
CS 475/675 Spring 2025: Crowdmark Assignment 4

Due July 4 at 11:59 pm Eastern.
Submit ALL components of your solutions (written/analytical work, code/scripts, figures, plots,
output, etc.) to CrowdMark in PDF form in the section for each question.

Also separately submit a single zip file containing any and all code/scripts you write to the Crowd-
mark A04 DropBox on LEARN, in runnable format (that is, .m).

For full marks, be sure to show all your work!

1. Let {pi} be a set of A-orthogonal search direction vectors, where A is an SPD matrix. We
want to look for xk+1 in all of these directions. Thus, we write

xk+1 = x0 +

k∑
i=0

αip
i.

We determine {αi} by minimizing F (xk+1), where

F (x) ≡ 1

2
xTAx− bTx =

1

2
(x, x)A − (b, x),

over all search directions.

(a) Show that[4]

F (xk+1) =
1

2
(x0, x0)A +

k∑
i=0

αi(x
0, pi)A +

1

2

k∑
i=0

k∑
j=0

αiαj(p
i, pj)A − (b, x0)−

k∑
i=0

αi(b, p
i).



(b) By using the A-orthogonal property, show that[2]

F (xk+1) =
1

2
(x0, x0)A +

k∑
i=0

αi(x
0, pi)A +

1

2

k∑
i=0

α2
i (p

i, pi)A − (b, x0)−
k∑

i=0

αi(b, p
i).



(c) To minimize F (xk+1), we set ∂F
∂αj

(xk+1) = 0. Show that[4]

αj =
(r0, pj)

(pj , pj)A
,

where r is the residual. Thus αj depends only on pj , not on any other search directions. Once
we have minimized in direction pj , we are done with that direction. In other words, each of
the pj minimizes F (xk+1) in a subspace and we never have to look in that subspace again.



2. Consider the least squares problem Ax = b where

A =


3 −3 −10
0 4 16
4 −4 −30
0 3 12

 , b =


1
1
1
1

 .

(a) Solve the least squares problem using the normal equations. Do the computation by[5]
hand, and not in Matlab.



(b) Solve the least squares problem using (classical or modified) Gram-Schmidt. Determine[5]
the Q̂ and R̂ factors. Do the computation by hand, and not in Matlab.



3. Adapt the ideas of Householder QR-factorization to derive a method to instead compute a[10]
factorization A = QL, where L is lower triangular and Q is orthogonal. Assume that A
is square and full-rank. Give a text description of how your algorithm works, supported by
illustrations and pseudocode. (Hint: Derive a modification of the Householder approach such

that
(
I − 2vvT

vT v

)
x is zero everywhere but its last component, rather than its first.)



4. In this question, compute each of the specified QR factorizations by hand, and not in Matlab.
Show all of your work.

(a) Let A =

 4 2

−8 −4 + 9
√
2

8 4 + 9
√
2

 . Compute a QR factorization for A, in which Q is 3×3 and[5]

R is 3× 2. Use Householder reflections to do the computation.



(b) Let A =

1 2
1 −2
0 1

 . Compute a QR factorization for A, in which Q is 3 × 3 and R is[5]

3× 2. Use Givens rotations to do the computation.



5. In this question, develop a Matlab function to efficiently compute each of the specified QR
factorizations. Include a diary which shows running each function to factorize an example
matrix A, of size at least 3× 2.

(a) Develop a Matlab function, QRHouseholder(A), which uses Householder reflections to[10]
compute a QR factorization of A. If A is m × n (m ≥ n), then Q will be m × m and
R will be m× n. You may find it helpful to start with the QRHouseholderTemplate.m
template.



(b) Develop a Matlab function, QRGivens(A), which uses Givens rotations to compute a[10]
QR factorization of A. If A is m × n (m ≥ n), then Q will be m × m and R will be
m× n. You may find it helpful to start with the QRGivensTemplate.m template.

Once again, submit a copy of everything to CrowdMark in PDF/image format, and separately
submit your [runnable] source code to the A04 LEARN DropBox in a single ZIP file.


