input is a positive integer m, the[10]
number of active grid points in the horizontal dimension, as defined above. The outputs
are the matrix A and the vector b as in equation (2).



(b) Implement the following numerical methods: Gaussian elimination, Cholesky factoriza-[18]
tion, and Banded Gaussian elimination. Create the following Matlab functions:

x=GaussElim(A,b)

x=Cholesky(A,b)

x=BandGE(A,b,p,q)

These Matlab functions take as inputs the matrix A and right-hand side b and compute
the solution x using the corresponding variant of Gaussian elimination. The parameters
p and q indicate the lower and upper matrix bandwidth, respectively. (There is no need
to implement pivoting or check for zero or small pivots.) You can check your code by
visualizing the solution x. Use the following command:

>> mesh(reshape(x,m,2*m+1))

This will convert the solution vector x into a 2D array, and generate a 2D mesh plot of
the result. Submit a 2D mesh plot of the solution for the case when m = 20.



(c) Create a Matlab script, GETimes.m, that solves (2) using the three different variants of[12]
Gaussian elimination you wrote. In particular, set up the matrix A and right-hand side
b by calling the Matlab function Lap2D. Then solve the equation by calling one of the
Matlab functions in part (b). Record the execution time using the Matlab commands
tic and toc. Construct a table of execution times for solving with each of the methods
above. Try the values m = 8, 16, 24, 32. (Consider vectorizing the innermost loop of your
implementations to keep the solve times more manageable.) Compare and comment on
the timing results for the three methods you implemented. Include a mesh plot of x, a
table of CPU times, and your comments on the timing results.

Submit to the LEARN Dropbox: Lap2D.m, GaussElim.m, Cholesky.m, BandGE.m, GETimes.m.


