
CS 475
Lecture Notes
Spring 2025

Collin Roberts

June 30, 2025

Contents

1 Lecture 01: Linear Algebra Review 6
1.1 Course Mechanics . 6
1.2 Basic Theory of Linear Algebra . 6
1.3 Q & A . 8

2 Lecture 02: Solving Linear Systems 9
2.1 Solving Linear Systems . 9

2.1.1 LU Factorizations . 9
2.1.2 Symmetric Systems . 11
2.1.3 Positive Definite Systems . 14

3 Lecture 03: Solving Linear Systems 17
3.1 Solving Linear Systems . 17

3.1.1 Symmetric Positive Definite (SPD) Systems 17
3.1.2 Banded Matrices . 25
3.1.3 General Sparse Matrices . 27

4 Lecture 04: Finite Differences for Modelling Heat Conduction 29
4.1 Finite Differences for Modelling Heat Conduction 29

5 Lecture 05: Graph Structure of Matrices; Matrix Re-Ordering 37
5.1 Graph Structure of Matrices . 37

5.1.1 Graph Structure . 37
5.1.2 Fill-in During Factorization . 40

5.2 Matrix Reordering . 42
5.2.1 Key Idea . 43

6 Lecture 06: Matrix Re-Ordering 45

1

6.1 Matrix Reordering . 45
6.1.1 Key Idea . 45
6.1.2 Example with Natural Ordering . 45
6.1.3 Envelope Reordering . 47
6.1.4 Level sets . 49
6.1.5 Cuthill-McKee . 50

7 Lecture 07: Matrix Re-ordering; Image De-Noising 56
7.1 Matrix Re-ordering . 56

7.1.1 Markowitz Reordering . 56
7.1.2 Minimum Degree Reordering . 58
7.1.3 Stability (Optional) . 63
7.1.4 Pivoting (Optional) . 64

7.2 Image De-Noising . 66
7.2.1 Inverse Problems . 67
7.2.2 Regularization Models . 67

8 Lecture 08: Iterative Methods 74
8.1 Iterative Methods . 74

8.1.1 Stationary Iterative Methods . 75
8.2 Splitting Methods . 76

8.2.1 Richardson Iteration . 77
8.2.2 Jacobi Iteration . 78
8.2.3 Gauss-Siedel Iteration . 79
8.2.4 Successive Over-Relaxation (SOR) 81

8.3 Convergence of Splitting Methods . 83

9 Lecture 09: Iterative Methods - Conjugate Gradient Method 85
9.1 Solution by Steepest Descent . 87

9.1.1 Towards the Conjugate Gradient Method 90
9.2 Another Search Direction Idea . 90

9.2.1 Gram-Schmidt (A-)orthogonalization 91
9.2.2 Conjugate Directions Method . 93

9.3 Conjugate Gradient Method . 93
9.3.1 Efficient Conjugate Gradient Method 94
9.3.2 Error Behaviour . 97

10 Lecture 10: Least Squares Problems 101
10.1 Least Squares . 101
10.2 Method 1: Normal Equations . 104
10.3 Method 2: QR Factorization . 105

10.3.1 QR for Least Squares . 106

11 Lecture 11: Gram-Schmidt Orthogonalization 110
11.1 QR factorization via Gram-Schmidt . 110

2

11.1.1 Orthonormalization for Q . 110
11.1.2 Upper Triangular Matrix R . 111

11.2 Modified Gram-Schmidt . 112
11.3 Complexity of Gram-Schmidt . 123

12 Lecture 12: Householder QR factorizations 125
12.1 Householder Triangularization . 125
12.2 Householder QR Factorization Algorithm . 129
12.3 Example: Householder Reflector . 131
12.4 Example: QR Factorization via Householder 132

13 Lecture 13: Givens Rotations 134
13.1 Givens Rotations . 134
13.2 Hessenberg via Givens . 140
13.3 Least Squares: Normal Equations vs QR . 140

14 Lecture 14: Eigenvalues / Eigenvectors 142
14.1 Eigenvalue Problem Definitions . 142
14.2 Traditional Eigenvalue Problem Review . 143
14.3 Solving Eigenvalue Problems (Näıve Approach) 145
14.4 Eigenvalue/Eigenvector Review Example . 147
14.5 Rayleigh quotient . 149
14.6 Power Iteration . 152

15 Lecture 15: Eigenvectors / Eigenvalues - Iterative Methods 154
15.1 Inverse Iteration . 154

15.1.1 Shifting Eigenvalues . 155
15.2 Rayleigh Quotient Iteration . 156
15.3 Computational Complexity . 158
15.4 QR Iteration . 158

16 Lecture 16: Eigenvectors / Eigenvalues - Practical QR 161
16.1 Simultaneous (aka Block Power) Iteration 161
16.2 Simultaneous Iteration vs. QR Iteration . 162

16.2.1 Convergence of QR Iteration . 164
16.2.2 Eigenvalue Problems Recap . 165

16.3 Reduction to Upper Hessenberg . 165
16.3.1 First attempt: . 165
16.3.2 Second Attempt: . 166
16.3.3 Symmetric Matrices: Two-Phase Process 167

16.4 Aside: The QR Iteration’s Inventors . 167

17 Lecture 17: Eigenvectors / Eigenvalues - Image Segmentation 169
17.1 Definitions . 170
17.2 Graph Laplacians . 172

17.2.1 Unnormalized Graph Laplacian . 173

3

17.2.2 Normalized Graph Laplacian . 173
17.3 Clustering using Graph Laplacians . 175

17.3.1 Relaxation of RatioCut via Graph Laplacian 176
17.3.2 Relaxation of Ncut via Graph Laplacian 177

17.4 K-means Clustering . 178
17.5 Spectral Clustering: Cuts and K-means Together 179

17.5.1 Choosing Weights W . 181
17.6 Other Applications . 181

17.6.1 Geometric Mesh Processing . 181
17.6.2 Motion Analysis . 182

18 Lecture 18: Introduction to Singular Value Decompositions 183
18.1 Geometric Motivation: AV = UΣ . 183

18.1.1 Matrix Form . 184
18.1.2 Comparison with Eigendecomposition 185

18.2 Properties of the SVD . 185
18.3 Computing the SVD - 1st Attempt . 189

18.3.1 Example . 189

19 Lecture 19: Singular Value Decompositions Versus Eigendecomposition 192
19.1 Alternative Formulation . 192

19.1.1 Alternate Approach Example . 193
19.2 Proof of Existence of SVD . 195
19.3 Stability Comparison . 197
19.4 Golub-Kahan Bidiagonalization . 197

20 Lecture 20: Application - Image Compression 199
20.1 Best Approximation to A . 199
20.2 Application of SVD to Image Compression 204

20.2.1 Image Compression Demo . 205

21 Lecture 21: Convergence of Iterative Methods 207
21.1 Introduction . 207
21.2 Richardson Convergence . 208

21.2.1 Choosing Optimal θ . 209
21.3 Jacobi, Gauss-Seidel, & SOR Convergence 210
21.4 Convergence on Discrete Poisson Equation 212

21.4.1 Richardson . 213
21.4.2 Jacobi . 214
21.4.3 GS and SOR . 214

22 Lecture 22: Convergence of Iterative Methods 216
22.1 Conjugate Gradient Convergence . 216
22.2 Preconditioning Idea . 218

22.2.1 Symmetric Preconditioning . 219

4

22.3 Common Preconditioners . 220
22.3.1 SGS Implementation . 221
22.3.2 “Incomplete” Cholesky preconditioning 221

22.4 Extensions . 222
22.5 (Last) Graphics Application . 222

23 Lecture 23: Principle Component Analysis (Optional) 225
23.1 Principle Component Analysis . 225

23.1.1 PCA via Eigendecomposition . 226
23.1.2 PCA via SVD . 226

23.2 Applications . 227
23.2.1 Dimensionality Reduction . 227
23.2.2 Eigenfaces . 227

24 Lecture 24: Course Review and Wrap-Up 229
24.1 Final Exam Details . 229
24.2 Course Review . 229
24.3 Course Wrap-up . 230
24.4 Student Perception Surveys . 230

5

1 Lecture 01: Linear Algebra Review

Outline

1. Course Mechanics
2. Basic Theory of Linear Algebra

1.1 Course Mechanics

� See:
– the unsecured course website: https://student.cs.uwaterloo.ca/~cs475, and
– the course outline which will be linked there.

1.2 Basic Theory of Linear Algebra

Definition 1.2.1. Let A be a matrix. The range of A defined as

range(A) = {y | Ax = y for some vector x}.

Theorem 1.2.2.

range(A) = the column space of A

= the space spanned by the column vectors of A = [a1 · · · an]
= {y = x1a1 + · · ·+ xnan}

=

{
n∑

j=1

xjaj for scalars xj

}
.

Q: What is the difference between range(A) and the column space of A?
A: There is no difference. The x⃗ in the definition of range(A) is precisely

x⃗ =

 x1
...
xn


from the definition of the column space.

Remark: We are working over the field R. Otherwise our computational approach would
not make sense.

Definition 1.2.3. 1. column rank = dimension of the column space
2. row rank = dimension of the row space

Theorem 1.2.4. column rank = row rank.

Thus we may simply refer to the rank of A.

6

https://student.cs.uwaterloo.ca/~cs475

Definition 1.2.5. An m× n matrix A is of full rank if

rank(A) = min(m,n).

Thus, if m ≥ n, then A is of full rank if it has n linearly independent column vectors.

Definition 1.2.6. A set S = {v⃗1, . . . , v⃗n} of vectors is linearly independent of and only
if, for any scalars c1, . . . , cn, c1v⃗1 + · · · + cnv⃗n = 0⃗ implies c1 = · · · = cn = 0, i.e. the only
linear combination of v⃗1, . . . , v⃗n which equals 0⃗ is the trivial one.

Definition 1.2.7. A nonsingular (invertible) matrix is a square matrix, of full rank.

Definition 1.2.8. The null space of A is

null(A) = {x | Ax = 0⃗}.

Matrix Inverses

(AB)−1 = B−1A−1

(A−1)T = (AT)−1

def
= A−T .

Theorem 1.2.9. B−1 = A−1 −B−1(B − A)A−1 .

Proof.

B
[
A−1 −B−1(B − A)A−1

]
BA−1 −BB−1(B − A)A−1

BA−1 −BA−1︸ ︷︷ ︸
=0

+AA−1︸ ︷︷ ︸
=I

I.

It is an exercise for you to check multiplication on the other side.

Remarks:

1. This Theorem is useful to establish the Sherman-Morrison-Woodbury formula, below.

(A+ UV T︸ ︷︷ ︸
rank k

)−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1︸ ︷︷ ︸
rank k

,

where A is an invertible n× n matrix, and U, V are n× k matrices (usually k ≤ n).

Thus a rank k correction to A (LHS) results in a rank k correction to the inverse (RHS):

� Assume UV T (which is (n× n)), has rank k.
� Further assume that (I + V TA−1U) (which is (k × k)) is invertible.
� Then U(I + V TA−1U)−1V T also has rank k.

7

� A and A−1 have full rank, therefore A−1U(I + V TA−1U)−1V TA−1 also has rank k.

Example: Let A be n× n, say A = [aij]. Let k = 1.

u =


u1

0
...
0

 , v =


v1
0
...
0



uvT =


u1v1 0 · · · 0
0 0
...

...
0 0 · · · 0


A+ uvT =

{
a11 + u1v1 if i = 1 and j = 1
aij otherwise

(A+ uvT)−1 = A−1 − A−1u︸ ︷︷ ︸
n×1

(1 + vTA−1u︸ ︷︷ ︸
1×1

)−1 vTA−1︸ ︷︷ ︸
1×n

1.3 Q & A

1. Will we need to know MATLAB for this course?
A: Yes.

2. How should we learn MATLAB?
A: I will run a MATLAB tutorial, well before the first Crowdmark assignment is
released. I will also post a “Quick Reference” guide.

3. Will the instructor post the URL for the unsecured website on LEARN?
A: Yes! This is already done.

4. Can you talk about the optional textbooks?
A: Yes. See the details posted on the course outline.

5. Can you be specific about which textbook to read for each topic?
A: Yes, absolutely.

6. Will the mid-term be 100% written, or will there also be a MATLAB component?
A: 100% written.

7. What types of questions will be on the marked quizzes on LEARN?
A: The auto-marked types, e.g. MC, MS, MAT, TF, etc.

8. Will the Marked Quizzes and Crowdmark assignments be open book?
A: Yes!

8

2 Lecture 02: Solving Linear Systems

Outline

1. Solving Linear Systems
(a) LU factorizations

i. Complexity
(b) Symmetric Systems
(c) Positive Definite Systems

2.1 Solving Linear Systems

How To Compute x = A−1b: In numerical linear algebra, we never compute A−1 in
order to compute A−1b. Instead we compute x as the solution of Ax = b, via Gaussian
elimination.

Big Picture of Gaussian Elimination
x x x x
x x x x
x x x x
x x x x


︸ ︷︷ ︸

A

→


x x x x
0 x x x
0 x x x
0 x x x


︸ ︷︷ ︸

A(1)

→


x x x x
0 x x x
0 0 x x
0 0 x x


︸ ︷︷ ︸

A(2)

→


x x x x
0 x x x
0 0 x x
0 0 0 x


︸ ︷︷ ︸

A(3)

GE Algorithm

for i = 1, 2, ..., n-1
for k = i+1, ..., n

mult = aki / aii
aki = 0 not needed, but helpful for intuition
for j = i+1, ..., n

akj = akj− mult ∗aij update row k
end
bk = bk− mult ∗bi update RHS

end
end

At the end, A(n−1)x = b(n−1), is solved by back substitution.

2.1.1 LU Factorizations

Theorem 2.1.1. If A can be reduced to RREF without interchanging rows, then there is a
unique factorization A = LU , where L is lower triangular with 1s on its diagonal (i.e. unit
diagonal), and U is upper triangular. Moreover, Moreover,

U = A(n−1), L =

 1 0
. . .

mult 1


9

Proof. See the proof, starting on p144 of Matrix Analysis and Applied Linear Algebra, by
Carl D. Meyer.

Important Remark: Not every non-singular n × n matrix A has an LU -decomposition.

E.g. A =

[
0 1
1 1

]
.

Then solving Ax = b is equivalent to solving LUx = b. Let y = Ux. Then Ly = b. So
we

1. Solve Ly = b by forward solving, then
2. Solve Ux = y by back solving.

Forward Solve Algorithm

for i = 1, 2, . . . , n
yi = bi
for j = 1, 2, . . . , i− 1

yi = yi − lij ∗ yj
(
yi = bi −

∑i−1
j=1 lijyj

)
end

end

Backward Solve Algorithm

for i = n, . . . , 1
xi = yi
for j = i+ 1, . . . , n

xi = xi − uij ∗ xj

(
xi = yi −

∑n
j=i+1 uijxj

)
end
xi = xi/uii % diagonal entries not necessarily 1

end

Complexity

� 1 flop = +/− / ∗ /÷ .
� Consider the forward solve algorithm. For each i, the j-loop performs 2(i− 1) flops.

Total flops =
n∑

i=1

2(i− 1)

= 2
n∑

i=1

i−
n∑

i=1

2

= 2
n(n+ 1)

2
− 2n

= n2 + n− 2n

= n2 − n

∈ O(n2).

10

� flops(back-solve) = O(n2) (Exercise).
� flops(LU factorization) = 2

3
n3 +O(n2) (Exercise).

For large n, the factorization is more expensive than forward and back solving.

Special Linear Systems

� Exploit special structures of linear systems
� More efficient LU factorization

2.1.2 Symmetric Systems

� LDMT factorization, variant of LU.

We do NOT assume that A is symmetric yet; the next Theorem applies whether A is sym-
metric or not.

Definition 2.1.2. A principal submatrix is a smaller matrix constructed by deleting rows
and corresponding columns.

Some examples are
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

→
[
19 20
24 25

]
and


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

→
 1 3 5
11 13 15
21 23 25

 .

The following results are reproduced from Chapter 3 of Matrix Analysis and Applied Linear
Algebra, by Carl D. Meyer.

Definition 2.1.3. The leading principal submatrices of A are defined to be those sub-
matrices taken from the upper-left-hand corner of A. That is

A1 =
[
a11
]
,

A2 =

[
a11 a12
a21 a22

]
,

...

An−1 =

 a11 · · · a1 n−1
...

...
an−1 1 · · · an−1 n−1

 ,

An = A

Theorem 2.1.4. Each of the following statements is equivalent to saying that a non-singular
n× n matrix A possesses an LU-factorization.

1. A zero pivot does not emerge during row-reduction to upper-triangular form with Type
III operations.

11

2. Each leading principal submatrix Ak is non-singular.

Proof. � We will prove the statement concerning the leading principal submatrices and
leave the proof concerning the nonzero pivots as an exercise.

� First, assume that A has an LU -factorization.
– For any 1 ≤ k ≤ n, partition A as

A = LU

=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 ∗
∗ ∗

]
,

where L11 and U11 are both k × k.
– Then Ak = L11U11 is non-singular, because both of L11 and U11 are non-singular

(each is triangular, with non-zero diagonal entries).
– Since k was arbitrary, this shows that all of the leading principal submatrices of

A are nonsingular.
� Second, assume that the leading principal submatrices of A are all non-singular.

– Let 1 ≤ k ≤ n be arbitrary.
– We will prove by induction on k that each Ak has an LU -factorization.
– Then, since A = An, it follows that A has an LU -factorization.
– Base (k = 1):

* A1 =
[
a11
]
, so the assumption that A1 is non-singular guarantees that a11 ̸= 0.

* Then A1 =
[
1
] [

a11
]
is an LU -factorization of A1.

* This completes the base case.
– Induction (k > 1):

* The induction hypothesis is that all Aℓ, for 1 ≤ ℓ < k, have LU -factorizations.
* In particular, Ak−1 has an LU -factorization.
* Write Ak−1 = Lk−1Uk−1.
* By assumption, Ak−1 is non-singular.
* Therefore A−1k−1 = U−1k−1L

−1
k−1.

* Define

cT = the first k − 1 components of the kth row of Ak,

b = the first k − 1 components of the kth column of Ak,

αk = the (k, k) entry of Ak.

* With this notation, we can write

Ak =

[
Ak−1 b
cT αk

]
.

* I claim that the following is an LU -factorization of Ak:[
Lk−1 0
cTU−1k−1 1

]
︸ ︷︷ ︸

Lk

[
Uk−1 L−1k−1b
0 αk − cTA−1k−1b

]
︸ ︷︷ ︸

Uk

12

* We verify that this works in each of the 4 blocks of Ak.
· top-left k − 1× k − 1 block: Lk−1Uk−1 = Ak−1, by the induction hypoth-
esis.

· row k, first k − 1 entries:
[
cTU−1k−1 1

]︸ ︷︷ ︸
1×k

[
Uk−1
0

]
︸ ︷︷ ︸
k×k−1

= cT .

· column k, first k − 1 entries:
[
Lk−1 0

]︸ ︷︷ ︸
k−1×k

[
L−1k−1b

αk − cTA−1k−1b

]
︸ ︷︷ ︸

k×1

= b.

· k, k entry:
[
cTU−1k−1 1

]︸ ︷︷ ︸
1×k

[
L−1k−1b

αk − cTA−1k−1b

]
︸ ︷︷ ︸

k×1

= cT U−1k−1L
−1
k−1︸ ︷︷ ︸

=A−1
k−1

b+αk−cTA−1k−1b =

αk.
* Observe that

· Lk has 1s on its diagonal, and
· Uk has non-zeros on its diagonal. The fact that αk− cTA−1k−1b ̸= 0 follows,
because Ak and Lk are both non-singular, hence Uk = L−1k Ak must also
be non-singular.

* This completes the induction step, and hence the proof.

Theorem 2.1.5. If all the leading principal submatrices of A are nonsingular, then there
exist unique unit lower diagonal matrices L and M , and a unique diagonal matrix D such
that

A = LDMT

Proof. � Uniquely factor A = LU , with L unit lower triangular.
� Define D = diag(d1, . . . , dn), di = uii, 1 ≤ i ≤ n.
� Note, all di ̸= 0, by the hypothesis that A’s leading principal submatrices are all
non-singular.

� Hence D−1 exists (its diagonal entries are the reciprocals of D’s diagonal entries).
� Let MT = D−1U .
� Observe that D−1U is upper triangular, and moreover, it has 1s on its diagonal (by
the construction of D−1).

� This says that MT is unit upper triangular.
� Therefore M is unit lower triangular.
� Thus A = LU = LD(D−1U) = LDMT .

Remarks:

1. LU-factorization, and hence LDM-factorization, lie in O(n3).

Theorem 2.1.6. Keep the hypotheses on A from Theorem 2.1.5. If A is symmetric, then
A = LDLT .

13

Proof. � By Theorem 2.1.5, there is a unique factorization A = LDMT .
� Since A is symmetric, we have

A = AT

= (LDMT)T

= (MT)TDTLT

=︸︷︷︸
D is diagonal, hence symmetric

MDLT .

� By the uniqueness of the LDM -factorization, we have M = L.

2.1.3 Positive Definite Systems

Definition 2.1.7. An n× n symmetric matrix A is positive definite if xTAx > 0, for all
non-zero n× 1 matrices x.

Roughly speaking, Definition 2.1.7 generalizes a definition for positive scalars, i.e., a ∈ R is
positive if xax > 0,∀x ∈ R, x ̸= 0. Consider the function f(x) = xTAx, which is quadratic
and A contains the coefficients. Positive definiteness essentially asks if f is convex. Figure 2.1
shows examples of f with different A matrices.

positive definite positive semidefinite indefinite

Figure 2.1: Plotting of f = xTAx as a height function with x ∈ R2 and different A ∈ R2×2.

Remarks:

1. There is not universal agreement among mathematicians that we should only ask if a
matrix is positive definite if we already know that it is symmetric.

2. E.g. A =

[
1 1
−1 1

]
satisfies xTAx > 0, for all 0 ̸= x ∈ R2, but is clearly not symmetric.

3. In this course, we will only care if a matrix is positive definite when we already know
that it is symmetric.

4. This is why we make being symmetric part of the definition of being positive definite.
5. Keep in mind that the definition of positive definiteness may be different in other

contexts, outside of this course.

14

Equivalent Characterizations of Being Positive Definite

1. All eigenvalues are strictly positive. (This makes sense because the eigenvalues of a
symmetric matrix are all real.)

2. All pivots are strictly positive. (using the fact that for a symmetric matrix, the signs
of the pivots are the signs of the eigenvalues.)

3. The kth pivot of a matrix is

dk =
det(Ak)

det(Ak−l)
,

where Ak is the kth leading principal submatrix. All the pivots will be positive if and
only if det(Ak) > 0 for all 1 ≤ k ≤ n. So, if the determinants of the leading principal
submatrices are positive, then the matrix is positive definite.

4. A matrix A is positive definite if and only if it can be written as A = RTR for some
possibly rectangular matrix R with independent columns.

Remarks:

1. I will not prove these equivalences in class.
2. If any student specifically asks to see the proofs, then I will type them up and post

them.
3. You can safely infer from the above two comments that you are not responsible for

knowing these proofs for this course.

Theorem 2.1.8. If A is positive definite, then A−1 exists.

A useful result for PD matrices is given in Theorem 2.1.9.

Theorem 2.1.9. If A ∈ Rn×n is PD and X ∈ Rn×k has rank k ≤ n, then B = XTAX is
also PD (i.e., zTBz > 0,∀z ∈ Rk, z ̸= 0).


An×n




Xn×k


 Bk×k


z1...
zk





x1

...

xn


The above diagram shows the sizes of all the matrices/vectors in Theorem 2.1.9.

Proof. � Consider any 0 ̸= z ∈ Rk, then

zTBz = zTXTAXz = (Xz)TA(Xz).

� Let x = Xz, which is a vector in Rn.
� If x ̸= 0 then we are finished because (Xz)TA(Xz) = xTAx > 0 since A is PD.
� When can x = 0? This is equivalent to asking what the null space of X is.
� Since X has rank k it is full rank.

15

� By the rank-nullity theorem dim(null(X)) = nullity(X) = 0.
� Hence, the null space of X contains only the zero-vector.
� Thus, x = 0 only if z = 0. So zTBz = (Xz)TA(Xz) > 0 for all z ̸= 0⇒ B is PD.

Corollary 2.1.10. If A is PD, then all its principal submatrices are PD. In particular, all
diagonal entries are positive.

Proof. Each diagonal entry is a principal submatrix with all other rows/columns deleted.
You can design (identity-like) matrices X to “pick out” arbitrary principal submatrices
using XTAX (which is PD by Theorem 2.1.9), e.g.,

A =

−1 2 5
2 4 −4
5 −4 7

 , X =

1 0
0 0
0 1

 , ⇒ XTAX =

[
−1 5
5 7

]
.

Remarks:

1. The converse of the Corollary 2.1.10 holds, because A is a principal submatrix of itself.

Corollary 2.1.11. If A is PD, so that A = LDLT , then the diagonal matrix D has strictly
positive entries.

Proof. � Since L is unit lower triangular, therefore it is invertible. Hence we have

A = LDLT

L−1AL−T = D.

� By Theorem 2.1.9, D = L−1AL−T is PD.
� By Corollary 2.1.10, D’s diagonal entries are all positive.

16

3 Lecture 03: Solving Linear Systems

Outline

1. Solving Linear Systems
(a) Symmetric Positive Definite (SPD) Systems

i. Constructing the Cholesky Factor
(b) Banded Systems
(c) General Sparse Matrices

3.1 Solving Linear Systems

3.1.1 Symmetric Positive Definite (SPD) Systems

Theorem 3.1.1. If A is SPD, then there exists unique lower triangular G, with strictly
positive entries on its diagonal, such that

A = GGT .

Proof. By Theorem 2.1.6 and Corollary 2.1.11, write A = LDLT , for some lower triangular
L and D = diag(d1, . . . , dn), di > 0.

Define D
1
2 , one co-ordinate (i), at a time, as follows:

� If the ith diagonal entry of L is positive, then the ith diagonal entry of D
1
2 is
√
di.

� Otherwise, if the ith diagonal entry of L is negative, then the ith diagonal entry of D
1
2

is −
√
di.

Let G = LD
1
2 . Then G is lower triangular, with strictly positive entries on its diagonal.

Further, GGT = LD
1
2 (LD

1
2)T = LD

1
2D

1
2LT = LDLT = A.

Explanation for why the Cholesky Factorization is Unique:

� Let A = GGT = HHT , for some lower triangular H with strictly positive entries on
its diagonal.

� First, note that I = H−1GGTH−T :

HHT = A

= GGT , so that

H−1(GGT)H−T = H−1(HHT)H−T

= (H−1H)(HTH−T)

= I

� Then we have

I = H−1GGTH−T

= H−1G(H−1G)T , and therefore (3.1)

H−1G = (H−1G)−T . (3.2)

17

� The LHS of (3.2) is a product of lower triangular matrices, hence it is lower triangular.
� The RHS of (3.2) is upper triangular.
� Let E = H−1G.
� Then since E is both upper and lower triangular, therefore E is diagonal. In particular
ET = E.

� Therefore (3.1) implies that E2 = I, in other words E is diagonal, with ±1 entries on
its diagonal.

� Because G = HE, therefore the two factorizations can differ only by the signs of their
columns.

� But since the diagonal entries of both G and H must be strictly positive, therefore
they must be equal.

The factorization A = GGT is called the Cholesky factorization. The matrix G is referred
to as the Cholesky factor.

Q & A

1. Will we need to reproduce proofs on Quizzes / Assignments / Exams?
A: Not on Quizzes / Assignments, since they will be open book. I may ask for short,
new proofs, on Assignments. It is also possible that I will ask for proofs on Exams.
My idea about Quizzes, so far, is to have you work out some examples of the results
we are proving in class.

Constructing the Cholesky Factor We now discuss how to construct the Cholesky fac-
tor. Lecture 23 of Trefethen and Bau or Section 4.2.5 of Golub and Van Loan are good
supplemental reads. First, view A as

A =

[
α vT

v B

]
,

where α = a11 ∈ R, v = a2:n,1 ∈ Rn−1, and B = a2:n,2:n ∈ R(n−1)×(n−1).

The colon notation follows from MATLAB.

� For a matrix A, ai,: and a:,j denote the i-th row and the j-th column, respectively.
� Moreover, ai:j,p:q denotes the submatrix with rows from i to j and columns from p to
q.

� For example, a2:n,1 corresponds to entries in the 1st column of A, from the 2nd to the
nth row.

Cholesky factorization can intuitively be thought of as applying Gaussian elimination in a
“symmetric way”. The goal of Gaussian elimination was to zero-out the column below by
subtracting multiples of the current row. The “work-in-progress” LU -factorization of A after
the first step of Gaussian elimination can be viewed as

A =

[
1 0
v
α

I

] [
α vT

0 B − vvT

α

]
,

18

where the first column of L becomes [
1
v
α

]
.

Reminder/Explanation about LU-factorization:

1. To eliminate the entries of v below α in column 1, the multipliers are − v
α
.

2. Thus, per our LU -factorization procedure, we record the negatives of these multipliers,
namely v

α
, in column 1 of our L matrix.

3. Why the B − vvT

α
block is correct:

(a) As above, the multipliers − v
α
are required by the entries below the pivot in column

1.
(b) Because of symmetry, the entries that get applied to the lower rows are vT .

This explains where the term −vvT

α
comes from.

4. The provided multiplication creates a vvT

α
term, which cancels with −vvT

α
, to leave the

required B in the bottom right of the product matrix.

However, applying just Gaussian elimination to get an LU factorization does not take ad-
vantage of symmetry. Cholesky factorization therefore aims to zero out the corresponding
row also to remain symmetric. The first stage of Cholesky factorization is

A =

[√
α 0
v√
α

I

] [
1 0

0 B − vvT

α

][√
α vT√

α

0 I

]
,

which gives the first column of G as [√
α
v√
α

]
.

Brief Explanation of the Change From LU to Cholesky

1. It is an exercise to verify that this “work-in-progress” factorization of A is correct.
(a) The job of the LH factor is to restore the entries below the pivot.
(b) The job of the RH factor is to restore the entries to the right of the pivot.

2. In LU , we produce the L-factor on the left, and the U factor by modifying the original
A, on the right.

3. In Cholesky, we will produce by the end,

G I︸︷︷︸
where A was, originally

GT

This first step is derived by considering that the final form must be

A = GGT =

[
g11 0
G21 G22

] [
g11 GT

21

0 GT
22

]
=

[
g211 g11G

T
21

g11G21 G21G
T
21 +G22G

T
22

]
.

Therefore,

A =

[
α vT

v B

]
=

[
g211 g11G

T
21

g11G21 G22G
T
22 +G21G

T
21

]
,

19

implies

α = (g11)
2

⇒ g11 =
√
α,

v = g11G21

⇒ G21 =
v

g11

=
v√
α
.

This provides the ingredients (namely α and v) needed to compute the matrix to be processed

at the next step (namely B − vvT

α
).

The Cholesky factorization algorithm then works recursively on the lower block B− vvT

α
since

it is also SPD. To see that B− vvT

α
is SPD consider multiplying by the full rank matrix

X =

[
1 −vT

α

0 I

]
.

We have that

XTAX =

[
α 0

0 B − vvT

α

]
,

hence by Theorem 2.1.9 and Corollary 2.1.10 the principal submatrix B − vvT

α
is PD. It is

also symmetric since XTAX = (XTAX)T and A is symmetric.

So we can Cholesky factor B− vvT

α
as B− vvT

α
= G1G

T
1 . The recursion continues eliminating

one row/column at a time. The Cholesky factor of A itself will have the form

G =

[√
α 0
v√
α

G1

]
.

Cholesky Example:

� So that we will know what our goal is, we first choose a G. Then we compute our
starting point, namely the matrix A, via A = GGT .

� With the help of a student, we selected

G =

 2 0 0
3 3 0
−4 −6 5

 , so that

A = GGT

=

 2 0 0
3 3 0
−4 −6 5

2 3 −4
0 3 −6
0 0 5


=

 4 6 −8
6 18 −30
−8 −30 77

 .

20

� A is clearly symmetric.
� To make absolutely certain that A has a Cholesky factorization, we verify that A is also

positive definite. It is an exercise to verify that row reducing A yields

4 6 −8
0 9 −18
0 0 25

.
From this matrix, we can see that the pivots of A are 4, 9 and 25. They are all positive,
and hence A is positive definite.

� We carry out the algorithm to compute the Cholesky factor G.

1. Writing

 4 6 −8
6 18 −30
−8 −30 77

 =

[
α vT

v B

]
, we have

α = 4

v =

[
6
−8

]
B =

[
18 −30
−30 77

]
.

and therefore we obtain

g11 =
√
α

=
√
4

= 2

G21 =
v

g11

=

[
6
−8

]
2

=

[
3
−4

]
, so that

B − vvT

α
=

[
18 −30
−30 77

]
−

[
6
−8

] [
6 −8

]
4

=

[
18 −30
−30 77

]
−

[
36 −48
−48 64

]
4

=

[
18 −30
−30 77

]
−
[

9 −12
−12 16

]
=

[
9 −18
−18 61

]

21

2. Writing

[
9 −18
−18 61

]
=

[
α vT

v B

]
, we have

α = 9

v =
[
−18

]
B =

[
61
]
.

and therefore we obtain

g11 =
√
α

=
√
9

= 3

G21 =
v

g11

=

[
−18

]
3

=
[
−6
]
, so that

B − vvT

α
=

[
61
]
−
[
−18

] [
−18

]
9

=
[
61
]
−
[
36
]

=
[
25
]

3. Writing
[
25
]
=

[
α vT

v B

]
, we have

α = 25

and therefore we obtain

g11 =
√
α

=
√
25

= 5,

at which point, we are finished.
� We have now recovered all the diagonal and subdiagonal entries from the original choice
of G.

Cost of Cholesky Factorization Algorithm 9.5 gives pseudocode for the in-place Cholesky
factorization. This implementation exploits symmetry by working only on sub-diagonal
entries. In the end, the lower triangle is the Cholesky factor G.

22

Algorithm 3.1 : Cholesky Factorization

for k = 1, . . . , n ▷ iterate down rows
akk =

√
akk ▷ factor diagonal element (

√
α)

for i = k + 1, . . . , n ▷ go over rows
aik = aik/akk ▷ update current column entries below diagonal (v/

√
α)

end for
for j = k + 1, . . . , n ▷ go over columns

for i = j, . . . , n ▷ go over rows
aij = aij − aik ∗ ajk ▷ update lower right block B − vvT/α

end for
end for

end for

Note that Algorithm 9.5 assumes that the diagonal entries akk are non-zero. Problems arise
when these entries are zero or close to zero. We will address this issue through pivoting,
when we discuss the stability of factorizations.

The cost of Cholesky factorization can be estimated by considering just the inner most loop.
For that loop there is one subtraction and one multiplication. So the FLOP count is

n∑
k=1

n∑
j=k+1

n∑
i=j

2 =
n3

3
+O

(
n2
)
,

which is calculated as displayed below. As promised Cholesky factorization is half that of
LU factorization, which had a cost of 2n3

3
+O (n2) FLOPs.

23

Detailed Computation:

n∑
k=1

n∑
j=k+1

n∑
i=j

2

= 2
n∑

k=1

n∑
j=k+1

n∑
i=j

1

= 2
n∑

k=1

n∑
j=k+1

(n− (j − 1))

= 2
n∑

k=1

n∑
j=k+1

((n+ 1)− j)

= 2
n∑

k=1

[
(n− (k + 1− 1))(n+ 1)−

n∑
j=k+1

j

]

= 2
n∑

k=1

[
(n− k)(n+ 1)−

(
n(n+ 1)

2
− k(k + 1)

2

)]
= 2

n∑
k=1

[
n2 + n− kn− k − n2

2
− n

2
+

k2

2
+

k

2

]
= 2

n∑
k=1

[
k2

2
+ k

(
−n− 1

2

)
+

(
n2

2
+

n

2

)]
= 2

[(
1

2

)
n(n+ 1)(2n+ 1)

6
+

(
−n− 1

2

)
n(n+ 1)

2
+

(
n2

2
+

n

2

)
n

]
= 2n(n+ 1)

[
(2n+ 1)

12
−
(
n+

1

2

)
1

2
+

n

2

]
= n(n+ 1)

[
(2n+ 1)

6
−
(
n+

1

2

)
+ n

]
=

n(n+ 1)

6
[2n+ 1− 3]

=
n(n+ 1)

6
(2n− 2)

=
n(n+ 1)(n− 1)

3

=
n3

3
+O

(
n2
)
.

24

3.1.2 Banded Matrices

Banded matrices have nonzero entries only in “bands” adjacent to the main diagonal. Some
example banded matrices are (empty entries are zero)


9 5

3 8
2 7

1

 and


5 6
7 7 1
4 2 9 2

7 5 3 8
3 8 2 7

4 7 1

 . (3.3)

Definition 3.1. The matrix A = [aij] has

1. upper bandwidth, q, if aij = 0 for j > i+ q, and
2. lower bandwidth, p, if aij = 0 for i > j + p.

The general form of a banded matrix given in Definition 3.1 is



× · · · ×
...

.

×
.

×
.

...
× · · · ×


.

In the examples in (3.3) the first matrix has q = 1, p = 0 and the second has q = 1, p = 2.
Exercise: how might you store these banded matrices efficiently?

Q & A

1. Can there be a piece, inside the band (i.e. parallel to the band), with all 0 entries?
A: Yes! Definition 3.3 says nothing about what happens within the band. In the most
extreme case, the zero matrix trivially satisfies the definition of a banded matrix!

2. Do upper lower triangular matrices satisfy Definition 3.3?
A: Yes!
(a) An upper triangular matrix satisfies p = 0.
(b) A lower triangular matrix satisfies q = 0.

Factoring Banded Matrices If A is banded then so are the factorizations LU , LDMT ,
GGT .

Theorem 3.1. Let A = LU. If A has upper bandwidth q and lower bandwidth p, then U has
upper bandwidth q and L has lower bandwidth p.

25

Matrix Type Lower Bandwidth p Upper Bandwidth q
Diagonal 0 0
Upper Triangular 0 n− 1
Lower Triangular m− 1 0
Tridiagonal 1 1
Upper Bidiagonal 0 1
Lower Bidiagonal 1 0
Upper Hessenberg 1 n− 1
Lower Hessenberg m− 1 1

Table 3.1: Common types of matrices A ∈ Rm×n in this course and their bandwidths.

A

× · · · ×
...

.

×
.

×
.

...
× · · · ×


=

L

×
...

. . .

×
.

.

× · · · ×



U

× · · · ×
.

.

×
. . .

...
×


.

A special case of banded matrices is tridiagonal matrices, which have p = q = 1. One can
show that the flop count for LU factorization of tridiagonal matrices is O(n). Table 3.1 gives
other examples of important matrices we will see in this course.

Cost of Banded LU Factorization

Algorithm 3.2 : Banded LU Factorization

for k = 1, . . . , n− 1 ▷ iterate over rows
for i = k + 1, . . . ,min(k + p, n) ▷ go over rows within band

aik = aik/akk ▷ determine multiplicative factors
end for
for i = k + 1, . . . ,min(k + p, n) ▷ go over rows within band

for j = k + 1, . . . ,min(k + q, n) ▷ go over columns within band
aij = aij − aik ∗ akj ▷ subtract scaled row data only in non-zero bands

end for
end for

end for

� Algorithm 3.1.2 gives the banded version of LU factorization.
� We assume diagonal entries akk ̸= 0 for now in Algorithm 3.1.2.
� Banded LU factorization is most beneficial when there are many zeros in A.

26

� In other words, when the upper/lower bandwidths (q/p) are small relative to the size
of the matrix (n).

� If n≫ p and n≫ q, then banded LU is ∼2npq flops.
� This is much faster than näıve implementation of LU factorization ∼2n3

3
flops that

would operate on zero entries.
� For example, with n = 300, p = 2, q = 2, basic LU takes ∼18, 000, 000 flops but banded
LU takes only ∼2400 flops.

Exercises:

1. Verify flop count of banded LU factorization (leading order term).
2. Work out efficient algorithms for banded forward/backward triangular solves. That

is, modify the standard forward/backward solve algorithms to avoid touching entries
you know are always zero (based on bandwidth).

3.1.3 General Sparse Matrices

� Patterns other than just simple bands are also common.
� General sparse matrices (i.e. matrices having few non-zero entries) contain mostly
zero entries, but non-zeros can occur on more than the diagonal bands.

� For many problems the (max) number of non-zeros per row is constant, i.e., the total
number of non-zeros is O(n).

� So we still only want to store the non-zero entries.
� Various storage formats (data structures) exist for sparse matrices.
� We will not be coding our own in this course, but it is useful to be aware of them.
� The simplest approach is to have a vector of one (i, j, value) triplet per non-zero, but
this is inefficient.

� A more common storage structure is the Compressed Row Storage (CRS) (or Com-
pressed Sparse Row (CSR)):

– array of non-zero entries (“val”) with length = number of non-zeros (nnz),
– array of column indices (“colInd”) with length = nnz, and
– array of indices where each row starts (“rowPtr”) with length = number of rows.

For example, consider the CSR structure for the following matrix


2 5

3
6 −3

10 2

 ⇒

(We could include 0 for an empty row.)

Remark: We have not made a rigourous definition of a sparse matrix.

Factorization

� For LU factorization the main cost is the row subtraction step:

aij = aij − aikakj/akk.

27

� Since most entries are zero, our algorithms should skip operating on them.
� However, an important point to realize is that even if A is sparse, its factorization
may not be!

� This happens because row subtractions can turn zeros into non-zero entries, which is
referred to as “fill-in”.

� A classic example is the “arrow matrix”, which has fully dense (triangular) L and U
factors

A =


× × × × ×
× ×
× ×
× ×
× ×


Exercises:

1. Can you see why the L and U are dense (in corresponding triangles)?
2. Therefore, what is the storage cost of the factors and what is the complexity of the

factorization?

The key intuition for general sparse matrices is that we must reorder the system of equations.
A matrix reordering permutes rows/columns to yield a matrix whose LU factorization
suffers no fill-in (i.e., no new non-zeros). With the arrow matrix for example we can solve
the same system, but reorder the equations so that

A =


× ×
× ×
× ×
× ×

× × × × ×

 =


1

1
1

1
× × × × 1



× ×
× ×
× ×
× ×
×

 = LU.

Matrix reorderings will be discussed in more detail later.

28

4 Lecture 04: Finite Differences for Modelling Heat

Conduction

Outline

1. Finite Differences for Modelling Heat Conduction

This lecture covers an application of solving linear systems. Partial differential equations
(PDEs) involve multivariable functions and (partial) derivatives. They describe numerous
phenomena:

� Electromagnetism,
� Fluid flow,
� Sound propagation,
� Financial problems,
� Solid mechanics (engineering),
� Quantum mechanics,
� . . .

The numerical solution of PDEs are a common source of sparse linear systems (e.g., finite
difference/finite volume/finite element methods). This lecture introduces finite differences
for a PDE describing heat conduction.

4.1 Finite Differences for Modelling Heat Conduction

Setup:

1. Suppose that we want to approximate the (unknown) temperature function, T (x, y, z)
(where x, y, z are spatial coordinates) in some 3-D solid object, at equilibrium (i.e.
T does not vary with respect to time).

2. Suppose further that we have a given (known) heat source function, f(x, y, z).

Then the heat distribution may be modelled using the Poisson equation:

f +

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
=︸︷︷︸

at equilibrium

0

⇔ −
(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
= f

⇔ −∆T = f.

The differential operator

∆ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
is called the Laplacian operator.

1D Example Boundary conditions are also necessary to fully define the problem. Consider

29

a 1D example where

−∂2T

∂x2
= f on (0, 1), (4.4)

T (0) = 0, (4.5)

T (1) = 0. (4.6)

Lines (4.5) and (4.6) are the boundary conditions. In this case the temperature T is zero at
both x = 0 and x = 1. The figure below shows the domain pictorially.

We want to find an approximate numerical solution, given the source f and the boundary
temperatures. Our approach here is to first discretize (subdivide) the material into finite
subintervals. Then approximate the spatial derivatives with finite differences.

Discretizing the domain is done by chopping the length of the 1D bar into chunks. That
is, define discrete points on the bar 0 = x0 < x1 < x2 < · · · < xn < xn+1 = 1, which are
referred to as gridpoints xi.

We let Ti denote the numerical approximation of the exact solution T (xi) for i = 0, . . . , n.

Here we assume evenly spaced intervals. Define the grid spacing h as

h = xi − xi−1 =
1

n+ 1
,

=
domain length

of intervals
.

Due to the boundary conditions we know T0 = 0 and Tn+1 = 0. Therefore, the unknowns we
must solve for are the n temperature values T1, T2, . . . , Tn (i.e., at non-boundary gridpoints).
These gridpoints are referred to as the active gridpoints.

Now that the discrete domain is defined we discretize the partial derivatives. Recall, fi-
nite differences are one approach to obtain discrete approximations of derivatives. For
example,

∂T

∂x
(xi) ≈

T (xi)− T (xi−1)

xi − xi−1
≈ Ti − Ti−1

h
. (4.7)

30

We will use the centered finite difference approximation of ∂2T
∂x2 , specifically

∂2T

∂x2
(xi)

≈
Ti+1−Ti

h
− Ti−Ti−1

h

h

=
Ti+1 − 2Ti + Ti−1

h2
(4.8)

It can be seen from (4.8), and the above figure, that Ti depends on its neighbours Ti+1 and
Ti−1. The resulting relationships between gridpoints determines Ti, for i = 1, 2, . . . , n. Each
gridpoint i = 1, 2, . . . , n gives one equation relating its value to its two neighbours:

−
(
Ti+1 − 2Ti + Ti−1

h2

)
= fi, for i = 1, . . . , n. (4.9)

Equation (4.9) is our discrete equation approximating the continuous equation−∂2T
∂x2 = f.

The general form of the matrix equation from (4.9) is

1

h2


2 −1
−1 2 −1

.

−1 2 −1
−1 2




T1

T2
...

Tn−1
Tn

 =


f1
f2
...

fn−1
fn

 .

31

How The Boundary Conditions Determine The First And Last Rows

f1 = −


T2 − 2T1 + T0︸︷︷︸

=0

h2


=

2T1 − T2

h2

fn = −


Tn+1︸︷︷︸
=0

−2Tn + Tn−1

h2


=
−Tn−1 + 2Tn

h2

What can we say about the matrix structure? It is a banded matrix, but more specifically
symmetric and tridiagonal.

Heat Conduction in 2D Plate Consider the 2D domain of a square plate with zero
temperature boundaries. We want to determine the heat distribution T (x, y) on the interior
given a heat source function f(x, y). Figure 4.2 shows an example of the 2D plate and a
heat distribution for an example f .

→

Figure 4.2: Two-dimensional plate domain (left) and heat distribution (right).

32

→


0 − 1

h2 0

− 1
h2 + 4

h2 − 1
h2

0 − 1
h2 0



Figure 4.3: The finite difference stencil for the left hand side of (4.10), i.e., the negative of
the 2D discrete Laplacian.

Gridpoints are now indexed by i, j so that (xi, yj) defines
a discrete location on the 2D plate. The inset shows an
example grid. The approximate temperature at (xi, yj) is
denoted Ti,j such that Ti,j ≈ T (xi, yj). We now need to
approximate the 2D continuous Poisson equation

−
(
∂2T

∂x2
+

∂2T

∂y2

)
= f,

at each gridpoint. The discrete Poisson equation in 2D is
obtained by approximating the 2nd derivative in each axis
separately, then summing them together. That is,

−
(
∂2T

∂x2
+

∂2T

∂y2

)
= f

−
(
Ti+1,j − 2Ti,j + Ti−1,j

h2
+

Ti,j+1 − 2Ti,j + Ti,j−1

h2

)
= fi,j

4Ti,j − Ti−1,j − Ti+1,j − Ti,j−1 − Ti,j+1

h2
= fi,j. (4.10)

The finite difference stencil is a convenient visual notation for (4.10) centered at each
gridpoint (see Figure 4.3). The nonzeros in the stencil will be the nonzeros in a row of
the matrix.

To put (4.10) into matrix form we need to “flatten” the indices from 2D (i, j) to 1D (k).
The 2D computational domain is indexed from 0 to m+1 in each dimension (see Figure 4.4
left). Since the boundary values are known to be 0, we only need to solve for unknowns Ti,j

for all i, j ∈ [1,m] (a total of m2 unknowns).

How do we index the unknowns into a 1D array? A natural rowwise ordering numbers
gridpoints along the x-axis first, then along the y-axis (see Figure 4.4 right).

33

Figure 4.4: Two-dimensional indexing (left) for a discrete plate and a possible 1D order-
ing/flattening (right).

Specifically,

T1,1 → T1,

T2,1 → T2,

...

Tm,1 → Tm,

T1,2 → Tm+1,

T2,2 → Tm+2,

...

Tm,m → Tm2 .

That is, we convert from 2D indices (i, j) to 1D indices k using k = i+ (j − 1)×m.

The general form of the Laplacian matrix in 2D with this natural rowwise ordering is given
in Figure 4.5. Notice that their are 5 bands:

� 1 diagonal band,
� 2 bands immediately above/below the diagonal,
� 2 bands separated horizontally by m entries.

Explanation:

� Let (i, j) be arbitrary, 1 ≤ i ≤ m, 1 ≤ j ≤ m.
� Consider the equation

1

h2
(4Ti,j − Ti−1,j − Ti+1,j − Ti,j−1 − Ti,j+1) = fi,j.

� The 4 coefficient appears on the diagonal, since i, j on the LHS agrees with i, j on the
RHS.

34

.

Figure 4.5: General matrix structure for discrete Laplacian with natural rowwise ordering.

� The −Ti−1,j term contributes
– nothing, if i = 1, by boundary conditions, and
– −1 immediately to the left of the diagonal, otherwise.

� The −Ti+1,j term contributes
– nothing, if i = m, by boundary conditions, and
– −1 immediately to the right of the diagonal, otherwise.

� The −Ti,j−1 term contributes
– nothing, if j = 1, by boundary conditions, and
– −1, m positions to the left of the diagonal, otherwise.

� The −Ti,j+1 term contributes
– nothing, if j = m, by boundary conditions, and
– −1, m positions to the right of the diagonal, otherwise.

Remarks:

1. The 2-D setup quickly becomes more complicated than the 1-D setup.
2. Adding more dimensions would further increase the complexity.
3. If we relax our assumption about not allowing changes in temperature over time, then

we would need to add a time dimension. E.g. adding a time dimension to the 1-D
setup would make it 2-D to start. We would have to be careful to clearly define our
boundary conditions in this case.

Other types of PDE problems, discretizations, and geometries give rise to different matrix
structures and properties. For example, a triangular mesh can be used with a finite volume
discretization to study the flow around an airfoil (see Figure 4.6).

35

Figure 4.6: Example discretization using triangles for an airfoil.

This lecture only considered modelling heat in an equilibrium using the Poisson equation.
The time-dependent heat equation considers non-equilibrium situations, i.e., how tempera-
ture evolves over time. The finite difference equations are similar and lead to another linear
system to solve.

36

5 Lecture 05: Graph Structure of Matrices; Matrix

Re-Ordering

Outline

1. Graph Structure of Matrices
(a) Graph Structure
(b) Fill-in During Factorization

2. Matrix Re-Ordering
(a) Key Idea

5.1 Graph Structure of Matrices

This lecture considers the graph representation of (symmetric) matrices. We will discuss
the effect of factorization with respect to fill-in and the graph itself. Remember that fill-in
during factorizations increases storage and flop costs, so lower is better! Common matrix
reordering methods that reduce fill-in will be discussed in following lectures.

5.1.1 Graph Structure

Given a square matrix A we can create a directed graph G(A). The graph has one node
i for each row i in A and an edge connecting i → j if the matrix entry aij ̸= 0. If A is
symmetric we can take an undirected graph, i.e., edges i ↔ j. Definition 5.1 gives a more
formal definition of the graph structure from a matrix.

Definition 5.1. Let A ∈ Rn×n. We associate A with a (directed) graph G = (V,E) that has
n nodes: one node per row of A. When i ̸= j, an edge (i, j) ∈ E connects nodes i and j iff
aij ̸= 0. Mathematically,

i ∈ V, ∀1 ≤ i ≤ n and ∀i ̸= j, (i, j) ∈ E iff aij ̸= 0.

Remarks:

1. This is most useful when A is sparse.
2. Note that we exclude drawing self-cycles (i.e. when i = j) in the graph, even though

aii ̸= 0 is possible.
3. We will consider mostly undirected (symmetric) graphs in this course, unless otherwise

noted.

37

An example graph from a matrix is give below:

A =


× × ×
× × ×
× × ×

× × ×



→ G(A) =

The graph structure often has a physical/geometric interpretation. For example, the Lapla-
cian matrix from the Poisson equation recovers the underlying grid structure. For the 1D
Laplacian matrix, which is tridiagonal, we obtain a graph consists of nodes connected con-
secutively:

A =


× ×
× × ×
× × ×
× ×


→ G(A) =

Another 1D example is shown below. Exercise: what shape of finite difference “stencil”
would produce the graph below?

A =


× × ×
× × × ×
× × × × ×
× × × ×
× × ×



→ G(A) =

38

The graph of the 2D Laplacian matrix also recovers the original grid structure. With

A =



4 −1
−1

. −1
−1 4

−1
. . .

. . .

−1
−1

. . .
. . .

−1

4 −1
−1

. −1
−1 4

−1
. . .

. . .

−1
−1

. . .
. . .

−1

4 −1
−1

. −1
−1 4

−1
. . .

. . .

−1
−1

. . .
. . .

−1

4 −1
−1

. −1
−1 4



,

we have

G(A) =

Explanation:

1. By symmetry, we can analyze the rows and know that the columns will behave the
same way.

2. There are m2 rows. Hence the graph has m2 nodes, i.e. it is a grid with m nodes on
each of its rows and columns.

3. For the block of the first m rows, and the block of the last m rows (2 such blocks):
(a) 2 rows with 2 off-diagonal non-zero entries - these are the “corner” nodes of the

graph.
(b) m− 2 rows with 3 off-diagonal non-zero entries - these are “outside, non-corner”

nodes of the graph.
4. For each of the inner blocks of m rows (m− 2 such blocks):

39

(a) 2 rows with 3 off-diagonal non-zero entries - these are “outside, non-corner” nodes
of the graph.

(b) m− 2 rows with 4 off-diagonal non-zero entries - these are “inside” nodes of the
graph.

5. From here, it is just a matter of mapping the rows of the matrix to the nodes of the
graph and checking that the structure is as described.

6. It is an exercise to verify that this numbering of the graph vertices agrees with the
structure decribed:

(m− 1)m+ 1 (m− 1)m+ 2 · · · (m− 1)m+ (m− 1) m2

...
...

m+ 1 m+ 2 · · · 2m− 1 2m
1 2 · · · m− 1 m

Q & A

1. What if the matrix A is not symmetric?
A: We must write the graph in a directed way.

2. Can we still write the graph directed, even of A is symmetric?
A: Yes! In this case, each edge has an arrowhead on both ends.

5.1.2 Fill-in During Factorization

Recall that factorization can destroy the nice sparsity pattern of a matrix. For example,
consider the LU factorization of this arrow matrix

A =


× × × × ×
× ×
× ×
× ×
× ×



=


1
× 1
× × 1
× × × 1
× × × × 1


︸ ︷︷ ︸

L


× × × × ×
× × × ×
× × ×
× ×
×


︸ ︷︷ ︸

U

.

In this section we consider the relationship between factorization of sparse matrices, fill-in,
and the graph structure.

Suppose we want to compute the Cholesky factorization of the matrix

A =


× × ×
× × ×
× × ×

× × ×

 . (5.11)

40

Fill-in occurs if we compute the Cholesky factorization of A in (5.11). For Cholesky factor-
ization we have

v =

×0
×

 , ⇒ vvT

α
=

× 0 ×
0 0 0
× 0 ×

 ,

⇒ B − vvT

α
=

× ×
× × ×
× ×

−
× 0 ×
0 0 0
× 0 ×

 =

× × ×
× × ×
× × ×

 .

Therefore, non-zero entries are introduced in the same places as with LU factorization. This
is because we are deleting the same node i = (1), which causes nodes (2) and (4) to connect
with an edge.

For the 1st iteration, we add a multiple of the 1st row to the rows below it. This reduces a2:n,1
to zeros, indicated in green. While introducing the zeros in a2:n,1 we unfortunately introduce
some new nonzeros (indicated in blue, called “fill-in”). Note that some nonzero entries may
also become zero, but we do not take these into account. These new zeros will depend on
the actual values in A, which we would like to abstract away for greater generality.

Now consider what happens to the graph structure of (5.11) after one step of Cholesky
factorization. The new graph deletes node (1) and connects nodes (2) and (4) together.

G(A) =

G
(
A(1)

)
=

However, nodes (2) and (4) were not connected before, which corresponds to the fill-in. In
general, elimination of node i yields a new graph with:

1. Node i and all its edges deleted,
2. New edges j ↔ k added if there were edges (j, i) and (i, k), i.e., new edges between all

node pairs connected to i in the old graph (corresponds to fill-in!).

Convention: Don’t display diagonal entries, if they are not connected to anything else. A
complete graph would display node #1, with no edges connecting it to anything else.

41

Exercise: what are the graphs of the LU -factorizations of the arrow matrices below? From
the graph, can you see why A1 produces dense LU factors, while A2 suffers no fill-in?

A1 =


× × × × ×
× ×
× ×
× ×
× ×



A2 =


× ×
× ×
× ×
× ×

× × × × ×


5.2 Matrix Reordering

Earlier, we saw that general sparse matrices may have dense LU factors, e.g.,

A =


× × × × ×
× ×
× ×
× ×
× ×



=


1
× 1
× × 1
× × × 1
× × × × 1



× × × × ×
× × × ×
× × ×
× ×
×


= LU.

We will now start discussing matrix reorderings, which can produce LU factors without
fill-in. For example, reordering the same arrow matrix above can give

A =


× ×
× ×
× ×
× ×

× × × × ×



=


1

1
1

1
× × × × 1



× ×
× ×
× ×
× ×
×


= LU.

42

5.2.1 Key Idea

We saw earlier that the graph structure of a matrix expresses the underlying relationships
among variables. The ordering (numbering) of the nodes/variables impacts the matrix lay-
out, but not its graph or the solution. The graph structure of a symmetric matrix is clearly
unchanged by just renumbering its nodes. However, different matrices with the same graph
can suffer vastly different levels of fill-in during factorization.

Goal of matrix reordering: Renumber the graph nodes to produce a matrix that mini-
mizes fill-in during factorization.

Reordering a matrix can be written mathematically in terms of permutation matri-
ces.

A permutation matrix is the identity matrix I with (some) rows/columns swapped.

1. Permuting the rows is equivalent to multiplying A by a permutation matrix P on the
left: PA. For example,  1

1
1

3 2 5
2 4 1
5 1 3

 =

2 4 1
5 1 3
3 2 5

 .

Note that this multiplication is only conceptual. In implementations one never multi-
plies or stores permutation matrices explicitly.

2. Similarly, permuting the columns is equivalent as multiplying by a permutation matrix
Q on the right: AQ. For example,3 2 5

2 4 1
5 1 3

 1
1

1

 =

5 3 2
1 2 4
3 5 1

 .

3. Of course, we can permute the rows and the columns simultaneously: PAQ.

A Nice Fact About Any Permutation Matrix, Q: QQT = I.

The effect of permutation matrices on solving linear systems is as follows. Suppose we are
interested in solving the linear system

Ax = b.

Key Question: How can we correctly keep track of permutations of the rows/columns of
A?

� If we permute A to Ã = PAQ, then we need to reorder entries of x and b to match the
changes applied to A. Hence

43

Ax = b (5.12)

A(QQT)x = b (5.13)

AQ(QTx) = b (5.14)

PAQ(QTx) = Pb (5.15)

Ãx̃ = b̃ (5.16)

where x̃ = QTx and b̃ = Pb.

� After solving (5.16) for x̃, we can recover the original solution x = Qx̃.
� We are “unpermuting” x̃ to recover x.

Q & A

1. Why is Q needed?
A: To permute the columns of A, if needed.

2. Can we have P = I?
A: Yes, if no row permutations are required for A. The setup simplifies considerably
in this case.

3. In the 3× 3 case, can P swap two rows, leaving the 3rd row untouched?
A: Yes!

4. Is I a permutation matrix?
A: Yes! It’s the matrix of the identity permutation.

44

6 Lecture 06: Matrix Re-Ordering

Outline

1. Matrix Re-Ordering
(a) Key Idea
(b) Example with Natural Ordering
(c) Envelope Reordering
(d) Level sets
(e) Cuthill-McKee

6.1 Matrix Reordering

6.1.1 Key Idea

Symmetric Permutations

� The special case of symmetric permutation is of particular importance.
� A symmetric permutation is when we replace A with PAP T , i.e., we permute the rows
and columns in the same way (Q = P T).

� Symmetric permutations naturally preserve symmetry for symmetric matrices (more
generally when the sparsity pattern is symmetric).

Q: What does a symmetric permutation do to the graph of A?

A: The structure will be unchanged; the nodes will be re-numbered.

Given a particular reordering, what is P for a symmetric permutation? Reordering gives a
list of before/after labels, e.g.,

1→ 2,

2→ 3,

3→ 1,

4→ 4.

This says which old row moves to which new row. We apply the desired row swaps to the
identity matrix I to get the permutation P . In the example above,

I =


1

1
1

1

 =⇒ P =


1

1
1

1

 .

6.1.2 Example with Natural Ordering

Idea: We saw earlier that bandwidths are preserved when we factorize A. Thus, when we
have some choice of how to write A, making a choice which affords minimum bandwidth
is desirable.

45

Consider the 2D Laplacian matrix on a non square domain, with mx ≫ my, and natural
rowwise ordering. This domain and rowwise ordering (first along x-axis, then y-axis) is
depicted below.

What is the bandwidth of the 2D Laplacian matrix with natural
rowwise ordering? Consider row i, which has entries at columns

� i (diagonal),
� i− 1, i+ 1 (inner bands),
� i−mx, i+mx (outer bands).

Hence, the bandwidth is mx.

Consider instead columnwise ordering along y-axis first, and then x-axis. In this case, the
bandwidth becomes my instead!

Consider row j, which has entries at columns

� j (diagonal),
� j − 1, j + 1 (inner bands),
� j −my, j +my (outer bands).

Hence, the bandwidth is my.

Ordering along the y-axis first gives narrower bandwidth (in this case) since mx ≫ my.

46



× × • • ×
× × × • • ×
• × × × • • ×
• • × × • • • ×
× • • • × × • • ×
× • • × × × • • ×
× • • × × × • • ×
× • • × × • • • ×
× • • • × × • •
× • • × × × •
× • • × × ×
× • • × ×


Figure 6.7: Example of where fill can occur for banded matrices. The possible fill occurs
where • are depicted.

The columnwise ordering of the 2D Laplacian matrix produces less fill.

Recall when factoring banded matrices the L and U factors of a band matrix have the
same lower and upper bandwidths, respectively, as the input A. That is, the widths of the
bands are preserved. Therefore, fill can only occur between the outermost bands (e.g., see
Figure 6.7).

� One can verify that flops(banded GE) ≈ O(npq) for bandwidths p, q and n gridpoints.
� Therefore, the cost is O(m2n) for bandwidth m.
� For the rowwise ordering we have flops = O(m2

xn), whereas for the columnwise ordering
we only have flops = O(m2

yn).
� But what can we do for more general sparsity patterns?

– Finding the true optimum ordering of the graph is NP complete (i.e. it is hard).
– There do exist many ordering algorithms based on good heuristics.

� We will look at some common algorithms next:
– Envelope/Level set methods,
– (Reverse) Cuthill McKee,
– Markowitz,
– Minimum Degree.

Q & A

1. Last week we discussed upper- and lower-bandwidths. What does “bandwidth” mean,
unqualified?
A: If upper and lower bandwidths are equal, then writing “bandwidth”, unqualified,
is clear enough.

6.1.3 Envelope Reordering

� In this lecture we will look at the first two types of methods.
� The next lecture will discuss Markowitz and Minimum degree reorderings.

47

� In practice, bandwidth may vary a lot between individual rows.

The envelope is the contiguous part of the matrix containing all non-zero entries, indicated
by dotted lines in the picture.

Note, we are not asserting that all entries inside the envelope are non-zero; we are asserting
that all entries outside the envelope are zero.

Remarks:

1. Recall that fill-in during factorization is bad, hence it is to be minimized.
2. In each row of L, fill can only occur between 1st non-zero entry (from the left) and the

diagonal entry.
3. This motivates us to limit fill by keeping the envelope as close to the diagonal as

possible.
4. This further motivates the next section, on Level Sets.

Q & A:

1. Does our matrix have to be symmetric?
A:All graphs coming up are undirected, which requiresA to be symmetric. So although
our setup does not require A to be symmetric, we will demand that A be symmetric
to agree with the convention in the notes.

2. Can the envelope sit both above and below the diagonal?
A: Yes, as in the above picture.

Q: What does this imply about a good numbering of nodes?

A: The graph neighbours should have numbers as close together as possible.

48

Figure 6.8: Level sets of an example graph.

6.1.4 Level sets

We assume the sparsity pattern of the matrix is symmetric, i.e., the underlying graph rep-
resentation is undirected. Envelope methods are based on graph level sets Si defined
below.

Definition 6.1. Let A be a symmetric matrix. Let {sj} be the nodes of the graph of A.
Then the level sets Si are the sets of nodes that are the same graph distance from some
starting point. That is,

S1 = {the single starting node},
S2 = {all immediate neighbours of the node in S1},
S3 = {all immediate neighbours of nodes in S2, not in S1 or S2},
...

Si = {all immediate neighbours of nodes in Si−1, not in S1, S2, . . . , Si−1}.

Figure 6.8 shows an example of the level sets of a graph.

Q: Why do we care about level sets?

A: Envelope methods:

1. order the nodes in S2, S3, . . . , Sk, and

49

2. “do something” with the ordered list of nodes.

� Envelope methods order nodes in S2, then nodes in S3, and so on.
� This is similar to a breadth first traversal (BFS).

6.1.5 Cuthill-McKee

How do we order nodes within each level set? In the Cuthill-McKee (CM) algorithm a
heuristic is used based on the degree of a node.

Definition 6.2. The degree of a node v, denoted deg(v), is the number of adjacent nodes
(i.e. the number of incident edges).

For example, in the graph in Figure 6.8 we have deg(3) = 4 and deg(5) = 1.

The Cuthill-McKee ordering heuristic is as follows. When visiting a node during traversal,
order its neighbors (yet to be visited) in increasing order of degree and add them to the
queue in this order. Cuthill-McKee algorithm is given in Algorithm 6.3, which consists of
the following:

1. pick an arbitrary starting node and number it 1,
2. find all un-numbered neighbours of node 1 and number them in increasing order of

degree,
3. for each of node 1’s neighbours, order their neighbours in increasing order of degree,
4. continue recursively until all nodes have been numbered.

Ties are broken in an arbitrary manner, e.g., based on the initial node ordering.

Remarks:

1. This assumes that the graph is connected.
2. If the graph is not connected, then the corresponding matrix (possibly under some

permutation of rows/columns) can be decomposed into diagonal blocks, each of which
corresponds with a connected subgraph.

3. Then we could solve each subsystem independently of the others.
4. Thus we lose no generality by assuming that our graph is connected.

50

https://en.wikipedia.org/wiki/Breadth-first_search

Algorithm 6.3 : Cuthill-McKee Ordering

1: Input: undirected graph G = (V,E)
2: Output: ordered level sets Si

3: choose starting node s ▷ for each connected component
4: S1 ← {s}, mark s
5: i = 1
6: while Si ̸= ∅
7: Si+1 ← ∅
8: for each u ∈ Si ▷ in order of increasing degree
9: for each unmarked v adjacent to u ▷ in order of increasing degree
10: Si+1 ← Si+1 ∪ {v}
11: mark v
12: end for
13: end for
14: i = i+ 1 ▷ move on to the next level set
15: end while

Cuthill-McKee - Q & A

1. Q: What is a good choice of starting node for CM?
A: A vertex with as high a degree as possible.

Reverse Cuthill-McKee (RCM)

� The reverse Cuthill-McKee (RCM) algorithm is exactly what it sounds like!
� You compute the CM numbering then reverse it, i.e.,

nodeRCM
i = nodeCM

n−i+1 for i = 1, . . . , n.

� This is simple, but why perform the reversal? John Alan George (“Computer Im-
plementation of the finite element method”, 1971) observed by simply reversing the
Cuthill-McKee ordering, we can reduce the amount of fill-in for many graphs (matri-
ces).

� The RCM has the same envelope of CM but better observed behavior in practice.
� The patterns produced by RCM are more like the low fill downward arrow matrix,
rather than the upward arrow.

� Figure 6.9 shows an example on a random symmetric matrix.
� As expected the CM algorithm produces a matrix with a smaller bandwidth.
� The RCM algorithm has the same bandwidth but is more “down-arrow” like.

Example: In this example, we will compute the CM ordering, and the RCM ordering, for
this graph:

D

B A C F

E

51

https://en.wikipedia.org/wiki/J._Alan_George

Random Symmetric Matrix Cuthill-McKee Reverse Cuthill-McKee

Figure 6.9: Comparison of CM (middle) vs RCM (right) for a symmetric matrix (left).

Assumptions:

1. Select node A as your starting node.
2. Break any ties with respect to the degrees of nodes in a level set according to the usual

alphabetic order of the nodes.

Computing the CM and RCM Orderings:

1. Start by numbering:
1. A

2. Number the un-numbered neighbours of node A in ascending order of their degrees:
2. B (degree 1)
3. C (degree 3)

3. B has no un-numbered neighbours. Number the un-numbered neighbours of node C in
ascending order of their degrees:
4. D (degree 2)
5. F (degree 3)

4. D has no un-numbered neighbours. Number the un-numbered neighbours of node F in
ascending order of their degrees:
6. E (degree 1)

5. This yields the Cuthill-Mckee ordering:
1 2 3 4 5 6
A B C D F E

6. This yields the Reverse Cuthill-Mckee ordering:
1 2 3 4 5 6
E F D C B A

Detailed Explanation of Fig 6.10:

1. Start by numbering:
1. A

2. Number the un-numbered neighbours of node A in ascending order of their degrees:
2. G (degree 6)

3. Number the un-numbered neighbours of node G in ascending order of their degrees:

52

A

F B

G

E C

D

CM−→

1

7 3

2

6 4

5



× ×
× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Lots of fill-in!

RCM−→

7

1 5

6

2 4

3



× ×
× ×
× ×
× ×
× ×

× × × × × × ×
× ×


No fill-in!

Figure 6.10: CM and RCM orderings for the initial graph (top left). The CM algorithm is
started at node A and ties are broken alphabetically.

53

3. B (degree 1)
4. C (degree 1)
5. D (degree 1)
6. E (degree 1)
7. F (degree 1)

4. This yields the Cuthill-Mckee ordering:
1 2 3 4 5 6 7
A G B C D E F

5. This yields the Reverse Cuthill-Mckee ordering:
1 2 3 4 5 6 7
F E D C B G A

Theorem 6.1. (RCM is optimal on trees.) On a tree, no matter which node we start with,
RCM ordering produces no fill.

Proof. We argue that the first node in the RCM ordering has to be a leaf (degree 1).

� Towards a contradiction, suppose the starting node is s and the first node in RCM is
a non-leaf node u.

� Then u is connected to at least two nodes v and w.
� In constructing the CM ordering we may have reached (from s) at most one of v and
w before reaching u (otherwise we have a cycle v · · · s · · ·wuv, which can not happen
for a tree).

� But then after we have reached u we need to continue the CM ordering to the other
(or both) child node, so u cannot be the last node in CM (i.e. u cannot be the first
note in the RCM ordering).

� This is a contradiction, so u must be a leaf node.
� Now note that if we remove the node u, and rerun CM, we would get the same ordering
(without u).

� Thus, recursively, we see that in the elimination of the graph by following RCM, we
are always removing leaf nodes hence will not introduce any new edges.

� Note that Theorem 6.1 does not hold in general for the CM ordering.
� Further, RCM does not necessarily produce the optimal ordering for general graphs.
� Determining the optimal ordering that introduces the least amount of fill-in is NP-
complete [Yannakakis 1981].

� The example in Figure 6.11 shows the optimality of RCM on a small tree.

54

D

A E

B C F G

CM−→

4

1 5

2 3 6 7



× × × ×
× × × ×
× × × ×
× × × × ×

× × × ×
× × ×
× × ×



RCM−→

4

7 3

6 5 2 1



× ×
× ×

× × × ×
× × ×

× ×
× ×

× × × ×


Figure 6.11: CM and RCM ordering for a tree graph. Notice that RCM produces a reordering
with no fill (shown as ×).

55

7 Lecture 07: Matrix Re-ordering; Image De-Noising

Outline

1. Matrix Re-ordering
(a) Markowitz Reordering
(b) Minimum Degree Reordering
(c) Stability (Optional)
(d) Pivoting (Optional)

i. Unnecessary Pivoting
2. Image De-Noising

(a) Inverse Problems
(b) Regularization Models

i. Tikhonov Regularization
ii. Laplacian Regularization
iii. Total Variation Regularization

7.1 Matrix Re-ordering

Q & A:

1. Does Minimum Degree Re-Ordering have a problem, if the graph contains cycles?
A: No. The algorithm still works, with enough care.

2. Is it correct that a tree is a graph without cycles?
A: Yes!

3. Is it correct that the weak version of diagonal dominance uses ≥, while the usual
version uses >?
A: Yes.

We have seen so far that a graph provides a useful abstraction of the structure of symmetric
matrices. The graph offers insight into where fill-in can occur during factorization. In the
previous lecture we discussed envelope methods, such as (reverse) Cuthill-McKee, which are
a family of reorderings that can reduce fill by minimizing the envelope.

� Envelope/Level set methods,
� (Reverse) Cuthill McKee,
� Markowitz,
� Minimum Degree.

In this lecture we will look at the last two reordering schemes above.

7.1.1 Markowitz Reordering

Markowitz [Markowitz 1957] is a local rule that tries to (approximately) minimize fill on the
current step only. In other words, it greedily minimizes fill-in for the current step. After k
steps of LU factorization we have:

56

where A(k) indicates the lower right block matrix after k steps of LU. Consider the fill that can
occur during one step of LU factorization from this point. Normally, we subtract multiples
of current row (k + 1) from rows below (k + 2, . . . , n), if there is a non-zero in the column
to be zeroed out.

Specially, fill-in does not occur in rows that already have a zero in the column, e.g.,

A(k) =


× × ×
× × ×
0
× × ×

 , (7.17)

where blue × denotes fill-in that has occurred. The worst case fill-in at this step (using this
pivot ×) is

4 entries

= (2 other non-zeros in row)× (2 other non-zeros in column).

We can swap rows and columns on the fly to reduce the resulting fill-in. Consider
all entries a

(k)
ij in the lower right block A(k). The idea is to determine the entry that would

minimize the (worst-case) fill. Then, swap it into the top-left (pivot ×) position of A(k).
The row that produces the least fill on this current step is determined using the Markowitz
product.

Let r
(k)
i = nnz (number of nonzeros) in row i of A(k) and c

(k)
j = nnz in column j of A(k). The

maximum possible fill using a
(k)
ij as the pivot is

(r
(k)
i − 1)(c

(k)
j − 1),

which is called the Markowitz product.

Brief Explanation: Consider the rows below the pivot row first (i.e. the count of non-zero
entries in the chosen column). Zero entries below the pivot cannot cause fill-in, because we
don’t have to use the pivot row to eliminate a zero entry.

The Markowitz reordering algorithm swaps rows/columns to choose the pivot a
(k)
ℓm that min-

imizes the Markowitz product, i.e.,

(ℓ,m) = argmin
k≤i,j

(r
(k)
i − 1)(c

(k)
j − 1).

57

As a concrete example take

A(k) =


3 1 0 3
0 2 3 6
2 1 0 1
1 6 3 3

 .

The Markowitz product for a
(k)
11 is 4, but only 2 for a

(k)
23 .

Exercise: compare r
(k)
i = 1, c

(k)
j = 5 with r

(k)
i = 2, c

(k)
j = 2, which should we prefer?

Note that the Markowitz product is just an approximation of the fill. It estimates the worst
case fill since generally some of the entries may already be non-zero. Therefore, no new
non-zeros would be created, e.g., in (7.17) the blue × may already be non-zero.

If A is symmetric, then we select a
(k)
ℓℓ with

ℓ = argmin
k≤i

(r
(k)
i − 1),

since argmink≤i r
(k)
i = argmink≤j c

(k)
j . So we only need to consider diagonal entries for sym-

metric matrices. By symmetrically swapping both rows and columns, a
(k)
ℓℓ becomes the new

pivot. This approach has the following features:

� preserves symmetry and diagonal dominance,
� corresponds to node reordering.

Aside: A matrix is (weakly) diagonally dominant if for every row, the magnitude of the
diagonal entry is larger than or equal to the sum of the magnitudes of all the other entries
in that row. That is,

|aii| ≥
∑
i ̸=j

|aij|, for all i.

A matrix is (strongly) diagonally dominant if for every row, the magnitude of the diagonal
entry is strictly larger than the sum of the magnitudes of all the other entries in that row.
That is,

|aii| >
∑
i ̸=j

|aij|, for all i.

We will see more on this when we discuss iterative methods.

7.1.2 Minimum Degree Reordering

The symmetric case of Markowitz reordering inspires an algorithm called minimum degree
reordering. Consider the (r

(k)
i − 1) for diagonal entries of this symmetric matrix

× × × × ×
× ×
× × ×
× × × ×
× × ×

 . (7.18)

58

Because the matrix is symmetric, therefore we only need to consider diagonal entries. We
have that

a11 7→ 4,

a22 7→ 1,

a33 7→ 2,

a44 7→ 3,

a55 7→ 2,

so we would swap to use a22 as the pivot.

But what do these values correspond to in the graph view? The value of (r
(k)
i − 1) is

number of off-diagonal non-zero entries in the row, which is the same as the degree of the
corresponding node! The original matrix in (7.18) gives the following graph:


× × × × ×
× ×
× × ×
× × × ×
× × ×

 ←→

While the reordering with a22 as the pivot gives:


× ×
× × × × ×
× × ×
× × × ×
× × ×

 ←→

Minimum degree ordering chooses the node with (current) minimum degree as the
pivot element, at each step of factorization.

Recall that a step of Cholesky factorization corresponds (in the graph) to

1. deleting the chosen node and all its edges, then
2. connecting its incident neighbours together with a new edge (this corresponds to fill).

A specific example of Cholesky and the resulting fill is given below. The initial matrix and
corresponding graph are

2 −1 −1
−1 2
−1 2


Matrix

←→
Elimination Graph G(A(0))

59

Figure 7.12: Comparison of reordering techniques RCM and AMD for a random sparse
matrix.

The first step of Cholesky gives

α = 2, v =

[
−1
−1

]
, B − vvT

α
=

[
2

2

]
− 1

2

[
1 1
1 1

]
=

[
3/2 −1/2
−1/2 3/2

]
.

Hence the result after one step of Cholesky is:
2

3/2 −1/2
−1/2 3/2


Matrix

←→
Elimination Graph G(A(1))

Note that the zeros have filled in corresponding to nodes 2 and 3 now connecting.

When multiple nodes have same degree we need a strategy to break ties. Some possible
strategies are:

1. select the node with smallest node number in the original ordering,
2. pre-order with RCM, then select the node that is numbered earlier according to an

RCM ordering (computed in advance),
3. Various others, e.g. “multiple minimum degree” chooses multiple nodes that don’t

interact and eliminate them at once.

In practice, tie breaking may have a significant impact on the order. Figure 7.12 also shows
a comparison of Matlab (more advanced) variant of MD called symamd (symmetric approx-
imate minimum degree) with RCM. Unlike CM and RCM, MD does not try to minimize
bandwidth.

60

Algorithm 7.4 : Minimum Degree Ordering

1: Input: undirected graph G = (V,E)
2: Output: permuted node set S
3: S ← ∅
4: while V ̸= ∅
5: find minimum degree node v ∈ V ▷ use chosen tie breaking rule
6: S ← S ∪ {v} ▷ append to sorted list S
7: V ← V \ {v}
8: for u ∈ v.adj
9: for w ∈ v.adj
10: if u ̸= w and {u,w} ̸∈ E then
11: E ← E ∪ {u,w}
12: end if
13: end for
14: E ← E \ {u, v}
15: end for
16: end while

Minimum degree reordering is optimal for trees, i.e., MD produces no fills on
trees. To see this think about the elimination graphs for a tree: each time we are removing
leaves (with degree 1), hence will never introduce new edges. However, MD is still a local
strategy with no guarantee of absolute minimum total fill (which is NP-complete). Consider
the following counterexample of optimality. The graph

suffers no fill-in. This can be seen from the matrix of this graph

× × × ×
× × × ×
× × × ×
× × × × ×

× × ×
× × × × ×
× × × ×
× × × ×
× × × ×


.

Factorization can only fill in the envelope, but its envelope is already totally filled! Unfortu-

61

nately, the minimum degree ordering would create fill in this example. MD ordering would
eliminate node 5 first since it has the minimum degree of 2. This would immediately connect
nodes 4 and 6, corresponding to fill (denoted ×)

× × × ×
× × × ×
× × × ×
× × × × × ×

× × ×
× × × × × ×

× × × ×
× × × ×
× × × ×


.

A Fully Worked Out Example of Minimum Degree Re-Ordering Here we fully work
out the example which is started above.

We follow Algorithm 7.1.2 (i.e. we don’t re-label as we go: we work only with the graph,
ignoring what is happening in the matrix)
After Step Remaining Graph S (sorted)

0 2

1 3

4 5

∅

1 1 3

4 5

2

2 1

4 5

2, 3

3 4 5 2, 3, 1

4 5 2, 3, 1, 4

5 ∅ 2, 3, 1, 4, 5

This yields the Minimum degree ordering:
Sort Order 1 2 3 4 5

Node Number 2 3 1 4 5

Finally, we mention some of the many possible improvements of MD:

� “supervariables”/indistinguishable nodes: nodes with identical adjacency structure
(neighbours) can be eliminated simultaneously,

� multiple elimination: non adjacent nodes of same degree can also be safely eliminated
simultaneously,

62

� approximate minimum degree: use an approximation to the degree updates of neigh-
bours, which improves the run time,

� quotient graph: smarter graph representation to reduce storage.

Remember that our overall goal of reordering is to minimize computation and storage
costs of factorization on sparse matrices by limiting fill. Minimum degree ordering tries
to greedily minimize fill at each step by eliminating the node with least degree. MD often
outperforms RCM but is still just a heuristic!

7.1.3 Stability (Optional)

The story so far in this course has been:

� Direct methods for solving linear systems rely on matrix factorization,
� Matrices often have useful properties (e.g., sparse, banded, symmetric, PD),
� We can design efficient algorithms by exploiting these properties,
� Matrix reordering can reduce cost for sparse matrices by (heuristically) reducing fill-in,
� Application arises from finite difference methods for PDE problems in heat conduction.

� Here we will discuss some stability issues for factorization. We consider another use
for row/column swaps to now help with stability.

� How do small error/changes in a matrix problem Ax = b affect the (exact) solution?

� The matrix condition number, κ(A) = ∥A∥∥A−1∥ (where ∥A∥ = max ∥Ax∥
∥x∥), pro-

vides a measure for this.
� Note that κ ≥ 1.
� The condition number κ(A) can provide an upper bound on the change in x due to
the relative change δ in b and/or A.

� Specifically, if

max

(
∥∆A∥
∥A∥

,
∥∆b∥
∥b∥

)
≤ δ,

then
∥∆x∥
∥x∥

≤ 2κ(A)δ +O
(
δ2
)
.

Stability is a property of the numerical algorithm, which is distinct from conditioning of
the problem. Essentially, stability is concerned with how errors or changes in input to the
numerical algorithm affect the output. For example, do small errors magnify or shrink during
computation? It is important to note that a highly stable algorithm cannot prevent issues
due to a poorly conditioned problem. Furthermore, an unstable algorithm can give useless
results, even for a well-conditioned problem.

Here we will discuss the stability of LU factorization. The basic goal is to find L and
U whose “size” remains under control. Huge entries will also inflate round off error and
produce useless results. For example, we do not want re-multiplying LU together to give a
new Â that is far from the input A.

63

7.1.4 Pivoting (Optional)

Factorizations considered so far assume diagonal entry a
(k−1)
kk (i.e. the pivot) at each step

is non-zero. The notation A(k−1) denotes the remaining unfactored lower right matrix block
during LU. Recall that when doing row subtraction, we scale the active row by a column
entry aik divided by the pivot value akk. Problems arise when pivot is zero (a

(k−1)
kk = 0)

or close to zero (a
(k−1)
kk ≈ 0). That is, the problem of division by zero occurs when a

(k−1)
kk = 0.

When a
(k−1)
kk ≈ 0 we introduce large round off errors. These issues are usually addressed

through pivoting.

Pivoting for stability is done by permuting rows/columns to

get a larger magnitude element as the pivot, a
(k−1)
kk . There

are two forms of pivoting
1. Complete pivoting swaps rows and columns to use the

single largest magnitude element of A(k−1) (red square)
as the pivot.

2. Partial pivoting swaps only rows to put largest mag-
nitude element of column k (green rectangle) into the
pivot position (row k).

The LU factorization algorithm with partial pivoting satisfies

L̂Û = P̂A+∆A,
∥∆A∥
∥A∥

= O(ρϵmachine),

where the hat notation indicates the numerical solution. The scalar ρ is called the growth
factor and can be approximated as

ρ ≈ ∥U∥
∥A∥

.

Lecture 22 of Trefethen & Bau is a good reference for more information.

So, is partial pivoting enough? There are examples where partial pivoting is inadequate.
Consider 

1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1 1
−1 −1 −1 −1 1


=

∥A∥ ≈ 3.145



1
−1 1
−1 −1 1
−1 −1 −1 1
−1 −1 −1 −1 1


∥L∥ ≈ 2.736



1 1
1 2

1 4
1 8

16


.

∥U∥ ≈ 18.473

Each step of LU induces magnification so the entries of U grow exponentially. Notice,
eventhough A = LU we see that ∥U∥ ≫ ∥A∥. The growth factor in this example is is
ρ ≈ 2n−1. For larger and larger matrices we would easily start to run out of precision!

Fortunately, the constructed example above is not found in practical situations. In practice,
partial pivoting is essentially always sufficient. Hence, the cost of complete pivoting is
usually not justified. A quote from Trefethen & Bau states: “In fifty years of computing, no
matrix problems that excite an explosive instability are known to have arisen under natural

64

circumstances.” Partial pivoting yields a modified factorization PA = LU , where P is the
permutation matrix due to row swaps.

Unnecessary Pivoting

Pivoting improves stability of the factorization, but tends to reduce sparsity. There is a trade-
off that needs to be considered. But for certain matrices pivoting is never necessary.

Theorem 7.1. If A is symmetric positive definite, then during LU factorization the pivot
a
(k−1)
kk > 0 for all k.

Proof. Assume A is SPD. We want to show that the pivot in the remaining submatrix A(k−1)

is positive. For n = 1, the theorem is clearly true since a 1 × 1 SPD matrix is a positive
scalar. We continue with an inductive argument. For n > 1, write

A =

[
a11 vT

v A22

]
,

where a11 ∈ R, v is a column vector and A22 is a submatrix. Since A is SPD, a11 > 0 because
it is a principle submatrix of A. Now consider eliminating v using a11 as the pivot for LU
(careful not to confuse with Cholesky)

A =

[
a11 vT

v A22

]
→
[
a11 vT

0 A22 − vvT

a11

]
.

Let A
(1)
22 = A22− vvT

a11
. Note that A

(1)
22 is symmetric since vvT is symmetric. We must also show

that A
(1)
22 is PD, i.e., xTA

(1)
22 x > 0, ∀x ̸= 0. (Because SPD matrices have positive diagonal

entries, then a
(1)
22 > 0.)

Since A is SPD, yTAy > 0,∀y ̸= 0 by definition. Let x ∈ Rn−1, x ̸= 0. Define

y =

[
−xT v

a11

x

]
∈ Rn.

Then,

0 < yTAy,

=
[
−xT v

a11
xT
] [a11 vT

v A22

] [
−xT v

a11

x

]
,

= xTA22x−
1

a11
xTvvTx,

= xT

(
A22 −

vvT

a11

)
x,

⇒ 0 < xT
(
A

(1)
22

)
x.

Hence, A
(1)
22 is SPD so a

(1)
22 > 0. This process can be repeated, so a

(k−1)
kk > 0 for all k (and for

all n).

65

Pivoting is also unnecessary for:

1. Row strictly diagonally-dominant matrices

|akk| >
∑
j ̸=k

|akj| for k = 1, . . . , n,

2. Column strictly diagonally-dominant matrices

|akk| >
∑
j ̸=k

|ajk| for k = 1, . . . , n.

That is, matrices whose diagonal entry is bigger in magnitude than the sum of remaining
entries in the row/column (respectively).

7.2 Image De-Noising

Images often contain random “noise” (small errors), arising from the sensors, capture method,
or (lighting) conditions. See for example Figure 7.13.

Figure 7.13: Example noisy images.

Synthetic images generated by raytracing have noise unless you run them for a very long
time. An alternative approach is to raytrace for a short time, then clean up with some
de-noising (see Figure 7.14).

66

Figure 7.14: Example noisy synthetic image (left) and denoised image (right) from [Kalantari
et al. SIGGRAPH 2015].

Often there is enough “signal” amidst the noise that we can try to recover a version with
the noise removed/reduced.

7.2.1 Inverse Problems

Image denoising is an inverse problem. That is, given some observations we want to
reconstruct the source/factors that generated them. Given some (noisy) observation u0 of
some signal u∗ we want to recover the clean signal u∗, i.e.,

u0 = u∗ + n,

where n is the noise. Thus, we want to decompose the observation u0 into the sum of two
components: the clean signal u∗ and the noise n.

The observed image is u0 is given. The goal is to
find an approximation of u∗. We treat grayscale
images as 2D scalar functions

uij = pixel intensity value at row i, column j.

Two key assumptions enabling us to solve the inverse problem:

1. noise is not too large, i.e., observation u0 is “close” to signal u∗

2. signal u∗ has some structure that we can exploit.

7.2.2 Regularization Models

We seek u satisfying
min
u

αR(u) + ∥u− u0∥22,

where R(u) is the regularization model. In this form, the ∥u− u0∥22 term can be thought
of as a measure of the discrepancy between the observation u0 and the numerical solution

67

u. (The notation ∥ · ∥22 should remind us of the square of the 2-norm, i.e. the square of the
Euclidean distance, i.e. the sum of the squares of the distances along each axis.)

The parameter α > 0 is called the regularization constant, which controls the trade-off
between

� regularity (“smoothness”) and
� fit (fidelity to data u0).

The regularization constant balances the two goals:

� α→ 0: ignores the first term (regularization) implying u ≈ u0, so this basically outputs
the observation u0,

� α → ∞: ignores the second term (observation) implying u ≈ (minimizer of R(u))
giving a perfectly “regular” image.

Good recovery of a denoised image relies on

� an appropriate tuning of α, and on
� the regularization model R(u).

We will discuss three options here:

1. Tikhonov,
2. Laplacian, and
3. Total Variation regularizations.

Tikhonov Regularization

For Tikhonov regularization R(u) is a measure of the total sum of pixel intensity

R(u) = ∥u∥22.

Therefore our optimization becomes

min
u

α∥u∥22 + ∥u− u0∥22.

Solving this quadratic optimization (e.g., via Euler-Lagrange equations - all details skipped)
leads to

αu+ (u− u0) = 0, so

(α + 1)u = u0.

Hence, the new pixel intensities are given by

u =
u0

α + 1
. (7.19)

From (7.19) we see that the solution with Tikhonov regularization gives

� u→ u0 as α→ 0 and

68

Figure 7.15: Example of a noisy signal (left) and smoother signal (right).

� u→ 0 when α→∞.

Thus, α indeed balances matching the input data and being close to a perfectly regular image
(image of all zeros). However, this is really not what we want from our regularization
since it is pushing us towards a zero intensity image.

Laplacian Regularization

Consider a noisy “image” (signal) in 1D shown in Figure 7.15. It can be seen from the noisy
1D image that there is drastic change in slope throughout the image. If one compared to
the smoother 1D image the slope changes more continuously. Therefore, we should try to
penalize changes in slopes/derivatives, ∇u, instead of pixel values u.

The Laplacian regularization model R(u) is a measure of the total sum of intensity
gradients

R(u) = ∥∇u∥22.
So the optimization problem becomes

min
u

α∥∇u∥22 + ∥u− u0∥22.

The optimal solution (minimizer) satisfies the linear PDE

−α∇ · ∇u+ (u− u0) = 0,

−α∆u+ u = u0, (7.20)

where ∇ · ∇ = ∆ is the Laplace operator (from our PDE application).

We can apply finite differences to (7.20) to compute a numerical approximation of the min-
imizer uij at each pixel (i, j). Using the finite difference approximation of the Laplacian ∆,
previously discussed in Lecture 4, we have

α

h2
(4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) + uij = u0

ij.

This gives a matrix equation of the form (αA + I)u = u0. If the solution remains too noisy
we can try iterating as

(αA+ I)uk+1 = uk, for k = 1, 2, . . . , K.

69

Figure 7.16: Laplacian regularization for image denoising of the noisy image (left). The
result on the right is smeared out throughout the image.

However, the drawback of Laplacian regularization is that it tends to smear out
edges as shown in Figure 7.16.

Total Variation Regularization

To avoid smearing edges the total variation regularization takes

R(u) = ∥∇u∥1.

This still minimizes the slopes but with a different measure that does not punish them too
much (i.e., 1-norm, without squaring). So our optimization roughly becomes

min
u

α∥∇u∥1 + ∥u− u0∥22.

The minimization problem leads to another PDE to solve, namely

−α∇ ·
(

1

∥∇u∥1

)
∇u+ u = u0. (7.21)

The PDE (7.21) is similar to the Laplacian regularization PDE, but with 1 instead of 1
∥∇u∥1 .

The effect is that the matrix coefficients (amount of smoothing) depends on gradients in the
image themselves.

1. Near big intensity jumps (edges of objects in an image)

∥∇uij∥ is large ⇒
1

∥∇uij∥
is small!

Therefore the 1st term becomes negligible giving u ≈ u0, which leaves edges nearly
unchanged staying close to data u0.

70

2. However, in “flat” regions, where intensity is roughly constant,

∥∇uij∥ is small ⇒ 1

∥∇uij∥
is large!

This implies more diffusion at pixel (i, j) since effectively we have

−C∇ · ∇uij + uij = u0
ij, where C is some large value.

The increase in diffusion makes these regions flatter/smoother.

To summarize, the behaviour of total variation regularization is

1. Edge-like regions are smoothed less, and
2. flatter regions are smoothed more.

So we get smoothing that roughly “stays within the lines”. Figure 7.17 shows results from
the original paper of a noisy image (top) and total variation denoised image (bottom).

We will now discuss how to compute a numerical approximation to (7.21). We can apply a
finite difference discretization again of the form

αA(u)u+ u = u0,

but this equation is nonlinear. The coefficients in the matrix A(u) depend on the solution
u itself. We need to solve this equation numerically: we cannot solve the PDE directly, as we
did for the earlier techniques. A simple approach to solve nonlinear equations is the fixed
point iteration. We freeze the coefficients to make the equations linear, solve, update, and
repeat. That is, solve

αA(uk)uk+1 + uk+1 = u0,

⇒ (αA(uk) + I)uk+1 = u0, for k = 0, 1, . . . , K.

We pick an initial guess and compute an approximate solution by solving the system. The
matrix A(uk) is then recomputed for the next iteration.

Note that such an iteration does not always converge to the solution in general. For-
tunately, in this case the fixed point iteration does converge. There are different approaches
to determine when to stop iterating, i.e., what is K? One approach is to stop iterating when
the approximation is not changing much anymore, i.e.

∥uk+1 − uk∥ < tol,

for some small tolerance.

Figure 8.20 compares the Laplacian and total variation regularization. The Laplacian regu-
larization is unable to remove as much noise as the total variation regularization. Increasing
the regularization parameter α for the Laplacian regularization will just blur the image in-
stead of removing noise. The effect of increasing α for total variation regularization is shown
in Figure 7.19. Edges are still well preserved as α increases and the image becomes smoother.

Remarks:

71

Figure 7.17: Noisy image (top) and denoised image (bottom) using total variation regular-
ization [Rudin et al. 1992].

Noisy Image Laplacian Total Variation

Figure 7.18: Comparison denoising an image with Laplacian and total variation regulariza-
tion (images from Mathworks Matlab manual).

72

Figure 7.19: Effect of increasing the regularization parameter α with total variation regular-
ization.

1. Many questions about how to complete these computations have been left unanswered
so far. When we work out such examples on the Crowdmark assignments, all the
required details will be specified.

73

8 Lecture 08: Iterative Methods

Outline

1. Iterative Methods
(a) Stationary Iterative Methods

2. Splitting Methods
(a) Richardson
(b) Jacobi
(c) Gauss-Seidel
(d) Successive Over Relaxation (SOR)

3. Convergence of Splitting Methods

8.1 Iterative Methods

The previous lecture concluded our look at direct methods for linear systems. These methods
are based on factoring the matrix A. They solve the system in a known finite sequence of
steps, then return the solution. In this lecture we begin looking at iterative methods for
linear systems. These methods gradually and iteratively refine a solution. They repeat the
same steps over and over, then stop only when a desired tolerance is achieved.

Possible benefits of iterative methods compared to direct methods:

1. They may be faster and tend require less memory.
2. They may be faster for typically large, sparse, higher-dimensional problems, since they

are usually less memory-intensive since no fill-in occurs. LU factorization was O(n3) in
the worst (fully dense) case for A ∈ Rn×n. For iterative methods the operation count
depends on number of non-zeros (nnz), as well as, how many iterations it takes.

3. Another benefit for applications needing only approximate solutions is that one can
“quit early”. With iterative methods you can increase your error tolerance to obtain a
less accurate approximate solution. Ideally, iterative approaches make gradual progress
in the solution quality up to the tolerance (or limits of floating point arithmetic). Direct
approaches give no solution at all until they complete all operations. Depending on
the problem one or the other may get to a (satisfactory) solution first as shown in
Figure 8.20.

4. Exact algorithms such as Gaussian elimination need to alter the matrixA. The splitting
algorithms discussed below do not. If we cannot find a good ordering to (significantly)
reduce the amount of fill-in, then iterative algorithms should be used (for large prob-
lems). The downside of course is that we give up computing an exact (up to machine
precision) solution.

Termination Criterion The termination criterion is based on the error e = x − x̂ be-
tween

1. the (current, approximate) numerical solution x̂ and
2. the true solution x.

We terminate computation when e ≈ 0. However, we do not know the true solution x since

74

that is what we are trying to compute. So a more practical indicator of the error is the norm
of the residual

r = b− Ax̂.

The residual measures how much the current approximation fails to satisfy Ax̂ = b.

The residual and error satisfy Ae = r since

Ax = b,

⇒ Ax− Ax̂ = b− Ax̂,

⇒ A (x− x̂)︸ ︷︷ ︸
e

= b− Ax̂︸ ︷︷ ︸
r

,

⇒ Ae = r.

Therefore, the matrix condition number (See Stability in Lecture 07) can be used to bound
the (relative) size of error e and residual r as

∥e∥
∥x∥
≤ κ(A)

∥r∥
∥b∥

.

From this we see that a small residual can imply a small error, but only if A is well condi-
tioned (i.e., κ is small).

As an example, consider the 1× 1 linear system 5x = 300.

� The true solution is obviously x = 60.
� If our current best estimate is x̂ ≈ 50, then the error is e = x− x̂ = 60− 50 = 10.
� This is the exact error of how “wrong” x̂ is.
� The residual in this case is r = b−Ax̂ = 300− 5(50) = 50 (i.e., how far is b−Ax̂ from
zero?).

� Notice also that the claim of Ae = r is satisfied since 5(10) = 50.

8.1.1 Stationary Iterative Methods

Iterative methods start from some (perhaps arbitrary or zero) guess at the solution. Increas-
ingly accurate approximations to the solution are generated by iterating a basic procedure
repeatedly.

75

Figure 8.20: Comparison of the path to solutions of iterative versus direct methods.

Q & A

1. Do we always know that we will converge towards a solution?
A: No. We will need to be careful about this point, because convergence is not guaran-
teed without additional assumptions. We will discuss these convergence assumptions,
soon.

2. If an iterative method converges, must it produce a “close enough” answer more quickly
than the direct methods that we have studied?
A: No: Not all iterative methods are created equal, and the meaning of “close enough”
completely depends on the choice of tolerance.

8.2 Splitting Methods

This section gives describes splitting methods for iteratively solving linear equations. We
can rewrite the linear system Ax = b as

(M −N)x = b⇔Mx = Nx+ b, where A = M −N.

Important Notes About Notation:

1. We assume that M must be invertible.
2. (In each method described below, you should think about what extra constraints this

would place on the coefficient matrix, A.)
3. However, we do not necessarily compute M−1 to solve a system involving M .
4. We abuse notation slightly in what follows, by writing M−1b as shorthand for the

solution, x, to the system Mx = b.

Then, starting with some initial guess x0, we can iteratively find x by repeatedly solv-
ing

Mxk+1 = (Nxk + b). (8.22)

76

Then we have:

Mxk+1 = Nxk + b

= (M − A)xk + b

= Mxk − Axk + b

= Mxk + (b− Axk)

xk+1 = xk +M−1 (b− Axk)︸ ︷︷ ︸
rk, at step k (x̂=xk)

(8.23)

For the splitting method (8.22) to be effective, we need to choose M (hence N) so that

1. it is easy to solve the linear system (8.22), i.e., My = z should be easy to solve.
2. M is close to A, in the sense of having small norm ∥I −M−1A∥.

At one extreme we could choose M = A, and the iterative procedure (8.22) will “converge”
in one iteration since

xk+1 = xk + A−1(b− Axk) = xk + x− xk = x.

However, using the actual A−1 is too expensive (and defeats the purpose). The cost would
be solving a general linear system Ax = b. There is a trade-off between the two goals, so we
want to take M ≈ A.

For different choices of M we get the following splitting methods to discuss in this lec-
ture:

1. Richardson,
2. Jacobi,
3. Gauss-Seidel,
4. Successive Over Relaxation (SOR).

Remark: splitting methods are related to fixed-point iterations. Suppose we want to
solve the (nonlinear) equation

f(x) = 0, x ∈ X.

We consider the iteration
xk+1 = T (xk) = T k+1(x0),

where the mapping T : X → X is chosen so that any fixed-point satisfying x = T (x)
implies f(x) = 0. Many iterative algorithms can be derived as above. For our splitting
algorithm in (8.23), the function f(x) = Ax − b and T (x) = x + M−1(b − Ax). Indeed,
x = Tx⇒ f(x) = 0.

8.2.1 Richardson Iteration

Richardson iteration is perhaps the simplest method. The choice of M the scaled identity
matrix

M =
1

θ
I,

77

where θ > 0 is some appropriately chosen constant. How to choose θ will be detailed when
we discuss the convergence of iterative methods in Section 8.3. We have from (8.23) that
the Richardson iteration is

xk+1 = xk + θ(b− Axk).

Or, for a particular ith entry we have xk+1
i = xk

i + θ
(
bi −

∑n
j=1 aijx

k
j

)
. Note that the new

value xk+1 is a weighted sum of old value xk and the residual b−Axk. Clearly, each iteration
costs O(nnz(A)). Note that we need to store 2 separate vectors, xk and xk+1.

8.2.2 Jacobi Iteration

The next three methods will rely on the following la-
belled submatrices of A

� D =main diagonal (all diagonal entries non-zero),
� −L = (strictly) below diagonal,
� −U = (strictly) above diagonal.

A =


. . . −U

D

−L . . .


With the choice

M = D := diag(A),

we have the Jacobi iteration from (8.23):

xk+1 = xk +D−1(b− Axk).

Intuitively, we “exactly” solve each row equation independently for the corresponding entry,
using the current estimate of vector xk. For example, consider if row 7 looks like

2x5 − 5x6 + 10x7 + 3x9 = 14.

Then to find xk+1 for row index i = 7 we set

xk+1
7 =

1

10

(
14− 2xk

5 + 5xk
6 − 3xk

9

)
,

using the other known (step k) values of x. Again, each iteration costs O(nnz(A)) and we
must store 2 vectors.

Let us write the Jacobi iteration more explicitly for the ith entry as

xk+1
i = xk

i +
1

aii

(
bi −

∑
j

aijx
k
j

)
,

=
1

aii

(
bi −

∑
j ̸=i

aijx
k
j

)
.

Motivation for the Jacobi iteration: Recall the residual vector r = b − Ax. Clearly, x
is a solution iff r = 0. Given the current iterate xk, the Jacobi iteration tries to zero out the

78

i-th residual ri, in turn:

ri = 0

⇐⇒ bi −
∑
j ̸=i

aijx
k
j − aiix

k+1
i = 0

⇒ xk+1
i =

1

aii

(
bi −

∑
j ̸=i

aijx
k
j

)
.

The Jacobi iteration is easy to implement but unfortunately quite slow. However, it is
trivially parallelizable. Given xk, we can update the components in the next iteration xk+1

in parallel.

8.2.3 Gauss-Siedel Iteration

The Gauss-Siedel iteration is very similar to the Jacobi iteration. The difference is instead
of using “old” data, xk, use “new” xk+1 data for entries that have already been updated so
far on this pass. That is,

xk+1
i = xk

i +
1

aii

(
bi −

∑
j<i

aijx
k+1
j −

∑
j≥i

aijx
k
j

)

=
1

aii

(
bi −

∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

)
.

Recall we are zeroing out the residual at ith step - this gives the first equation.

If we rearrange the updates we have∑
j≤i

aijx
k+1
j = b−

∑
j>i

aijx
k
j ,

or in matrix form

(D − L)xk+1 = b+ Uxk

⇒ xk+1 = xk + (D − L)−1(b− Axk),

so
M = D − L.

Again, each iteration costs O(nnz(A)). Gauss-Seidel however only needs to store one vector
since you can update/overwrite xk entries as you go!

There exist variants of Gauss-Siedel (GS). There is nothing special about proceeding to
update xk from top to bottom (i.e ., GS runs over rows from i = 1, . . . , n). The reverse
ordering gives backward Gauss-Seidel. This swaps the role of L and U giving

xk+1 = xk + (D − U)−1(b− Axk),

79

which corresponds to update the elements of x in the reverse order (i.e., i = n, n− 1, . . . , 1).
Thus

M = D − U.

Of course, we can also combine (forward) Gauss-Siedel with backward Gauss-Siedel to con-
struct symmetric Gauss-Seidel

xk+ 1
2 = xk + (D − L)−1(b− Axk),

xk+1 = xk+ 1
2 + (D − U)−1(b− Axk+ 1

2)

=
(
xk + (D − L)−1(b− Axk)

)
+ (D − U)−1(b− A(xk + (D − L)−1(b− Axk)))

We simplify the second term first.

(D − U)−1(b− A(xk + (D − L)−1(b− Axk))

= (D − U)−1(b− Axk − A(D − L)−1(b− Axk))

= (D − U)−1(I − A(D − L)−1)(b− Axk)

= (D − U)−1((D − L)(D − L)−1 − A(D − L)−1)(b− Axk)

= (D − U)−1(D − L− A︸ ︷︷ ︸
=U

)(D − L)−1(b− Axk)

= (D − U)−1U(D − L)−1(b− Axk),

so that we finally get

xk+1 =
(
xk + (D − L)−1(b− Axk)

)
+ (D − U)−1U(D − L)−1(b− Axk)

= xk + (D − L)−1(b− Axk) + (D − U)−1U(D − L)−1(b− Axk)

= xk +
[
(D − L)−1 + (D − U)−1U(D − L)−1

]
(b− Axk)

= xk +
[
I + (D − U)−1U

]
(D − L)−1(b− Axk)

= xk +
[
(D − U)−1(D − U) + (D − U)−1U

]
(D − L)−1(b− Axk)

= xk + (D − U)−1 [D − U + U] (D − L)−1(b− Axk)

= xk + (D − U)−1D(D − L)−1(b− Axk)

So that for symmetric Gauss-Seidel, the matrix M is

M = (D − L)D−1(D − U).

Gauss-Siedel usually converges faster than the Jacobi iteration. However, GS is an inherently
sequential algorithm and is harder to parallelize. Red-black Gauss-Seidel is an update
ordering that allows for some parallelization (see Figure 8.21 left). It alternates between
sweeps of updating (1) only red nodes and (2) only black nodes. We can update all red
nodes in parallel since they only use (old) black data, and vice versa. One can generalize
the red-black GS idea to non-grid structured problems by coloring a graph. You ensure
no neighbours have same color and then update all same color neighbours simultaneously
(see Figure 8.21 right). See for example the application of real time cloth simulation by
[Fratarcangeli et al. 2016] in this video.

80

https://www.youtube.com/watch?v=xIfuplNTjHc

Figure 8.21: Example colorings for parallelizing the Gauss-Seidel iteration.

8.2.4 Successive Over-Relaxation (SOR)

A common strategy to accelerate fixed-point iterations is averaging. For instance, by aver-
aging the current iterate xk with the GS update according to a relaxation factor ω > 0,
we obtain SOR:

xk+1
i = (1− ω)xk

i + ω(xk+1
i)GS

= (1− ω)xk
i +

ω

aii

(
bi −

∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

)
,

or in matrix notation

xk+1 = xk +

(
1

ω
D − L

)−1 (
b− Axk

)
.

Hence, for SOR the matrix M is

M =
1

ω
D − L.

For 0 < ω < 1 the update is called under-relaxation, while for ω > 1 the update is called
over-relaxation. When ω = 1, SOR equals Gauss-Seidel. For certain choices of ω(> 1),
SOR may converge substantially faster than GS.

Detailed Explanation of the SOR Setup Above

Remark: This is adapted from the Saad textbook.

Let ω > 0 be an arbitrary relaxation factor. I claim that the system Ax = b can be
equivalently written as

(D − ωL)x = ωb− [ω(−U) + (ω − 1)D]x. (8.24)

81

To prove the claim, observe that

Ax = b

ωAx = ωb

ω [D − U − L]x = ωb

ωDx− ωUx− ωLx = ωb

Dx− ωLx = ωb− ωDx+ ωUx+Dx

(D − ωL)x = ωb− [ωD − ωU −D]x

= ωb− [ω(−U) + (ω − 1)D]x,

as claimed.

We iterate equation (8.24) to obtain

(D − ωL)xk+1 = ωb− [ω(−U) + (ω − 1)D]xk, (8.25)

from which we can compute xk+1 given xk.

To obtain the equation that matches averaging the current xk with the GS update, observe
that (D − ωL) is lower triangular. Hence we can solve the system defined by (8.25), via
forward substitution. This gives

xk+1
i = (1− ω)xk

i +
ω

aii

(
bi −

∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

)
.

Our last step is to verify that the provided matrix form of the iteration is correct, so that
the definition of the iteration matrix M is also correct. We compute

(D − ωL)xk+1 = ωb− [ω(−U) + (ω − 1)D]xk(
1

ω
D − L

)
xk+1 = b−

[
(−U) +

(
1− 1

ω

)
D

]
xk

xk+1 =

(
1

ω
D − L

)−1(
b−

[
(−U) +

(
1− 1

ω

)
D

]
xk

)
= xk +

(
1

ω
D − L

)−1(
b−

[
(−U) +

(
1− 1

ω

)
D +

(
1

ω
D − L

)]
xk

)
= xk +

(
1

ω
D − L

)−1 (
b− [(−U) + (−L) +D]xk

)
= xk +

(
1

ω
D − L

)−1 (
b− Axk

)
,

as claimed.

82

8.3 Convergence of Splitting Methods

The key questions involving the convergence of splitting methods are:

1. under what conditions does the iteration converge to the correct solution?
2. if it does converge, how quickly does it do so (in terms of number of iterations)?

These convergence questions depend on the spectral radius of A, denoted ρ(A). The spec-
tral radius is defined in terms of the eigenvalues of A.

Definition 8.1. An eigenvalues λ ∈ R and corresponding eigenvector v ∈ Rn of A ∈ Rn×n

satisfy
Av = λv and v ̸= 0.

Definition 8.2. The spectral radius of A is

ρ(A) = max
i
|λi|,

where λi are the eigenvalues of A. In other words, ρ(A) is the largest magnitude of an
eigenvalue of A.

We can rewrite our usual iteration as

xk+1 = xk +M−1(b− Axk) = (I −M−1A)xk +M−1b.

We call the matrix I −M−1A the iteration matrix for a particular method. The following
theorem gives a sufficient condition for convergence.

Theorem 8.1. Let the true solution x∗ satisfy x∗ = (I−M−1A)x∗+M−1b. If ∥I −M−1A∥ < 1
for some induced matrix norm, then the stationary iterative method converges. That is, for
any initial guess x0,

lim
k→∞

xk = x∗.

Proof. The iteration is
xk+1 = (I −M−1A)xk +M−1b, (8.26)

and the true solution satisfies

x∗ = (I −M−1A)x∗ +M−1b. (8.27)

Subtracting (8.27) from (8.26) gives

xk+1 − x∗ = (I −M−1A)(xk − x∗).

So for any vector norm ∥ · ∥ we have

∥xk+1 − x∗∥ ≤ ∥I −M−1A∥ · ∥xk − x∗∥,
⇒ ∥ek+1∥ ≤ ∥I −M−1A∥ · ∥ek∥,

where the matrix norm is the one induced by the vector norm. Therefore, if ∥I−M−1A∥ < 1
the magnitude of the error decreases at each iteration.

83

https://en.wikipedia.org/wiki/Matrix_norm

Note that an induced matrix norm is defined as ∥A∥ := max∥x∥=1 ∥Ax∥. A necessary and
sufficient theorem for convergence is given next (we will not prove this).

Theorem 8.2. The iterative method xk+1 = xk +M−1(b−Axk) converges for any x0 and b
if and only if ρ(I −M−1A) < 1.

The speed of convergence depends on the size of ρ(I −M−1A) since the error satisfies

∥xk+1 − x∗∥ ≤ ρ(I −M−1A)∥xk − x∗∥.

That is, magnitude of the error scales by ρ(I − M−1A) on each iteration. We will call
ρ(I−M−1A) the convergence factor. Smaller ρ (closer to zero) implies faster convergence.
For even more on convergence see Saad textbook, sections 4.2.1 and 1.8.4.

84

9 Lecture 09: Iterative Methods - Conjugate Gradient

Method

Outline

1. Solution by Steepest Descent
(a) Towards the Conjugate Gradient Method

2. Another Search Direction Idea
(a) Gram-Schmidt (A-)orthogonalization
(b) Conjugate Directions Method

3. Conjugate Gradient Method
(a) Efficient Conjugate Gradient Method
(b) Error Behaviour

In Lecture 08 we looked at stationary iterative methods. We will now begin to look at other
iterative methods for solving Ax = b. The steepest descent method and the conjugate
gradient method are discussed in this lecture.

There is an equivalent minimization interpretation of solving Ax = b. We assume A ∈ Rn×n

is symmetric positive definite (SPD) and consider the quadratic function

F (x) =
1

2
xTAx− bTx, x ∈ Rn.

We will show that the solution of Ax = b is equivalent to the solution of the minimization
problem

min
x

F (x).

Consider visualizing the case with n = 2 as shown in Figure 9.22. Here x is a length-2
vector x = [x1, x2]

T . The function F (x) is a scalar that gives height in the plot. Plotting F
gives a paraboloid with minimum value at x = A−1b. Note that A being SPD implies F is
convex.

Figure 9.22: Visualization of F (x) when n = 2.

85

Lemma 9.1. For any A and x, ∇
(
xTAx

)
= (A+ AT)x.

Proof. First observe that xTAx =
∑n

i=1

(
xi

∑n
j=1 xjAij

)
.

Now let 1 ≤ k ≤ n be arbitrary. Then

∂

∂xk

(
xTAx

)
=︸︷︷︸

product rule

n∑
i=1

(
∂xi

∂xk

n∑
j=1

xjAij

)
+

n∑
i=1

(
xi

n∑
j=1

∂xj

∂xk

Aij

)

=
n∑

j=1

xjAkj +
n∑

i=1

xiAik

Assembling each of the above for all 1 ≤ k ≤ n gives

∇
(
xTAx

)
=


∑n

j=1 xjA1j +
∑n

i=1 xiAi1∑n
j=1 xjA2j +

∑n
i=1 xiAi2

...∑n
j=1 xjAnj +

∑n
i=1 xiAin


= Ax+

(
xTA

)T
= (A+ AT)x.

Theorem 9.1. If A is symmetric, then ∇F (x) = Ax− b.

Proof. By Lemma 9.1, ∇
(
xTAx

)
= (A+ AT)x.

Similarly, for an arbitrary 1 ≤ k ≤ n, we have

∂

∂xk

(
bTx
)

=
∂

∂xk

[b1 · · · bn
] x1

...
xn




=
∂

∂xk

n∑
j=1

bjxj

=
n∑

j=1

bj
∂xj

∂xk

= bk, so that

∇
(
bTx
)

= b.

86

Putting it all together, we get

∇F (x)

= ∇
(
1

2
xTAx− bTx

)
=

1

2
∇
(
xTAx

)
−∇

(
bTx
)

=
1

2
(A+ AT)x− b

=︸︷︷︸
AT=A

(
2A

2

)
x− b

= Ax− b.

Theorem 9.2. The solution of the linear system and minimization form are the same.

Proof. The solution of the minimization satisfies ∇F (x) = 0, i.e.,

∂F

∂xi

= 0,∀i.

Since, by Theorem 9.1, ∇F (x) = Ax− b, therefore the solution of Ax = b corresponds to a
stationary point. However, since F (x) is (strictly) convex any local minimum is the global
minimum.

9.1 Solution by Steepest Descent

By Theorem 9.2, if we can solve the minimization problem, we have solved the linear system.
So we will try to find the minimum by “walking downhill”. The main idea is, at each step,
first choose a search direction vector p ̸= 0. Then find the point along that direction with
the lowest value. Therefore, we iterate as xk+1 = xk + αp, where α ∈ R.

We want to find α that gives the minimum value of F (xk+1) = F (xk + αp). Let

f(α) = F (xk + αp),

=
1

2
(xk + αp)TA(xk + αp)− (xk + αp)T b,

=
1

2
(xk)TAxk +

(α
2
pTAxk +

α

2
(xk)TAp

)
+

α2

2
pTAp− (xk)T b− αpT b,

=

[
1

2
(xk)TAxk − (xk)T b

]
︸ ︷︷ ︸

F (xk)

+α
[
pTAxk − pT b

]
+

α2

2

[
pTAp

]
.

87

To optimize we differentiate f with respect to α, set it to 0, and solve for α.

f ′(α) = −pT (b− Axk) + αpTAp = 0,

⇒ α =
pT (b− Axk)

pTAp
=

pT rk

pTAp
,

where rk = b−Axk is the residual of the kth iterate. This is the optimal α given the update
rule xk+1 = xk + αp and search vector p ̸= 0. Note that since A is SPD, pTAp > 0. So α
gives the minimum point along a given search direction.

Now consider choosing the search directions p. What is the optimal search direction? A
vector pointing straight from xk towards the solution x, so p = x− xk.

This p would give the solution in one step. Unfortunately we do not know x! Therefore,
we pick the search directions in a locally optimal manner. That is, we determine what
direction reduces F as rapidly as possible at the current point.

We saw above that f ′(α) = pT (Axk − b) + αpTAp. This gives the rate of change at distance
α along the search vector. So, f ′(0) gives rate of change along p at the current position
(i.e., xk). The idea is to pick p to make f ′(0) as negative as possible. This gives the direction
of fastest decrease. We have that f ′(0) = pT (Axk − b) = pT∇F (xk), so f ′(0) is minimized
for

p = − ∇F (xk)

∥∇F (xk)∥
, (assuming we want unit p, ∥p∥ = 1)

=
b− Axk

∥b− Axk∥
=

rk

∥rk∥
.

It is actually not necessary to normalize the search direction vector. Therefore we take
p = rk, which gives the iteration xk+1 = xk + αrk and optimal α as

α =
pT rk

pTAp
=

(rk)T rk

(rk)TArk
.

Intuitively, we are finding the negative gradient of F (i.e., residual) and following it “down-
hill” as shown in Figure 9.23.

The steepest descent algorithm is given in Algorithm 9.5. For efficiency, instead of recom-
puting the residual from scratch at each step we can derive a simple update rule

rk+1 = b− Axk+1,

= b− A(xk + αrk),

= b− Axk − αArk,

= rk − αArk.

88

Contours of F Gradient Vectors

Figure 9.23: Example contours and gradient vectors of a function F .

The term Ark is already needed in the algorithm, so we can save one matrix-vector product
per iteration by storing its result. Note that you can view steepest descent as a nonlin-
ear iterative method with the iteration matrix M = Mk = 1

αk
I that changes on each

iteration.

Algorithm 9.5 : Steepest Descent

Given x0, compute r0 = b− Ax0

for k = 0, 1, 2, . . .

αk = (rk)T rk

(rk)TArk

xk+1 = xk + αkrk

rk+1 = rk − αkArk

end for

The steepest descent algorithm actually behaves quite poorly in terms of convergence. Since
we assumed A was SPD steepest descent will indeed converge. However, steepest descent can
be “shortsighted” and will often yield slow (zig-zag-like convergence towards the solution)
as seen below.

89

For a SPD matrix A the error vectors ek = xk − x∗ for steepest descent satisfy

∥ek+1∥A ≤
(
λmax − λmin

λmax + λmin

)
∥ek∥A,

where ∥ · ∥A indicates the “A-norm” or energy norm: ∥x∥A =
√
xTAx. For a proof of

this result see Saad textbook, Section 5.3.1 or [Shewchuk 1994]. Next we will look at the
conjugate gradientmethod, which chooses a different sequence of steps that can sometimes
perform much better.

9.1.1 Towards the Conjugate Gradient Method

Recall the steepest descent method. We considered finding the x that gives the minimum
of

F (x) =
1

2
xTAx− bTx, x ∈ Rn,

which also is the solution to Ax = b. We developed an iteration xk+1 = xk +αpk with:

� search direction pk = rk = b− Axk,

� step length α = (rk)T pk

(pk)TApk
= (rk)T rk

(rk)TArk
,

The search direction gives a locally fastest decrease, but not the globally “best” direction.
This leads to zig-zag like convergence towards the solution. We now discuss how we can do
better, starting with the conjugate directions method, then refining it to finally arrive at
the conjugate gradient method.

9.2 Another Search Direction Idea

Imagine an approach that (somehow) finds the solution in the x1 axis, then in the x2 axis,
. . . , then in the xn axis. It would complete in n iterations, touching each orthogonal axis
once. Can we achieve something like this?

Choosing step pk = axisk does not actually work. The lowest point (minimum value) along
each axis in not the solution for that axis. The figure below depicts this idea. The blue
vectors are what we would like. But, the red is the (bad) result if we use axes as search
directions.

90

A-orthogonal vector pairs Corresponding orthogonal vector pairs
(are not orthogonal!) after stretching the space according to A

Figure 9.24: Visualization of the concept of A-orthogonality.

Choosing orthogonal directions (axes) and minimizing along them one at a time clearly does
not work. Let us try something else, based on A-orthogonality. We first need to some
definitions.

Definition 9.1. Suppose A is SPD, then the A-inner product is defined as

(p, q)A = pTAq.

Definition 9.2. The A-norm is given by

∥p∥A =
√

(p, p)A.

Definition 9.3. Two vectors p, q are A-orthogonal (or conjugate) if (p, q)A = 0.

Figure 9.24 visualizes vectors that are A-orthogonal. In general, A-orthogonal vectors are
not orthogonal in the standard Euclidean space. The vectors are instead orthogonal when
you transform to the new space by multiplying by A.

Intuitively, A-orthogonality is a kind of orthogonality that respects the properties of A.
We build a new search direction method based on A-orthogonality. We choose each search
direction to be A-orthogonal to all previous search directions. This will avoid searching
redundant directions repeatedly. So we now need an algorithm to construct A-orthogonal
vectors. We will use Gram-Schmidt A-orthogonalization.

9.2.1 Gram-Schmidt (A-)orthogonalization

Gram-Schmidt A-orthogonalization construct a set of A-orthogonal vectors, incrementally.
Suppose the previous search directions p0, p1, p2, . . . , pk−1 are all mutually A-orthogonal.
Given a new proposed direction uk, we convert it into a pk that is A-orthogonal to all prior
pi. The idea is to subtract out the components of uk that are not A-orthogonal to earlier
pi’s, leaving behind a vector that is.

91

Figure 9.25: Orthogonalizing a vector u with respect to a.

Figure 9.25 gives a visualization of one step of Gram-Schmidt in 2D (for regular orthogonal-
ity). Consider some vector u, and a (previous) basis vector a. Then the vector u − (uTa)a
will be orthogonal to a. Let’s derive a Gram-Schmidt process to construct A-orthogonal
vectors.

We start with a vector uk and subtract all prior pi components to form pk, so

pk = uk +
k−1∑
i=0

βip
i.

Now we just need to find the coefficients βi. For each pj for j = 0, . . . , k − 1 use A-
orthogonality against pk:

0 = (pk, pj)A,

=

(
uk +

k−1∑
i=0

βip
i, pj

)
A

,

= (uk, pj)A +
k−1∑
i=0

βi(p
i, pj)A.

Earlier pi’s were mutually A-orthogonal, so (pi, pj)A = 0 for i ̸= j. Therefore,

0 = (uk, pj)A + βj(p
j, pj)A,

⇒ βj = − (uk,pj)A
(pj ,pj)A

. (9.28)

Using this strategy we can construct an A-orthogonal set of pk vectors spanning Rn, when
given input uk’s.

92

9.2.2 Conjugate Directions Method

To summarize, the conjugate directions method starts with a given set of vectors uk spanning
Rn. We then A-orthogonalize them by Gram-Schmidt to get A-orthogonal search directions
pk. The same basic iteration as steepest descent is then performed to compute the solution
x to Ax = b. The changes to the steepest descent iteration are:

� use new pk as search directions (instead of residuals rk),

� use our original step length expression α = (rk)T pk

(pk)TApk
(i.e., not (rk)T rk

(pk)TArk
).

The drawbacks of conjugate directions (w/ Gram-Schmidt) are as follows.

� With respect to memory we need to keep all prior search vectors pi.
� In terms of computational cost we need to perform complete Gram-Schmidt at each
step, which takes O(n3) flops.

� There is also the lingering question about how to choose the input (non-A-orthogonal)
uk vectors?

� A fun fact is that if the proposed search vectors uk at each step (beforeA-orthogonalization)
are the axes, this gives Gaussian Elimination again!

9.3 Conjugate Gradient Method

The conjugate gradient method is a variation on the conjugate directions method that im-
proves in two ways:

1. choose the vectors uk at each step to be the residual rk (to be A-orthogonalized),
2. carefully exploit (A-)orthogonality to avoid storing all prior search vectors.

Item 1. immediately turns our earlier Gram-Schmidt process into

pk = rk +
k−1∑
i=0

βip
i = rk −

k−1∑
i=0

(rk, pi)A
(pi, pi)A

pi, (9.29)

which gives the first version of the conjugate gradient algorithm in Algorithm 9.6.

Algorithm 9.6 : Conjugate Gradient algorithm (version 1.0)

1: x0 = initial guess
2: r0 = b− Ax0

3: for k = 0, 1, 2, . . . , n− 1
4: Compute pk as described above (Gram-Schmidt)
5: xk+1 = xk + αkp

k

6: rk+1 = rk − αkAp
k

7: end for
8: (Special case: use β−1 = 0 on the 0th iteration)

Note that lines 5 and 6 are the same as steepest descent. That is, given the direction

93

pk pick optimal αk, then update solution x and residual r. Recall that αk = (rk,pk)
(pk,pk)A

and

rk+1 = b− Axk+1. This first version is still costly, do not implement this version!

9.3.1 Efficient Conjugate Gradient Method

Let’s work towards a more efficient algorithm. We want concise recursive expressions for

� the step lengths α,
� step directions p, and
� Gram-Schmidt coefficients β.

We will need to consider the spaces involved and their relationships, as well as, repeatedly
exploit orthogonality and A-orthogonality.

Consider the space spanned by vectors pi for i = 0, . . . , k − 1.

span{p0, p1, . . . , pk−1}
= span{r0, r1, . . . , rk−1} (by Gram-Schmidt)

= span{r0, Ar0, A2r0, . . . , Ak−1r0} (See Theorem 9.3).

A space constructed this way (powers of A times a vector) is called a (k-dimensional)Krylov
subspace, denoted Kk(A, r

0).

Theorem 9.3.

span{r0, r1, . . . , rk−1} = span{r0, Ar0, A2r0, . . . , Ak−1r0}.

Proof. � The proof is by induction on k ≥ 1 (k = 0 makes no sense).
� Base (k = 1)

– span{r0} = span{r0} is trivial.
� Induction (k > 1)

– The induction hypothesis is that span{r0, r1, . . . , rk−2} = span{r0, Ar0, A2r0, . . . , Ak−2r0}.
– Recall also that from our setup, Gram-Schmidt,

span{p0, p1, . . . , pk−1} = span{r0, r1, . . . , rk−1}

– We have this fact, which will be needed throughout the remainder of the argument:

rk+1 = rk − αkAp
k

– It suffices to prove the following two facts:
1. rk−1 ∈ span{r0, Ar0, A2r0, . . . , Ak−1r0}

*

rk−2 ∈ span{r0, r1, . . . , rk−2}
⊆︸︷︷︸
I.H.

span{r0, Ar0, A2r0, . . . , Ak−2r0}

⊆ span{r0, Ar0, A2r0, . . . , Ak−1r0}

94

* Also

pk−2 = rk−2 +
k−3∑
i=0

βip
i.

* Note that
∑k−3

i=0 βip
i ∈ span{r0, r1, . . . , rk−3}, by Gram-schmidt.

* So pk−2 ∈ span{r0, r1, . . . , rk−2} ⊆︸︷︷︸
I.H.

span{r0, Ar0, A2r0, . . . , Ak−2r0}.

* Thus αk−2Ap
k−2 ∈ span{Ar0, A2r0, . . . , Ak−1r0} ⊆ span{r0, Ar0, A2r0, . . . , Ak−1r0}.

* Hence rk−1 ∈ span{r0, Ar0, A2r0, . . . , Ak−1r0}.
2. Ak−1r0 ∈ span{r0, r1, . . . , rk−1}

* Re-arranging rk+1 = rk − αkAp
k (assuming each αi ̸= 0; if some αi = 0,

then xi+1 = xi from this point on) gives

Apk =
rk − rk+1

αk

.

* We have Ak−2r0 ∈ span{r0, r1, . . . , rk−2} = span{p0, p1, . . . , pk−2}.
* Write Ak−2r0 =

∑k−2
i=0 aip

i.
* Therefore

Ak−1r0 = A
(
Ak−2r0

)
=

k−2∑
i=0

aiAp
i

=
k−2∑
i=0

ai(r
i − ri+1)

αi

∈ span{r0, r1, . . . , rk−1}.

It can also be shown (See Theorem 9.3.1) that rk ⊥ span{p0, p1, . . . , pk−1} = span{r0, r1, . . . , rk−1},
i.e., (rk, rj) = 0 for j = 0, 1, . . . , k−1. That is, the current residual is orthogonal to the prior

search directions and residuals. Currently, the step length is computed as αk = (rk,pk)
(pk,pk)A

.
Observe however that

(rk, pk) =

rk, rk +

�
�
�

���
0

k−1∑
i=0

βip
i

 , (since (rk, pi) = 0 for i < k)

= (rk, rk), (9.30)

which gives a new way of computing αk as

αk =
(rk, rk)

(pk, pk)A
.

95

To make computing the search direction more efficient we need the identity

(rk, pi)A = 0 for i = 0, 1, . . . , k − 2. (9.31)

Proof. We know that pi ∈ span{p0, . . . , pi} = span{r0, Ar0, . . . , Air0}. So

Api ∈ span{Ar0, A2r0, . . . , Ai+1r0},

just by left multiplying all the vectors byA. This space is a subset of the span{r0, Ar0, . . . , Ai+1r0}
since it is only missing r0. Hence, Api ∈ span{r0, r1, . . . , ri+1} by our earlier relationships.

But, we also have that rk ⊥ Api ∈ span{r0, r1, . . . , ri+1} for i + 1 ≤ k − 1. Therefore,
(rk, pi)A = (rk, Api) = 0 for i ≤ k − 2 since Api was in the span and rk was orthogonal to
it.

Now we can construct search direction pk without storing all prior pi. Starting from (9.29),
Gram-Schmidt gives

pk = rk −
k−1∑
i=0

(rk, pi)A
(pi, pi)A

pi,

= rk − (rk, pk−1)A
(pk−1, pk−1)A

pk−1,

by (9.31). Hence, only the current residual and previous step direction are needed to compute
pk. This saves us storage and flops.

To arrive at the standard conjugate gradient method we further simplify βk−1. Equation

(9.28) gave βk−1 = − (uk,pk−1)A
(pk−1,pk−1)A

. Later replacing uk by rk gave

βk−1 = − (rk,pk−1)A
(pk−1,pk−1)A

. (9.32)

In the numerator we have (rk, pk−1)A. By the residual update rule, rk = rk−1 − αk−1Ap
k−1,

so applying (rk, ·) to this rule, we get that

(rk, rk) = (rk, rk−1)︸ ︷︷ ︸
=0 since the r’s are orthogonal

−αk−1(r
k, Apk−1),

since the r’s are orthogonal. Rearranging, we get that the numerator is

(rk, pk−1)A = (rk, Apk−1) = − 1

αk−1
(rk, rk).

Now consider the denominator (pk−1, pk−1)A. We have that (rk, pk−1) = 0 by orthogonality,
and then applying the residual update gives

0 = (rk−1, pk−1)− αk−1(Ap
k−1, pk−1) = (rk−1, rk−1)− αk−1(p

k−1, pk−1)A,

96

because earlier (9.30) we showed (rk−1, pk−1) = (rk−1, rk−1). Rearranging, gives the denom-
inator as (pk−1, pk−1)A = 1

αk−1
(rk−1, rk−1). Combining the numerator and denominator we

have

βk−1 = −
(rk, pk−1)A
(pk−1, pk−1)A

,

= −
(
−(rk, rk)

���αk−1

)(
���αk−1

(rk−1, rk−1)

)
,

=
(rk, rk)

(rk−1, rk−1)
.

The more efficient version of the conjugate gradient method is given in Algorithm 9.7 based
on the simplifications above.

Algorithm 9.7 : Conjugate Gradient (version 2.0)

x0 = initial guess ▷ Initialize Solution
r0 = b− Ax0 ▷ Initialize Residual
for k = 0, 1, 2, . . . , n− 1 ▷ Loop (explore n dimensional space)

βk−1 = (rk, rk)/(rk−1, rk−1) ▷ Find β coeff for pk−1 component in rk

pk = rk + βk−1p
k−1 ▷ Remove it to get A-orthogonal search direction pk

αk = (rk, rk)/(pk, Apk) ▷ Determine step length α along pk

xk+1 = xk + αkp
k ▷ Update solution

rk+1 = rk − αkAp
k ▷ Update residual

end for
(Special case: use β−1 = 0 on the 0th iteration)

Now conjugate gradient just needs 1 matrix-vector multiply and 2 inner-products per step:

� matrix-vector multiply Apk,
� dot products (rk, rk) and (pk, Apk).

9.3.2 Error Behaviour

Note that at most n A-orthogonal vectors are needed to span Rn. Therefore conjugate
gradient will terminate in (at most) n steps with an exact solution (under exact arithmetic).
At each iteration, the current conjugate gradient solution’s error has the minimum A-norm
within the subspace it has already explored,i.e.,

xk = argmin
x∈Kk

∥ek∥2A = argmin
x∈Kk

∥xk − x∗∥2A.

This is because at each iteration, conjugate gradient zeroes out one of the error
components. To see this let ei = x∗ − xi, where x∗ is the true solution. We therefore have
ri = Aei. Now express e0 as a linear combination of search directions

e0 =
n−1∑
j=0

δjp
j, for coefficients δj.

97

Left multiplying by (pk)TA (to exploit A-orthogonality) gives

(pk)TAe0 =
n−1∑
j=0

δj(p
k)TApj,

(pk, e0)A =
n−1∑
j=0

δj(p
k, pj)A,

= δk(p
k, pk)A, (by A-orthogonality)

⇒ δk =
(pk, e0)A
(pk, pk)A

.

Continuing the calculation with the generic ek = e0 −
∑k−1

i=0 αip
i (because the iteration is

xk+1 = xk + αkp
k) gives

δk =
(pk, e0)A
(pk, pk)A

=
(pk, ek +

∑k−1
i=0 αip

i)A
(pk, pk)A

=
(pk, ek)A
(pk, pk)A

,

by the A-orthogonality of the pi’s. But recall that

αk =
(pk)T rk

(pk, pk)A

=
(pk)TAek

(pk, pk)A
, since rk = Aek

=
(pk, ek)A
(pk, pk)A

.

Hence, αk = δk, so conjugate gradient zeroes out one component of the error at each itera-
tion:

ei = e0 −
i−1∑
j=0

αjp
j =

(
n−1∑
j=0

δjp
j −

i−1∑
j=0

δjp
j

)
=

n−1∑
j=i

δjp
j. (9.33)

After n steps, all the components of e0 will be gone.

Theorem 9.3.1. With our established notation, rj ⊥ span {p0, . . . , pj−1} = span {r0, . . . , rj−1}
.

Proof. � Equation (9.33) gives ei =
∑n−1

j=i δjp
j.

� Re-write to replace indices: ej =
∑n−1

k=j δkp
k.

98

Steepest Descent Conjugate Gradient

Figure 9.26: Comparison of steepest descent and conjugate gradient methods in R2.

� Left multiply by (pi)TA:

(pi)TAej =
n−1∑
k=j

δk(p
i)TApk

(pi)T rj =︸︷︷︸
rj=Aej

n−1∑
k=j

δk(p
i, pk)A (9.34)

� Equation (9.34) holds for all i.
� Our desired result is for i < j. For such i, by the A-orthogonality of the pks, equation
becomes (pi)T rj = 0.

Consider using conjugate gradient on the following example:[
3 2
2 6

]
x =

[
2
−8

]
starting from

x0 =

[
−2
−2

]
.

Conjugate gradient converges in 2 steps since we are in R2 as shown in Figure 9.26.

If you are interested in more details, our discussion borrowed heavily from Shewchuk’s notes
on conjugate gradient.

99

100

10 Lecture 10: Least Squares Problems

Outline

1. Least Squares
2. Method 1: Normal Equations
3. Method 2: QR Factorization

(a) QR for Least Squares

This lecture discusses solving problems with more equations (rows) than variables. The
problem is solved “as well as possible” since the system is over-determined (more equations
than necessary). That is, least squares problems solve the equation Ax = b, where A is taller
that it is wide. We end up with a solution that is over-determined.

10.1 Least Squares

Least squares problems were first posed and formulated by Gauss around 1795 (though
published first by Legendre 1805). The method of least squares is often found in applications,
e.g., finding a line or polynomial to fit a large set of data/observations.

Mathematically, we want to minimize the magnitude of the residual vector r = b −
Ax.

min
x∈Rn
∥b− Ax∥22, for A ∈ Rm×n, b ∈ Rm,m ≥ n.

In general, we can not achieve r = 0. Notice this differs from minimizing (square, non-
singular) linear systems, for which we use:

F (x) =
1

2
xTAx− xT b.

A geometric interpretation of least squares problems is as follows. We find the closest point
to b on the y = Ax hyperplane. In other words, find the “projection” of b onto the range of
A. Notice that residual vector r is orthogonal to y (see figure below).

101

Theorem 10.1. Let A ∈ Rm×n, b ∈ Rm,m ≥ n, and A full rank. A vector x ∈ Rn minimizes

∥r∥22 = ∥b− Ax∥22

if and only if r ⊥ range(A).

Task: Collin to add the proof of Theorem 10.1 into the Lecture Notes.

Theorem 10.1 implies

rTA = 0⃗

⇔ AT r = 0⃗

⇔ AT (b− Ax) = 0⃗

⇔ AT b = ATAx.

High Level View of Where We Are Going

� By end of Lecture 10: existence of Q, computed from A.
� By end of Lecture 11: existence of R, computed from A,Q.
� Not proved in Slides / Notes yet: uniqueness of Q,R, given A.

– A Brief Note From Wikipedia: If A has full rank, then the QR factorization is
unique, provided we require the diagonal elements of R to be positive.

The equations ATAx = AT b are known as the normal equations. Solving the normal
equations (which is a square system) gives the least squares solution. This motivates the
definition of the pseudo-inverse.

Definition 10.1. A+ = (ATA)−1AT is called the (Moore-Penrose) pseudo-inverse of A.

The least squares solution satisfies

x = A+b = (ATA)−1AT b.

Fact: Any perturbation of x from this solution yields a higher residual norm. To see this

102

let x′ = x+ e, where x is the least squares solution and e is some perturbation. Then,

∥b− Ax′∥22
= (b− Ax′)T (b− Ax′),

= (b− Ax− Ae)T (b− Ax− Ae),

= (b− Ax)T (b− Ax)− 2(Ae)T (b− Ax) + (Ae)T (Ae),

= (b− Ax)T (b− Ax)− 2eTAT (b− Ax) + ∥Ae∥22,

= ∥b− Ax∥22 + ∥Ae∥22 − 2eT
���������:0
(AT b− ATAx), (x is the LS soln)

⇒ ∥b− Ax′∥22 > ∥b− Ax∥22 for any e ̸= 0.

Thus, any other point x′ yields a larger residual, as seen geometrically below.

We will consider the following two solution strategies (for now):

1. Normal equations: Find and solve normal equations ATAx = AT b to find x (e.g., via
Cholesky).
(a) See Theorem 10.1.1 for an explanation of why if A has full rank, then ATA is

SPD, so that it has a Cholesky factor.
2. QR Factorization: Construct a factorization A = QR (with certain properties) and

instead solve Rx = QT b for x.

Theorem 10.1.1. If A has full rank, then ATA is SPD.

Proof. � Symmetry is clear, because (ATA)T = AT (AT)T = ATA.
� For any column vector, v, we have vTATAv = (Av)T (Av) = (Av,Av) ≥ 0, therefore
ATA is positive semi-definite.

� In particular, if A has full rank, then ATA is positive definite.

103

10.2 Method 1: Normal Equations

In this subsection we will look at the normal equations solution. In the next subsection will
discuss QR factorizations.

We solve ATAx = AT b directly by computing the Cholesky factorization ATA = GGT , with
G lower triangular. Then, we compute x by forward/backward solves. The complexity of
this approach has flops to form ATA ≈ mn2 and GGT ≈ 1

3
n3. Therefore, the total flops

≈ mn2 + 1
3
n3.

Consider the application of polynomial fitting with least squares. We want to find a poly-
nomial of the form:

p(t) = a0 + a1t+ a2t
2 + · · ·+ an−1t

n−1,

that best fits the set of 2D points given by (ti, yi) for i = 1, . . . ,m, with m > n. Each data
point yields one equation. The coefficients a0, a1, . . . , an−1 are the unknowns. The matrix
problem is 

1 t1 t21 · · · tn−11

1 t2 t22 · · · tn−12
...

...
... · · · ...

1 tm t2m · · · tn−1m




a0
a1
...

an−1

 =


y1
y2
...
ym

 .

As a concrete example we are given the set of (ti, yi) points {(0, 0), (0,−1), (2, 1), (2, 0), (4, 2), (4, 1)}.
We want to find the best fit line y = a0 + a1t using normal equations. We have,

A =


1 0
1 0
1 2
1 2
1 4
1 4

 , x =

[
a0
a1

]
, b =


0
−1
1
0
2
1

 .

To obtain the solution we construct

ATA =

[
6 12
12 40

]
, and AT b =

[
3
14

]
.

Solving ATAx = AT b gives

a0 = −1

2
,

a1 =
1

2
, so

p = −1

2
+

1

2
t.

The figure below shows the points and the line of best fit given by p.

104

10.3 Method 2: QR Factorization

The previous subsection discussed the first method for solving least squares problems, i.e.,
via the normal equations. This lecture discusses a second approach using QR factorization.
The QR factorization decomposes a matrix A into an orthogonal matrix Q and a triangular
matrix R.

Some properties of orthogonal matrices are discussed next. They are needed to give a
theorem for the existence of a QR factorization at the end of this section.

Definition 10.2. A square matrix Q is orthogonal if Q−1 = QT (i.e., QTQ = QQT = I).

Theorem 10.2. If Q is orthogonal, then ∥Qx∥2 = ∥x∥2.

Proof. ∥Qx∥2 = (Qx)T (Qx) = xTQTQx = xTx = ∥x∥2.

Remark: Permutation matrices, first seen during matrix re-ordering, are examples of
orthogonal matrices.

Note that left multiplication by an orthogonal Q corresponds to{
rotation if det(Q) = 1,

reflection if det(Q) = −1.

Definition 10.3. A set of vectors are orthonormal if they are mutually orthogonal and
each vector has norm = 1.

For example, the columns of an orthogonal matrix are orthonormal. The columns of an
n× n orthogonal matrix, Q, form an orthonormal basis of Rn. Be careful not to confuse the
following:

1. orthogonal vectors need not be unit length,
2. an orthogonal matrix has columns that are orthonormal.

The following theorem gives the existence of a QR factorization.

105

Theorem 10.3. Suppose A ∈ Rm×n has full rank. Then there exists a unique matrix
Q̂ ∈ Rm×n satisfying Q̂T Q̂ = I (i.e., with orthonormal columns) and a unique upper tri-
angular matrix R̂ ∈ Rn×n with positive diagonals (ri,i > 0) such that A = Q̂R̂.

Note that because Q̂ is non-square in general here, it is not necessarily an orthogonal ma-
trix.

Example: Let

Q̂ =

 1√
2
− 1√

2
1√
2

1√
2

0 0

 ,

so that

Q̂T =

[
1√
2

1√
2

0

− 1√
2

1√
2

0

]
.

Then

Q̂Q̂T =

 1√
2
− 1√

2
1√
2

1√
2

0 0

[1√
2

1√
2

0

− 1√
2

1√
2

0

]

=

1 0 0
0 1 0
0 0 0


̸= I3.

10.3.1 QR for Least Squares

Consider the least squares problem:

min
x
∥Ax− b∥2.

We will try to make ∥Ax− b∥2 as small as possible by re-expressing Ax− b in terms of the
QR factorization, and adjusting x. Only x can be adjusted because A and b are defined
(given) by the problem.

106

Consider separating Ax− b into orthogonal components using Q̂R̂. That is, using Q̂ and R̂,
split Ax− b into two orthogonal components:

Ax− b = Q̂R̂x− b,

= Q̂R̂x− (Q̂Q̂T − Q̂Q̂T︸ ︷︷ ︸
=0

+I)b,

= Q̂(R̂x− Q̂T b)︸ ︷︷ ︸− (I − Q̂Q̂T)b︸ ︷︷ ︸ .
We claim that these two vectors are orthogonal. These vectors are orthogonal if and only if
their inner product is zero. We can verify that the inner product is zero as follows:[

Q̂(R̂x− Q̂T b)
]T [

(I − Q̂Q̂T)b
]

= (R̂x− Q̂T b)T Q̂T (I − Q̂Q̂T)b,

= (R̂x− Q̂T b)T (Q̂T − Q̂T Q̂︸ ︷︷ ︸
=I

Q̂T)b, (Q̂’s columns orthonormal)

= (R̂x− Q̂T b)T (Q̂T − Q̂T︸ ︷︷ ︸
=0

)b = 0.

Note that since Q̂ is not square, Q̂Q̂T ̸= I, but Q̂T Q̂ = I.

The goal of the least squares problem is to minimize the size of r = b − Ax. We can only
modify x to make the vector r = b− Ax as short as possible. By Pythagoras we have

∥Ax− b∥2 = ∥Q̂(R̂x− Q̂T b)∥2 + ∥(I − Q̂Q̂T)b∥2,
= ∥(R̂x− Q̂T b)∥2︸ ︷︷ ︸

select x to minimize

+ ∥(I − Q̂Q̂T)b∥2︸ ︷︷ ︸
can’t adjust

.

The orthogonal components can be visualized as shown in the figure below. The norm is
minimized when the first term is 0. So the least squares solution is

R̂x = Q̂T b ⇒ x = R̂−1Q̂T b.

We can also relate this solution to pseudoinverse and normal equations as follows.

107

Pseudoinverse
The pseudoinverse written in terms of QR factors is

A+ = (ATA)−1AT

= ((Q̂R̂)T (Q̂R̂))−1(Q̂R̂)T

= (R̂T Q̂T Q̂︸ ︷︷ ︸
=I

R̂)−1(R̂T Q̂T)

= (R̂T R̂)−1R̂T Q̂T

= R̂−1 (R̂T)−1R̂T︸ ︷︷ ︸
=I

Q̂T

= R̂−1Q̂T .

Normal Equations
Then consider the normal equations

ATAx = AT b

⇔ (R̂T Q̂T)(Q̂R̂)x = (R̂T Q̂T)b,

R̂T R̂x = (R̂T Q̂T)b,

R̂x = Q̂T b,

x = R̂−1Q̂T b.

Two Sizes of QR Factorization So far we have only seen the reduced (“economy
size”) version of QR factorization. Specifically, A = Q̂R̂ where Q̂ ∈ Rm×n and R̂ ∈ Rn×n.
The “full” version of QR adds extra orthonormal columns to make Q square (and thus makes
Q a true orthogonal matrix). Extra zero rows in R are also added to match the dimensions
(See below).

A full QR factorization is achieved by appending m− n additional orthonormal columns to
Q. First define

Q̂m−n ≡
[
qn+1 qn+2 · · · qm

]
.

Then we have [
A
]
m×n =

[
Q̂|Q̂m−n

]
m×m

[
R̂
0

]
m×n

,

which is often useful for theoretical purposes.

Computing the (reduced) QR Factorization To compute the reduced QR factorization
we let

A =

 | | |
a1 a2 . . . an
| | |

 ,

where ai are the columns of A. The columns span the column space of the matrix. So we
want to find a set of orthonormal column vectors, {qi} spanning the same space. That is,
span{q1, q2, . . . , qj} = span{a1, a2, . . . , aj}, for j = 1, . . . , n.

108

For this we can use Gram-Schmidt orthogonalization. We already saw a variant of Gram-
Schmidt earlier for constructing A-orthogonal search directions in conjugate gradient. The
same general idea is used here:

� use columns of A as proposed vectors to be orthogonalized into Q,
� build each new vector qj by orthogonalizing aj with respect to all previous q vectors,
{q1, q2, . . . , qj−1}, and then normalize qj.

The entries for R can be calculated once we know Q by considering the general form | | |
a1 a2 . . . an
| | |

 =

 | | |
q1 q2 . . . qn
| | |


r11 . . . r1n

. . .
...

rnn

 .

Written out fully, this is

a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q1 + r23q2 + r33q3,

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

The next lecture will discuss this approach (using Gram-Schmidt) of computing the QR
factorization in more detail.

109

11 Lecture 11: Gram-Schmidt Orthogonalization

Outline

1. QR factorization via Gram-Schmidt
(a) Orthonormalization for Q
(b) Upper Triangular Matrix R

2. Modified Gram-Schmidt
3. Complexity of Gram-Schmidt

We have already seen a variation of Gram-Schmidt orthogonalization in constructing A-
orthogonal search directions for the conjugate gradient method (see Lecture 09). The same
general idea applies here to construct the QR factorization:

� Use columns of A as proposed vectors to be orthogonalized into Q.
� Build each new vector qj by orthogonalizing aj with respect to all previous q vectors,
{ q1, q2, . . . , qj−1 }, and then normalizing it.

11.1 QR factorization via Gram-Schmidt

11.1.1 Orthonormalization for Q

For a vector aj, we can orthogonalize it against all previous vectors qi for i = 1, . . . , j − 1,
using

vj = aj − (qT1 aj)q1 − (qT2 aj)q2 − · · · − (qTj−1aj)qj−1. (11.35)

This removes aj’s components in the orthogonal directions constructed so far. We can then
directly normalize, giving us

qj =
vj
∥vj∥2

.

Equation (11.35) was derived previously in Lecture 09 assuming the form vj = aj+
∑j−1

i=1 βiqi.
To recap, the coefficients βj were then derived as follows. Since we want vj to be orthogonal
to all previous qi’s, we get the equation (for some 1 ≤ k ≤ j − 1):

0 = qTk vj,

= qTk aj +

j−1∑
i=1

βi(q
T
k qi),

= qTk aj + βk(q
T
k qk).

Since qTk qk = 1 we have that βk = −qTk aj giving the equation in (11.35)

vj = aj −
j−1∑
i=1

(qTi aj)qi.

Consider the following example in 2D. We are given a2 and the (previous) unit vector q1.
We want to find q2 that is orthonormal to q1.

110

We apply the following steps:

1. Orthogonalize using v2 = a2 − (qT1 a2)q1,
2. Normalize to get q2 =

v2
∥v2∥2 .

So we have that

q2 =
a2 − (qT1 a2)q1
∥a2 − (qT1 a2)q1∥2

.

But what are the entries of R in our QR factorization?

11.1.2 Upper Triangular Matrix R

To get the entries of R consider the general form of the QR factorization | | |
a1 a2 . . . an
| | |

 =

 | | |
q1 q2 . . . qn
| | |


r11 . . . r1n

. . .
...

rnn

 .

Written out componentwise we have

a1 = r11q1 ⇒ q1 =
a1
r11

,

a2 = r12q1 + r22q2 ⇒ q2 =
a2−r12q1

r22
,

a3 = r13q1 + r23q2 + r33q3 ⇒ q3 =
a3−r13q1−r23q2

r33
,

...
...

an = r1nq1 + r2nq2 + . . .+ rnnqn ⇒ qn =
an−

∑n−1
i=1 rinqi
rnn

.

Now we compare the qi above with the result from our Gram-Schmidt orthogonalization
expressions. For the 2D example above we have

Gram-Schmidt: q2 =
a2 − (qT1 a2)q1
∥a2 − (qT1 a2)q1∥2

,

Factorization: q2 =
a2 − r12q1

r22
.

Gram-Schmidt: q2 =
a2 − (qT1 a2)q1
∥a2 − (qT1 a2)q1∥2

,

Factorization: q2 =
a2 − r12q1

r22
.

111

So

r12 = qT1 a2, and

r22 = ∥a2 − (qT1 a2)q1∥2.

In general (higher dimensions), the entries of R can be written as

rij = (qTi aj),

rjj =

∥∥∥∥∥aj −
j−1∑
i=1

rijqi

∥∥∥∥∥
2

.

1. The off-diagonal entries rij correspond to the lengths of components of aj in previous
directions q1, . . . , qj−1.

2. The diagonal entries rjj correspond to the length of vj, required to normalize to qj.

The classic Gram-Schmidt (CGS) algorithm for QR factorization is given in Algorithm 11.1.2.
Note that the classic Gram-Schmidt is numerically unstable. That is, it is sensitive to round
off error (and can even yield non-orthogonal q’s).

Algorithm 11.8 : Gram-Schmidt Algorithm (Classic)

for j = 1, 2, . . . , n
vj = aj ▷ get next column
for i = 1, 2, . . . , j − 1 ▷ Orthogonalize

rij = qTi aj
vj = vj − rijqi

end for
rjj = ∥vj∥2 ▷ Normalize
qj = vj/rjj

end for

11.2 Modified Gram-Schmidt

We can alter the classic Gram-Schmidt algorithm in the inner loop for better numerical
stability.

112

Algorithm 11.9 : QR Factorization With Modified Gram-Schmidt Algorithm

1: for j = 1 : n
2: vj = aj ▷ Get next column
3: end for
4: for j = 1 : n
5: rjj = ∥vj∥2
6: qj =

(
1
rjj

)
vj ▷ Normalize

7: for k = j + 1 : n ▷ Orthogonalize
8: rjk = qTj vk
9: vk = vk − rjkqj
10: end for
11: end for

The modified Gram-Schmidt algorithm (see Algorithm 11.2) gives an identical result as the
classic Gram-Schmidt algorithm in exact arithmetic.

In floating point arithmetic, the modified Algorithm 11.2 is more numerically stable than
the classic Algorithm 11.1.2.

Think carefully about these pseudocodes.

1. In classical Gram-Schmidt, we take each vector, one at a time, and make it orthogonal
to all previous vectors.

2. In modified Gram-Schmidt, we take each vector, and modify all forthcoming vectors
to be orthogonal to it.

Once you argue this way, it is clear that both methods are performing the same operations,
and are mathematically equivalent. But, importantly, modified Gram-Schmidt suffers from
round-off instability to a significantly lesser degree. This can be explained, in part, from the
formulas for Gram-Schmidt, without QR-factorization:

CGS : vk = ak −
(
qTj ak

)
qj, and

MGS : vk = vk −
(
qTj vk

)
qj.

If an error is made in computing q2 in CGS, so that qT1 q2 = δ is small, but non-zero, this will
not be corrected for in any of the computations that follow:

v3 = a3 − (qT1 a3)q1 − (qT2 a3)q2,

qT2 v3 = qT2 a3 − qT2 (q
T
1 a3)q1 − qT2 (q

T
2 a3)q2,

= qT2 a3 − (qT1 a3) q
T
2 q1︸︷︷︸
=δ

−(qT2 a3) qT2 q2︸︷︷︸
=1

,

= qT2 a3 − (qT1 a3)δ − (qT2 a3)

= −(qT1 a3)δ.

113

Similarly,

v3 = a3 − (qT1 a3)q1 − (qT2 a3)q2,

qT1 v3 = qT1 a3 − qT1 (q
T
1 a3)q1 − qT1 (q

T
2 a3)q2,

= qT1 a3 − (qT1 a3) q
T
1 q1︸︷︷︸
=1

−(qT2 a3) qT1 q2︸︷︷︸
=δ

,

= qT1 a3 − (qT1 a3)− (qT2 a3)δ

= −(qT2 a3)δ.

We see that v3 is not orthogonal to either of q1 or q2.

On the other hand, assume the same for MGS: qT1 q2 = δ is small, but non-zero. Let’s examine
how the third vector v3 changes:

Initially, v
(0)
3 = a3.

� j = 1, k = 3

r13 = qT1 v
(0)
3

v
(1)
3 = v

(0)
3 − r13q1

= v
(0)
3 − (qT1 v

(0)
3)q1

� j = 2, k = 3

r23 = qT2 v
(1)
3

v
(2)
3 = v

(1)
3 − r23q2

= v
(1)
3 − (qT2 v

(1)
3)q2

Hence we obtain

qT2 v
(2)
3 = qT2 v

(1)
3 − qT2 (q

T
2 v

(1)
3)q2

= qT2 v
(1)
3 − (qT2 v

(1)
3) qT2 q2︸︷︷︸

=1

= 0 (11.36)

qT1 v
(2)
3 = qT1 v

(1)
3 − qT1 (q

T
2 v

(1)
3)q2

= qT1 v
(1)
3 − (qT2 v

(1)
3) qT1 q2︸︷︷︸

=δ

= qT1 v
(1)
3 − qT2 v

(1)
3 δ (11.37)

114

Computing each of the terms on line (11.37) gives

qT1 v
(1)
3 = qT1 [v

(0)
3 − (qT1 v

(0)
3)q1]

= qT1 v
(0)
3 − qT1 (q

T
1 v

(0)
3)q1]

= qT1 v
(0)
3 − (qT1 v

(0)
3) qT1 q1︸︷︷︸

=1

= qT1 v
(0)
3 − qT1 v

(0)
3

= 0, and

qT2 v
(1)
3 = qT2 [v

(0)
3 − (qT1 v

(0)
3)q1]

= qT2 v
(0)
3 − qT2 (q

T
1 v

(0)
3)q1

= qT2 v
(0)
3 − (qT1 v

(0)
3) qT2 q1︸︷︷︸

=δ

= qT2 v
(0)
3 − (qT1 v

(0)
3)δ

Putting it all together gives

qT1 v
(2)
3 = qT1 v

(1)
3 − qT2 v

(1)
3 δ

= 0− [qT2 v
(0)
3 − (qT1 v

(0)
3)δ]δ

= −qT2 v
(0)
3 δ + (qT1 v

(0)
3)δ2 (11.38)

� Recall that v3 = v
(2)
3 is the final form of the third vector (before normalization).

� Let’s check orthogonality, assuming no more errors are made.
� First for q2:

qT2 v
(2)
3 = 0, from equation (11.36).

So, we perserve orthogonality to q2.
� Second for q1:

qT1 v
(2)
3 = −qT2 v

(0)
3 δ + (qT1 v

(0)
3)δ2, from equation (11.38).

Summarized Comparison of CGS versus MGS

Inner Product CGS MGS
qT2 v3 −(qT1 a3)δ 0

qT1 v3 −(qT2 a3)δ −qT2 v
(0)
3 δ + (qT1 v

(0)
3)δ2

=︸︷︷︸
v
(0)
3 =a3

−qT2 a3δ + qT1 a3δ
2

Remarks:

1. Since δ is very small, therefore δ2 is much smaller.
2. Because of the opposite signs of the terms involved, it is likely, but not guaranteed,

that | − qT2 a3δ + qT1 a3δ
2| ≤ | − (qT2 a3)δ|.

115

3. The error in qT1 v3 is likely no worse than in CGS, but we have eliminated the errors in
qT2 v3, an improvement.

(Reference: https://www.math.uci.edu/~ttrogdon/105A/html/Lecture23.html)

Explanation for the Computation of rjk
Note that the Modified Gram-Schmidt algorithm uses rjk = qTj vk, where one might instead
expect rjk = qTj ak. Here I will prove that these two choices must always yield identical
results. Use the notation of the algorithm throughout the explanation.

� Let 1 ≤ j ≤ n be arbitrary.
� Let j + 1 ≤ k ≤ n be arbitrary.
� I claim that qTj vk = qTj ak.
� Note that vk is updated once per (outer) j-loop.
� Since that update takes place AFTER the computation of the qTj vk inner product, at
the time of that computation,

vk = ak −
j−1∑
ℓ=1

rℓkqℓ, so that

qTj vk = qTj

[
ak −

j−1∑
ℓ=1

rℓkqℓ

]

= qTj ak −
j−1∑
ℓ=1

rℓk qTj qℓ︸︷︷︸
=0, since ℓ<j

= qTj ak, as claimed.

The example below computes the QR factorization of a random matrix with hugely varying
magnitudes of rii (diagonal) entries.

The blue points are the result using the classic Gram-Schmidt algorithm. It runs out of
accuracy at around

√
Emachine. The orange points are the result with the modified Gram-

Schmidt algorithm. The modified algorithm runs out of accuracy at around Emachine. For
more information see Lecture 9, Experiment 2 in Trefethen & Bau.

116

https://www.math.uci.edu/~ttrogdon/105A/html/Lecture23.html

Another exercise is to find the QR factorization of

A =

1 2 0
0 1 1
1 0 1


via Gram-Schmidt orthogonalization.

We will solve this problem using Classic Gram Schmidt, then again with modified Gram-
Schmidt. Since we are computing exactly, we will obtain the same answer both ways.

Classical Gram-Schmidt

� j = 1

v1 = a1

=

10
1


r11 = ∥v1∥2

=

∥∥∥∥∥∥
10
1

∥∥∥∥∥∥
2

=
√
2

q1 =

(
1

r11

)
v1

=
1√
2

10
1


=

√
2

2

10
1


� j = 2

v2 = a2

=

21
0



117

– i = 1

r12 = qT1 a2

=

√
2

2

[
1 0 1

] 21
0


=
√
2

v2 = v2 − r12q1

=

21
0

−√2
√2

2

10
1


=

21
0

−
10
1


=

 1
1
−1



r22 = ∥v2∥2

=

∥∥∥∥∥∥
 1

1
−1

∥∥∥∥∥∥
2

=
√
3

q2 =

(
1

r22

)
v2

=
1√
3

 1
1
−1


=

√
3

3

 1
1
−1


� j = 3

v3 = a3

=

01
1



118

– i = 1

r13 = qT1 a3

=

√
2

2

[
1 0 1

] 01
1


=

√
2

2
v3 = v3 − r13q1

=

01
1

− √2
2

√2
2

10
1


=

01
1

− 1

2

10
1


=

1

2

−12
1


– i = 2

r23 = qT2 a3

=

√
3

3

[
1 1 −1

] 01
1


= 0

v3 = v3 − r23q2

=
1

2

−12
1



119

r33 = ∥v3∥2

=

∥∥∥∥∥∥12
−12

1

∥∥∥∥∥∥
2

=

√
6

2

q3 =

(
1

r33

)
v3

=
2√
6

1

2

−12
1


=

√
6

6

−12
1


To sum up, the solution to this problem is

Q =


√
2
2

√
3
3
−
√
6
6

0
√
3
3

√
6
3√

2
2
−
√
3
3

√
6
6


R =


√
2
√
2

√
2
2

0
√
3 0

0 0
√
6
2

 .

Modified Gram-Schmidt We begin by initializing:

v1 = a1

=

10
1


v2 = a2

=

21
0


v3 = a3

=

01
1


Then we compute

120

� j = 1

r11 = ∥v1∥2

=

∥∥∥∥∥∥
10
1

∥∥∥∥∥∥
2

=
√
2

q1 =

(
1

r11

)
v1

=
1√
2

10
1


=

√
2

2

10
1


– k = 2

r12 = qT1 v2

=

√
2

2

[
1 0 1

] 21
0


=
√
2

v2 = v2 − r12q1

=

21
0

−√2
√2

2

10
1


=

21
0

−
10
1


=

 1
1
−1



121

– k = 3

r13 = qT1 v3

=

√
2

2

[
1 0 1

] 01
1


=

√
2

2
v3 = v3 − r13q1

=

01
1

− √2
2

√2
2

10
1


=

01
1

− 1

2

10
1


=

1

2

−12
1


� j = 2

r22 = ∥v2∥2

=

∥∥∥∥∥∥
 1

1
−1

∥∥∥∥∥∥
2

=
√
3

q2 =

(
1

r22

)
v2

=
1√
3

 1
1
−1


=

√
3

3

 1
1
−1



122

– k = 3

r23 = qT2 v3

=

√
3

3

[
1 1 −1

]1

2

−12
1


= 0

v3 = v3 − r23q2

=
1

2

−12
1


� j = 3

r33 = ∥v3∥2

=

∥∥∥∥∥∥12
−12

1

∥∥∥∥∥∥
2

=

√
6

2

q3 =

(
1

r33

)
v3

=
2√
6

1

2

−12
1


=

√
6

6

−12
1


To sum up, the solution to this problem is

Q =


√
2
2

√
3
3
−
√
6
6

0
√
3
3

√
6
3√

2
2
−
√
3
3

√
6
6


R =


√
2
√
2

√
2
2

0
√
3 0

0 0
√
6
2

 .

11.3 Complexity of Gram-Schmidt

The inner i-loop involves

� rij = qTi aj (CGS) or qTi vj (MGS)⇒ m (scalar) multiplications and m−1 additions for
the inner products,

123

� vj = vj−rijqi (CGS) or vj = vj−rjkqj (MGS)⇒ mmultiplications, andm subtractions.

Hence, the flops per inner loop ≈ 4m. An approximation of the total flops is therefore

n∑
j=1

j−1∑
i=1

4m = 4m
n∑

j=1

(j − 1),

≈ 4m
n∑

j=1

= 4m
n(n+ 1)

2
,

≈ 2mn2.

If the matrix is square (m = n), flops(Gram-Schmidt) = 2n3 + O(n2) ≈ 3 × flops(LU). We
could use QR factorization to solve linear systems also, but at a cost 3× greater than LU
factorization. As was pointed out earlier, if A is square and A = QR, then solving Ax = b
for x is equivalent to solving Rx = QT b for x.

124

12 Lecture 12: Householder QR factorizations

Outline

1. Householder Triangularization
2. Householder QR Factorization Algorithm
3. Example: Householder Reflector
4. Example: QR Factorization via Householder

Recall that in this course we consider three common algorithms for QR factorization:

1. Gram-Schmidt orthogonalization,
2. Householder reflections,
3. Givens rotations.

Gram-Schmidt orthogonalization was discussed in Lecture 11. This lecture will introduce
the idea of Householder reflections for building the QR factorization. A final approach of
Givens rotations will be presented in the next lecture.

� Note that the QR factorization we produce here is similar, but not identical, to the
one we produced last time:
1. R is m× n and Q is square, instead of the other way around, and
2. Negative entries can occur on R’s “diagonal”.

12.1 Householder Triangularization

Note that Gram-Schmidt orthogonalization is a “triangular orthogonalization” process. In
matrix form, Gram-Schmidt can be written as right-multiplication by triangular matrices
that make the columns of A orthonormal (see end of Lecture 8 of Trefethen & Bau)

AR1R2 · · ·Rn︸ ︷︷ ︸
R̂−1

= Q̂.

Householder reflections instead provide an “orthogonal triangularization” process. The
matrix A is made to be triangular (R) by applying orthogonal matrices Qj, i.e.,

Qn · · ·Q2Q1︸ ︷︷ ︸
Q−1

A = R.

Hence, the premise of Householder reflections (aka triangularization) is to find the orthogonal
matrices Qj ∈ Rm×m. This method is similar to LU -factorization, as each Qj will zero the
lower entries of column j.


× × ×
× × ×
× × ×
× × ×

 Q1−→


× × ×
0 × ×
0 × ×
0 × ×

 Q2−→


× × ×
0 × ×
0 0 ×
0 0 ×

 Q3−→


× × ×
0 × ×
0 0 ×
0 0 0


A Q1A Q2Q1A Q3Q2Q1A

125

We will build orthogonal matrices of the following form

Qj =

[]
I 0 } j − 1 rows, already done,
0 F } m− (j − 1) rows, still to be done.

where F is the Householder reflector matrix. F reflects a vector x across a (specific)
hyperplane H to produce a vector along the axis. See Figure 12.27 for a visualization of
applying the Householder reflector (note e1 = [1, 0, . . . , 0]T).

Figure 12.27: Applying the Householder reflector F to the vector x, which reflects x across
the hyperplane H.

x+ v− = −∥x∥e1 ⇔ v− = −∥x∥e1 − x.

After reflection, the output vector has the same magnitude as x, and is parallel to e1. It
depends on both of x and e1.

At step j, we start with e1, and reflect onto the subspace spanned by {ei, . . . ej}.

We find the Householder reflector matrix F , to perform the reflection, as follows. Sup-
pose

x =


×
×
...
×

 ,

Find F such that

Fx =


∥x∥
0
...
0

 = ∥x∥e1.

The F reflects x across the hyperplane H orthogonal to v = ∥x∥e1 − x. That is because
we want to produce a new vector of the same length as x, aligned with the axis e1 (so all
but the first entry are zeros).

126

The orthogonal projection P of x onto the hyperplane H (orthogonal to the vector v)
is

Px = x−

((
v

∥v∥

)T

x

)
v

∥v∥
= x− v

(
vTx

vTv

)
.

Note that this orthogonal projection P is similar to the steps in Gram-Schmidt orthogonal-
ization. Idea: Subtract out the component of x along v. To reflect x across H (instead of
projecting onto H) we must go twice as far in the same direction (see Figure 12.27)

Fx = x− 2v

(
vTx

vTv

)
.

Therefore, the Householder reflector F is given by

F = I − 2

(
vvT

vTv

)
where v = ∥x∥e1 − x.

Remark that we could instead reflect to the point along the axis with a negative sign. That
is, reflect to −∥x∥e1 instead of ∥x∥e1, which gives

Fx =


−∥x∥
0
...
0

 = −∥x∥e1.

Either choice zeros out the desired entries of the active column. We just get a different v as
shown in Figure 12.28.

Figure 12.28: The two alternative Householder reflections.

Reflecting to either of ∥x∥ei or −∥x∥ei will zero the remainder of the desired column.

Which Householder reflector F should we choose? For numerical stability, we want the F
that reflects x farther away from itself. Thus,

127

� if x1 > 0 we choose the negative one, −∥x∥e1,
� if x1 < 0 we choose the positive one, ∥x∥e1.

This gives v = −sign(x1)∥x∥e1 − x, or more simply (because only direction is important,
and either choice gives the same F) sign(x1)∥x∥e1 + x. This choice of v avoids subtracting
nearby quantities, which can introduce cancellation error. Therefore, choosing the F that
reflects x farther away is more numerically stable.

Alternative Derivation

We will show an alternate derivation of Householder triangularization. Consider a reflection
operator F = I−2vvT

vT v
for an arbitrary vector v. We want to find v such that Fx ∈ span{e1}

to zero the lower entries in column 1. Let Fx ∈ span{e1}, in other words,

Fx = x− 2vvTx

vTv
= x−

[
2(vTx)

(vTv)

]
v ∈ span{e1}.

Observe v ∈ span{e1, x} by construction, since Fx ∈ span{e1}. Write Fx = c2e1 for some
scalar c2. Hence,

c2e1 = x− c1v

⇒ v = ĉ1x+ ĉ2e1,

(for scalars ĉ1 and ĉ2) which means v ∈ span{e1, x}.

Now let v̂ = x + αe1 for some scalar α. (Note the length of v does not matter; only its
direction matters.) We will write v for v̂ from now on. Then,

vTx = (x+ αe1)
Tx

= xTx+ αeT1 x

= xTx+ α x(1)︸︷︷︸
scalar

and

vTv = (x+ αe1)
T (x+ αe1)

= xTx+ 2αx(1) + α2.

128

Plugging into Fx to determine α, we have

Fx = x− 2

(
vTx

vTv

)
(x+ αe1),

=

(
1− 2vTx

vTv

)
x−

(
2α

vTx

vTv

)
e1,

=

(
1−

2(xTx+ αx(1))

xTx+ 2αx(1) + α2

)
x−

(
2α

vTx

vTv

)
e1,

=

(
xTx+����2αx(1) + α2 − 2xTx−����2αx(1)

xTx+ 2αx(1) + α2

)
x−

(
2α

vTx

vTv

)
e1,

=

(
α2 − xTx

xTx+ 2αx(1) + α2

)
x︸ ︷︷ ︸

must be 0

−
(
2α

vTx

vTv

)
e1.

Since Fx ∈ span{e1} the first term must be zero, so α2−xTx = 0⇒ α = ±∥x∥. Hence,

v = x± ∥x∥e1 and Fx = ∓∥x∥e1,

as we saw last time.

12.2 Householder QR Factorization Algorithm

Algorithm 12.10 gives the QR factorization of A via Householder triangularization.

Algorithm 12.10 : Householder QR factorization algorithm

for k = 1, 2, . . . , n
x = A(k : m, k) ▷ Get current column
vk = sign(x1)∥x∥e1 + x ▷ Form the reflection vector
vk =

vk
∥vk∥

▷ Normalize
for j = k, k + 1, . . . , n ▷ Apply F to active lower-right block

A(k : m, j) = A(k : m, j)− 2vk(v
T
k A(k : m, j))

end for
end for

The notation used follows Matlab, i.e., A(k : m, j) = jth column of A from row k to row
m. The algorithm converts A into R (upper “triangular”) using Householder reflections F .
Note that one could further vectorize the inner loop (more efficient in Matlab) to the matrix
operation

A(k : m, k : n) = A(k : m, k : n)− 2vk(v
T
k A(k : m, k : n)).

Algorithm 12.10 does not construct Q, only the vectors vk. Why is this not a problem in
practice? We often do not need Q but just the products QT b or Qx (e.g., for least squares

129

we solve Rx = QT b). Since

QT = QnQn−1 . . . Q2Q1,

Q = QT
1Q

T
2 . . . QT

n−1Q
T
n ,

we can efficiently (in O(mn) flops) compute QT b or Qx using just the vk’s to apply the
appropriate reflections (see Algorithms 12.11 and 12.12). Note the parentheses, we
compute v(vT b) rather than (vvT)b to avoid forming the matrix vvT .

Algorithm 12.11 : Implicit QT b

for k = 1, 2, . . . , n
b(k : m) = b(k : m)− 2vk

(
vTk b(k : m)

)
end for

Algorithm 12.12 : Implicit Qx

for k = n, n− 1, . . . , 1
x(k : m) = x(k : m)− 2vk

(
vTk x(k : m)

)
end for

Explicitly building the matrix Q may sometimes be necessary. So how could we use these
implicit products to recover Q itself? We compute the product QI = Q by applying Q to the
columns of the identity matrix I (e1, e2, . . .), i.e., q1 = Qe1, q2 = Qe2, For the reduced
QR factorization

A = Q̂R̂ =

[]
m×n

[]
n×n .

So Q̂ is given by just the first n columns of I

Q̂ =

 | | |
Qe1 Qe2 · · · Qen
| | |

 .

Complexity of Householder-Based QR Work is dominated by inner loop

A(k : m, j) = A(k : m, j)− 2vk
(
vTk A(k : m, j)

)
.

Tallying the cost gives:

� vTk A(k : m, j) ≈ 2(m− k + 1) flops (dot product),
� 2vk

(
vTk A(k : m, j)

)
≈ (m− k + 1) flops (scalar multiply),

� A(k : m, j)− 2vk
(
vTk A(k : m, j)

)
≈ (m− k + 1) flops (subtraction).

So it approximately costs 4(m− k + 1) flops per inner step, which is done (n− k + 1) times
(j-loop). This totals to 4(m− k + 1)(n− k + 1) flops per outer iteration. The outer k-loop
runs from 1 to n, which means the total flops can be approximated by

n∑
k=1

4(m− k + 1)(n− k + 1) ≈ 2mn2 − 2

3
m3.

Note that this does not include forming Q.

For m = n (square), flops(Householder) ≈ 4
3
n3 = 2× flops(LU). Recall from Lecture 11 that

Gram-Schmidt orthogonalization cost ≈ 3 × flops(LU). So Householder triangularization is
faster than Gram-Schmidt orthogonalization.

130

12.3 Example: Householder Reflector

Given x =

12
2

 find the Householder reflector F and the product Fx.

Answer: We see that ∥x∥ =
√
12 + 22 + 22 = 3. Therefore

v = ±∥x∥e1 + x = ±3

10
0

+

12
2

 =

42
2

 or

−22
2

 .

We choose v = sign(x1) ∥x∥ e1 + x = 3

10
0

+

12
2

 =

42
2

, for its numerical stability.

vvT

vTv
=


1[

4 2 2
] 42

2




42
2

 [4 2 2
]

=

(
1

24

)16 8 8
8 4 4
8 4 4


=

(
1

6

)4 2 2
2 1 1
2 1 1


F = I − 2

(
vvT

vTv

)

=

1 0 0
0 1 0
0 0 1

− 1

3

4 2 2
2 1 1
2 1 1


=

1

3

−1 −2 −2−2 2 −1
−2 −1 2

 , so that

Fx =
1

3

−1 −2 −2−2 2 −1
−2 −1 2

12
2


=

−30
0

 .

Since we are computing exactly, we are not forced to consider numerical stability. We re-

131

compute everything with the other possible choice, namely v =

−22
2

.

vvT

vTv
=


1[

−2 2 2
] −22

2




−22

2

 [−2 2 2
]

=

(
1

12

) 4 −4 −4
−4 4 4
−4 4 4


=

(
1

3

) 1 −1 −1
−1 1 1
−1 1 1


F = I − 2

(
vvT

vTv

)

=

1 0 0
0 1 0
0 0 1

− 2

3

 1 −1 −1
−1 1 1
−1 1 1


=

1

3

1 2 2
2 1 −2
2 −2 1

 , so that

Fx =
1

3

1 2 2
2 1 −2
2 −2 1

12
2


=

30
0

 .

12.4 Example: QR Factorization via Householder

Perform QR factorization using Householder reflections on the matrix

A =

1 −42 3
2 2



Step 1: x =

12
2

 , v− =

42
2

 , v+ =

 2
−2
−2


(sign of v is irrelevant, since we only use vvT and vTv.) Ordinarily we would use v−, but
let’s use v+ for variety.

132

Then F1 =

1
3

2
3

2
3

2
3

1
3

−2
3

2
3
−2
3

1
3

 = Q1 and (by multiplying) Q1A =

3 2
0 −3
0 −4


Step 2: x =

[
−3
−4

]
and so

v = x+ sign(x1)∥x∥e1

=

[
−3
−4

]
+ (−1) · 5 ·

[
1
0

]
=

[
−8
−4

]
which lets us calculate

F2 = I − 2vvT

vTv

=

[
1 0
0 1

]
− 2

80

[
64 32
32 16

]
=

[
1 0
0 1

]
− 1

5

[
8 4
4 2

]
=

[−3
5

−4
5

−4
5

3
5

]

Therefore Q2 =

1 0 0
0
0 F2

 =

1 0 0
0 −3

5
−4
5

0 −4
5

3
5


So Q2(Q1A) = R =

3 2
0 5
0 0

 (by multiplying)

Therefore
A = Q−11 Q−12 R

= QT
1Q

T
2R By orthogonality

= Q1Q2R by symmetry

= QR

Orthogonality does not imply symmetry, but those Q’s were constructed to be symmetric,
I − 2vvT

vT v
.

Q = Q1Q2 =

1
3

2
3

2
3

2
3

1
3

−2
3

2
3
−2
3

1
3

1 0 0
0 −3

5
−4
5

0 −4
5

3
5


=

1

15

 5 −14 −2
10 5 −10
10 2 11



133

13 Lecture 13: Givens Rotations

Outline

1. Givens Rotations
2. Hessenberg via Givens
3. Least Squares: Normal Equations vs QR

In this lecture we discuss the last of the three common algorithms for QR factorization:

1. Gram-Schmidt orthogonalization,
2. Householder reflections,
3. Givens rotations.

13.1 Givens Rotations

Rotation Matrices in 2D

First consider rotating a vector in two dimensions. This can be described as multiplication
with a 2× 2 matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

That is, a = Rb rotates the vector b counterclockwise by θ as shown in the figure be-
low.

The columns of R(θ) are orthonormal: using trigonometric identities we have cos2 θ+sin2 θ =
1 and cos θ sin θ − cos θ sin θ = 0. Hence it is easy to see that R(θ) is an orthogonal ma-
trix. The transpose of the matrix R(θ) gives a clockwise rotation (i.e., the inverse opera-
tion).

As an example, if we want to rotate a vector by θ = π
4
(45 degrees) the rotation matrix

is

R =

[
1√
2
− 1√

2
1√
2

1√
2

]
.

If b =

[
1
0

]
then, a = Rb =

[
1√
2
1√
2

]
as shown in the figure below.

134

A Givens rotation zeros individual elements “selectively” by an orthogonal matrix opera-
tion that performs rotation in the (i,k)-plane only.

Givens rotation matrices have the form

G(i, k, θ)T =





1
. . .

c −s row(i)
1

. . .

1
s c row(k)

. . .

1
col(i) col(k)

where c = cos θ, s = sin θ.

� The matrix mostly resembles the identity except for two rows/columns describing a
rotation.

� G(i, k, θ) is always an orthogonal matrix.
� We choose i, k so that left multiplication by G(i, k, θ) uses the entry on row i, to zero
out the entry on row k, in the column in which we are working.

Explanation of the Following Setup

� Let x, y be vectors in Rm.
� Both x and y will be columns of the matrix we are about to process:

– x is the input column, and
– y is the output column.

� It is implicit that we have already chosen a column on which to work. This provides
us with our input, x, and shows what y we are pursuing.

Consider y = G(i, k, θ)Tx, then

yj =


cxi − sxk for j = i

sxi + cxk for j = k

xj for j ̸= i, k

135

To force yk = 0 we must let

c =
xi√

x2
i + x2

k

, and

s = − xk√
x2
i + x2

k

.

Exercise: confirm yk = 0 with the above values of c and s by substituting into the definition
of yj. Note that the value of θ itself is not needed when computing y = G(i, k, θ)Tx. Also,
note that computing the product G(i, k, θ)TA affects only row(i) and row(k).

Solution to Exercise: Recall that yk (i.e. yj, where j = k) is defined by

yk = sxi + cxk.

So we compute

yk = sxi + cxk

=

(
− xk√

x2
i + x2

k

)
xi +

(
xi√

x2
i + x2

k

)
xk

= − xixk√
x2
i + x2

k

+
xixk√
x2
i + x2

k

=
xixk − xixk√

x2
i + x2

k

= 0.

Givens QR Factorization Process

To perform a QR factorization we zero entries one at a time, working upwards along columns.
For example, the process performed on a 4× 3 matrix is

× × ×
× × ×
× × ×
× × ×

 G(3,4)T−−−−→


× × ×
× × ×
× × ×
0 × ×

 G(2,3)T−−−−→


× × ×
× × ×
0 × ×
0 × ×

 G(1,2)T−−−−→


× × ×
0 × ×
0 × ×
0 × ×

 G(3,4)T−−−−→


× × ×
0 × ×
0 × ×
0 0 ×

 G(2,3)T−−−−→


× × ×
0 × ×
0 0 ×
0 0 ×

 G(3,4)T−−−−→ R

Remarks on Matrix Dimensions:

1. A is m× n, for some m ≥ n.
2. The Gis are all m×m.

� We are, step-by-step, turning A into R.

136

� The output will be a reduced QR factorization: R is m× n; Q is m×m, orthogonal.
� We can recover Q later, from the G’s.
� Each rotation is computed based on the current matrix, not based on the original
matrix.

Explanation:

1. x is a column of our coefficient matrix.
2. y is the same column of the coefficient matrix, after we have applied a Givens rotation

to zero out the kth entry.
3. We construct G(i, k)T , to zero out the kth entry of x. This is why we set yk = 0 to

determine what c and s have to be.
4. Think of G(i, k)T as the matrix which carries out the needed rotation in the (i, k)-plane

to zero out the kth entry of x.
5. As pointed out above, G(i, k)T affects only rows i and k.
6. Also as pointed out above, to perform a QR factorization we zero entries one at a time,

working upwards along columns.
7. This should now explain the indices in the diagrams:

(a) The first line works upwards through column 1:
i. Perform the Givens rotation on rows 3 and 4 that zeroes out the (4,1) entry

of the matrix (G(3, 4)T).
ii. Perform the Givens rotation on rows 2 and 3 that zeroes out the (3,1) entry

of the matrix (G(2, 3)T).
iii. Perform the Givens rotation on rows 1 and 2 that zeroes out the (2,1) entry

of the matrix (G(1, 2)T).
(b) The second line then does the analogous steps to create the needed zeroes in

columns 2 and 3.
(c) Note that G(3, 4)T on line 2 is not the same as G(3, 4)T on line 1: they are

operating on different columns. The column number is implicit (because we always
know which column we are processing). The (i, k) indices refer to the row entries
in the current column.

To obtain Q we let GT
ℓ denote the ℓth Givens rotation. We can assemble Q from

GT
ℓ G

T
ℓ−1 · · ·GT

2G
T
1A = R,

⇒ A = G1G2 · · ·Gℓ−1GℓR, (Gi orthogonal)

⇒ Q = G1G2 · · ·Gℓ−1Gℓ, (because A = QR).

Quick Reminder About Dimensions:

1. A is m× n, for some m ≥ n.
2. The Gis are all m×m.

Remark: We do not require R’s “diagonal” entries to be positive. So this QR factorization
might not agree with the unique QR factorization described in Lecture 10.

137

Example: Let A =

1 −10 2
1 1

 . We will compute a QR factorization of A, via Givens

rotations.

Column #1

� There is no need to zero out the (2, 1) entry.
� Compute G(1, 3)T to use the (1, 1) entry to zero out the (3, 1) entry.

c =
x1√

x2
1 + x2

3

=
1√

12 + 12

=
1√
2

=

√
2

2
, and

s = − x3√
x2
1 + x2

3

= − 1√
12 + 12

= − 1√
2

= −
√
2

2
.

Hence we get

G(1, 3)T =


√
2
2

0
√
2
2

0 1 0

−
√
2
2

0
√
2
2

 .

We check that left mulitplying A by G(1, 3)T has the desired effect.
√
2
2

0
√
2
2

0 1 0

−
√
2
2

0
√
2
2

1 −10 2
1 1

 =

√2 0
0 2

0
√
2

 .

This completes Column #1.

Column #2

� Compute G(2, 3)T to use the (2, 2) entry to zero out the (3, 2) entry.

138

c =
x2√

x2
2 + x2

3

=
2√

22 +
√
2
2

=
2√
6

=
2
√
6

6

=

√
6

3
, and

s = − x3√
x2
2 + x2

3

= −
√
2√

22 +
√
2
2

= −
√
2√
6

= − 1√
3

= −
√
3

3
.

Hence we get

G(2, 3)T =

1 0 0

0
√
6
3

√
3
3

0 −
√
3
3

√
6
3

 .

We check that left mulitplying A by G(2, 3)T has the desired effect.1 0 0

0
√
6
3

√
3
3

0 −
√
3
3

√
6
3

√2 0
0 2

0
√
2

 =

√2 0

0
√
6

0 0

 .

This completes Column #2.

This gives immediately that R =

√2 0

0
√
6

0 0

.

139

We compute Q as the product of the G’s in the reverse order:

Q =


√
2
2

0 −
√
2
2

0 1 0√
2
2

0
√
2
2

1 0 0

0
√
6
3
−
√
3
3

0
√
3
3

√
6
3


=


√
2
2
−
√
6
6
−
√
3
3

0
√
6
3
−
√
3
3√

2
2

√
6
6

√
3
3

 .

One can verify that

QR =


√
2
2
−
√
6
6
−
√
3
3

0
√
6
3
−
√
3
3√

2
2

√
6
6

√
3
3


√2 0

0
√
6

0 0

 =

1 −10 2
1 1

 = A.

In terms of complexity, flops(Givens QR) ≈ 3mn2 − n3 = 1.5 × flops(Householder QR). So
why bother with this the Givens QR if it is slower then Householder QR? The reason is
because it is more flexible than Householder QR. Givens QR factorization can be useful
when only a few elements need to be eliminated.

13.2 Hessenberg via Givens

For example, consider an upper Hessenberg matrix, which has nonzeros only above the
first subdiagonal. Performing QR factorization on an upper Hessenberg matrix involves the
following

× × × × ×
× × × × ×
× × × ×
× × ×
× ×

 G(1,2)T−−−−→


× × × × ×
0 × × × ×
× × × ×
× × ×
× ×

 G(2,3)T−−−−→


× × × × ×
0 × × × ×

0 × × ×
× × ×
× ×

 G(3,4)T−−−−→


× × × × ×
0 × × × ×

0 × × ×
0 × ×
× ×

 G(4,5)T−−−−→


× × × × ×
0 × × × ×

0 × × ×
0 × ×

0 ×


That is, we only need to zero out the first subdiagonal entries at a cost of ≈ 3n2 flops. This
is less than if one used Householder QR factorization, which operates columnwise on all the
entries below the main diagonal.

13.3 Least Squares: Normal Equations vs QR

We have now seen three ways to compute the QR factorization (Gram-Schmidt, Householder,
Givens). Recall that, as explained in Lecture 12, the shape of the output of the Householder

140

QR factorization is different from the shapes of the other outputs. However, the steps to
solving the least square problem are the same after the A = QR is computed. Therefore,
the two main approaches to solving least squares problems are using:

� the normal equations or
� the QR factorization.

QR factorization can also be used to (exactly) solve the system Ax = b, when A is square.
In this case, we solve Rx = QT b.

The drawback of using normal equations (ATAx = AT b) when solving for the least squares
problems is that is it poorly conditioned! Recall that the accuracy of a (square) linear system
solution is dictated by the condition number κ(A). However, with the normal equations the
accuracy depends on κ(ATA) instead of κ(A), which is often much worse. For example,

A =

[
1 + 10−8 −1
−1 1

]
⇒ κ(A) = 4× 108,

ATA =

[
2 + 10−8 + 10−16 −2− 10−8

−2− 10−8 2

]
⇒ κ(A) ≈ 16× 1016.

The QR factorization approach to least squares involves solving the system Rx = QT b.
Therefore, the solution’s accuracy depends on κ(R) because

κ2(A) = κ2(QR) = κ2(R),

since ∥Q∥2 = 1 : Q has orthonormal columns.

Remark: For this to make sense, R must be square.

The main point is, we prefer the QR approach, despite its extra cost, because of the potential
to encounter ill-conditioned problems (for which the normal equations roughly square the
condition number). However, the normal equations approach can be used if it is known that
A is well-conditioned.

141

14 Lecture 14: Eigenvalues / Eigenvectors

Outline

1. Eigenvalue Problem Definitions
2. Traditional Eigenvalue Problem Review
3. Solving Eigenvalue Problems (Näıve Approach)
4. Eigenvalue/Eigenvector Review Example
5. Rayleigh quotient
6. Power Iteration

So far we have discussed solving linear systems and least-squares problems of the form
Ax = b. We now consider eigenvalue problems, which have the form

Ax = λx.

In this lecture, we begin with some definitions and theory about eigenvalue problems. Much
of the beginning of this lecture should be review from previous courses.

14.1 Eigenvalue Problem Definitions

Definition 14.1. Let A ∈ Rn×n. A non-zero vector x ∈ Rn is a (right) eigenvector with
corresponding eigenvalue λ ∈ R if

Ax = λx.

Note that if x is an eigenvector then so is ax, for a ̸= 0. That is, eigenvectors are unique
only up to a multiplicative constant.

Definition 14.2. The set of A’s eigenvalues is called its spectrum, denoted Λ(A).

Definition 14.3. The eigendecomposition of a diagonalizable matrix, A, is

A = XΛX−1

where

X =

 | | |
x1 x2 · · · xn

| | |

 , Λ =


λ1

λ2

. . .

λn

 ,

and Axi = λixi for i = 1, 2, . . . , n.

The columns of X in the eigendecomposition are eigenvectors of A. The diagonal matrix
Λ has entries that are the eigenvalues corresponding to each eigenvector. Equivalently, the
eigendecomposition can be written as AX = XΛ

 A

 | | |
x1 x2 · · · xn

| | |

 =

 | | |
x1 x2 · · · xn

| | |



λ1

λ2

. . .

λn

 .

142

This form corresponds to the form of the eigenvalue problem Ax = λx, but stacks all
eigenvalue/eigenvector pairs (xi, λi) in one matrix equation (for i = 1, . . . , n).

Fact: Real symmetric matrices are diagonalizable by orthogonal matrices.

Proof that AX = XΛ: We reverse the usual subscript order in the X matrix: the first
index is the column; the second is the row.

XΛ =

 | | |
x1 x2 · · · xn

| | |



λ1

λ2

. . .

λn



=


λ1x11 λ2x21 · · · λnxn1

λ1x12 λ2x22 · · · λnxn2
...

...
λ1x1n λ2x2n · · · λnxnn


=

[
λ1x1 | · · · | λnxn

]
=

[
Ax1 | · · · | Axn

]
= A

[
x1 | · · · | xn

]
= AX,

as claimed.

14.2 Traditional Eigenvalue Problem Review

In introductory linear algebra courses you would normally compute (by hand) eigenvalues
and eigenvectors using the characteristic polynomial.

Definition 14.4. The characteristic polynomial of A, denoted pA(z), is the degree n
(monic) polynomial given by

pA(z) = det(zI − A).

Theorem 14.1. λ is an eigenvalue of A iff pA(λ) = 0.

Proof.

λ is an eigenvalue

⇔ (λI − A)x = 0 (for some x ̸= 0),

⇔ λI − A is singular,

⇔ det(λI − A) = 0.

143

The fundamental theorem of algebra tells us that the degree n polynomial pA(z) has
n (possibly complex) roots. So A has n (possibly complex) eigenvalues, given by the roots.
Therefore, we can write

pA(z) = (z − λ1)(z − λ2) . . . (z − λn).

Given an eigenvalue λ, the corresponding eigenvector(s) are given by solving (λI −A)x = 0
for x (i.e., the nullspace of λI − A.) We will see later why the choice of A will yield real
eigenvalues. Conversely, for every monic polynomial of degree n,

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

there always exists a matrix whose eigenvalues are roots of p(z). This matrix is called the
companion matrix

C =


0 −a0
1 0 −a1

1 0 −a2
.

...
1 −an−1

 .

The following definitions are concerned with the multiplicity of eigenvalues.

Definition 14.5. The algebraic multiplicity of λ is the number of times it appears as a
root of pA(z).

Definition 14.6. The geometric multiplicity of λ is the dimension of the nullspace of
the matrix λI − A.

Remarks:

1. Why geometric multiplicity cannot exceed algebraic multiplicity: The geometric mul-
tiplicity is the number of linearly independent vectors, and each vector is the solution
to one algebraic eigenvector equation, so there must be at least as much algebraic
multiplicity.

2. If algebraic multiplicity exceeds the geometric multiplicity then λ is a defective eigen-
value (See Lecture Notes examples).

3. The matrix A is then called a defective matrix.
4. This is important because only non-defective matrices have eigenvalue decompositions.

Multiplicity Example Consider the following example with

A =

2 2
2

 and B =

2 1
2 1

2

 .

The characteristic polynomial is pA(z) = (z − 2)3 for both matrices. Thus, all eigenvalues
are λ = 2 giving an algebraic multiplicity of 3. Now since

(2I − A) =

0 0 0
0 0 0
0 0 0

 ,

144

any 3 linearly independent vectors span the null space. Therefore, the geometric multiplicity
is 3 and hence A is non-defective. For B we have that

(2I −B) =

0 1 0
0 0 1
0 0 0

 .

Since only x = [1, 0, 0]T is in the null space, B is defective (geometric multiplicity = 1).

Another Defective Eigenvalue Example:

� Let A =

[
0 1
0 0

]
.

� It is clear that A has one eigenvalue, namely 0, with algebraic multiplicity 2.
� The eigenspace for eigenvalue λ = 0 is the null space of A itself (since 0I − A = A).

� This nullspace is clearly span

{[
1
0

]}
:

A

[
x
y

]
=

[
0 1
0 0

] [
x
y

]
=

[
y
0

]
,

so that A kills

[
1
0

]
, and sends

[
0
1

]
to

[
1
0

]
.

� This shows that the geometric multiplicity of eigenvalue 0 is 1.

14.3 Solving Eigenvalue Problems (Näıve Approach)

Sadly, no closed form solutions exist for degree 5 or higher polynomials as the roots cannot
be found exactly using a finite number of rational operations. Therefore we must use approx-
imations to find their eigenvalues. This suggests the application of iterative methods.

1. Form the characteristic polynomial, pA(z).
2. Use the numerical root-finding method to extract the approximate roots/eigenvalues.

(e.g bisection, Newton, etc.)

The problem with this approach, is that root-finding tends to be ill-conditioned, i.e. a small
change or error in the input drastically changes the roots. More effective strategies based on
finding eigendecompositions exist. We will explore some of these methods in the following
lectures.

Some results about bounding eigenvalues based on the Gershgorin circle theorem will be
useful later.

Theorem 14.2. (Gershgorin circle theorem) Let A be any square matrix. The eigenvalues
λ of A are located in the union of the n disks (on the complex plane) given by

|λ− aii| ≤
∑
j ̸=i

|aij|.

Disks are denoted by D(aii, Ri), where Ri =
∑

j ̸=i |aij|.

145

Proof. Consider (λ, x) such that Ax = λx and x ̸= 0. Now scale x such that ∥x∥∞ = 1 = xi

for some i. Then

λxi = (Ax)i =
n∑

j=1

aijxj = aiixi +
∑
j ̸=i

aijxj.

Rearranging and taking the absolute value of both sides gives

|(λ− aii)xi| =

∣∣∣∣∣∑
j ̸=i

aijxj

∣∣∣∣∣ .
Applying the triangle inequality, we have

|(λ− aii)| |xi|︸︷︷︸
=1

≤
∑
j ̸=i

|aijxj|,

|λ− aii| ≤
∑
j ̸=i

|aij|, since |xj| ≤ 1.

The Gershgorin circle theorem essentially says the following. If off-diagonal entries in a
row are small, then the corresponding eigenvalue must be close to the diagonal entry. For
example, with

A =

[
1 2
1 −1

]
, which has Λ(A) =

{√
3,−
√
3
}
.

The figure below shows the Gershgorin disks D(aii,
∑

j ̸=i |aij|) for this example.

For this example we have Disk 1 centered at (1,0) with radius 2 or D(1,2). There is also disk
2 centered at (-1,0) with radius 1 or D(-1,1). Note that complex eigenvalues will give circles
centred off the real axis.

146

As an exercise, find the Gershgorin disks for

A =

5 2 1
2 4 −1
1 −1 2

 .

Can we determine any of the eigenvalues exactly for A? What if A was a diagonal matrix,
could the eigenvalues be determined exactly?

14.4 Eigenvalue/Eigenvector Review Example

We present an example that reviews computing the eigenvalues and eigenvectors using the
characteristic polynomial. In this example we find the eigenvalues and eigenvectors for the
matrix

A =

1 0 0
2 −1 2
4 −4 5

 .

We solve det(λI − A) = 0 for λ’s. The matrix λI − A is

λI − A =

λ− 1 0 0
−2 λ+ 1 −2
4 −4 λ− 5

 .

So the determinant is

pA(λ) = det(λI − A)

= (λ− 1)((λ+ 1)(λ− 5)− (−2)(4)),
= (λ− 1)(λ2 − 4λ+ 3),

= (λ− 1)(λ− 1)(λ− 3).

Therefore, Λ(A) = {1, 3} where λ = 1 has algebraic multiplicity of 2.

Now we find the eigenvectors, first we start with when λ = 3

(3I − A)x = 0

⇒

 2 0 0
−2 4 −2
−4 4 −2

x =

00
0

 .

Hence, we have

x1 = 0,

⇒
[
4 −2
4 −2

] [
x2

x3

]
=

[
0
0

]
,

⇒ 4x2 − 2x3 = 0,

⇒ x2 =
1

2
x3.

147

Thus, we can take

x1 =

01
2

 ,

for the eigenvector corresponding to λ = 3. Now we do the same for λ = 1

(I − A)x = 0,

⇒

 0 0 0
−2 2 −2
−4 4 −4

x =

00
0

 ,

⇒ −x1 + x2 − x3 = 0.

So two linearly independent eigenvectors that span the nullspace are

x2 =

 1
0
−1

 and x3 =

11
0

 .

Assembling the eigendecomposition we get

AX =

1 0 0
2 −1 2
4 −4 5

0 1 1
1 0 1
2 −1 0


=

0 1 1
3 0 1
6 −1 0

 ,

and

XΛ =

0 1 1
1 0 1
2 −1 0

3 1
1


=

0 1 1
3 0 1
6 −1 0

 .

We will generally consider matrices A ∈ Rn×n that are symmetric (AT = A). Such matrices
have useful properties such as real eigenvalues, and a complete set of orthogonal eigenvec-
tors.

{λ1, λ2, . . . , λn}, {q1, q2, . . . , qn},with ∥qi∥ = 1.

Therefore,
A = QΛQT ,

where Q is orthogonal.

148

14.5 Rayleigh quotient

There are two quantities that must be solved for in eigenvalue problems: the eigenvalues
and the eigenvectors. Consider first computing eigenvalues, when given an approximation
to an eigenvector. An important quantity in this case is the Rayleigh quotient defined
next.

Definition 14.7. The Rayleigh quotient of a nonzero vector x with respect to A is

r(x) =
xTAx

xTx
.

Note that if x is an eigenvector of A then r(x) = λ since

xTAx

xTx
=

xT (λx)

xTx
= λ

xTx

xTx
= λ.

Otherwise, r(x) gives a scalar α that behaves “most like” an eigenvalue for a given vector
x.

We can justify the definition of the Rayliegh quotient in another way. Consider the following
single-variable, n× 1 least squares problem for an unknown α ∈ R:

min
α

∥∥∥∥∥∥∥∥∥


x1

x2
...
xn

α− Ax

∥∥∥∥∥∥∥∥∥
2

2

,

for given A and x. Constructing the normal equations for this problem, we have

(xTx)α = xT (Ax),

⇒ α =
xTAx

xTx
= r(x).

Consider this Rayleigh quotient example for the following matrix

A =

3 2 5
2 7 5
0 2 8

 ,

149

which has an eigenvector near v ≈ [0.7,−0.7, 0.3]T . The Rayleigh quotient gives

α =
vTAv

vTv

=


1[

7
10
− 7

10
3
10

]  7
10

− 7
10
3
10




[

7
10
− 7

10
3
10

] 3 2 5
2 7 5
0 2 8

 7
10

− 7
10
3
10



=
324

107
≈ 3.028,

which is close to the true value of λ = 3.

Computation of Eigenvalues and Eigenvectors:

|λI − A| =

∣∣∣∣∣∣
λ− 3 −2 −5
−2 λ− 7 −5
0 −2 λ− 8

∣∣∣∣∣∣
= (λ− 3)

∣∣∣∣ λ− 7 −5
−2 λ− 8

∣∣∣∣+ 2

∣∣∣∣ −2 −5
−2 λ− 8

∣∣∣∣
= (λ− 3) [(λ− 7)(λ− 8)− 10] + 2 [−2(λ− 8)− 10]

= (λ− 3)
[
λ2 − 15λ+ 56− 10

]
+ 2 [−2λ+ 16− 10]

= (λ− 3)
[
λ2 − 15λ+ 46

]
+ 2 [−2λ+ 6]

= (λ− 3)
[
λ2 − 15λ+ 46

]
+ (λ− 3) [−4]

= (λ− 3)
[
λ2 − 15λ+ 42

]︸ ︷︷ ︸
eigenvalues are not real

To compute the eigenvectors for eigenvalue λ = 3, we solve the homogeneous system defined

150

by

= A− 3I

=

0 2 5
2 4 5
0 2 5


∼

2 4 5 R1 ← R2

0 2 5 R2 ← R1

0 2 5


∼

2 4 5
0 2 5
0 0 0 R3 ← R3 −R2


∼

2 2 0 R1 ← R1 − 2R2

0 2 5
0 0 0


∼

1 1 0 R1 ← 1
2
R1

0 1 5
2

R2 ← 1
2
R2

0 0 0


which has the general solution t

 5
−5
2

 : t ∈ R

 ,

in other words,

 5
−5
2

 is an eigenvector for eigenvalue λ = 3.

From this example we see that if we had a reasonable guess at an eigenvector, the Rayleigh
quotient would be a useful approximation of the eigenvalue. In fact, the following theo-
rem (see Trefethen & Bau, Lecture 27) states that the approximation converges quadrati-
cally.

Theorem 14.3. Let qj be an eigenvector, and x ≈ qj. Then

r(x)− r(qj) = O(∥x− qj∥2) as x→ qj.

That is, as x→ qj, the error in the estimate of the eigenvalue λ decreases quadratically.

To summarize, eigenvalues are approximated using the Rayliegh quotient, given an approx-
imation of an eigenvector. We will now look at how to get an approximation of the eigen-
vectors. We will again use iterative approaches.

151

14.6 Power Iteration

The idea of the power iteration is simple. Start with an initial vector v(0), then repeatedly
multiply by A and normalize:

v(1) =
Av(0)

∥Av(0)∥
,

v(2) =
Av(1)

∥Av(1)∥
,

...

v(k) =
Av(k−1)

∥Av(k−1)∥
.

In the limit, the approximation v(k) approaches q1, where q1 is the eigenvector associated
with the largest magnitude eigenvalue, i.e.,

lim
k→∞

v(k) = q1.

Remarks:

1. Recall that A must be symmetric, so that there exists an orthogonal basis of eigenvec-
tors of A.

2. If we are lucky, and start with v(1) an eigenvector for eigenvalue λ, depending on
sign(λ), we will get back the same vector in 1 or possibly 2 steps.

Let’s prove that Power Iteration converges.

Proof. Let v(0) be an initial guess at the eigenvector q1. Also let {qi} denote the set of
orthonormal eigenvectors. Then we can write

v(0) = c1q1 + c2q2 + · · ·+ cnqn,

for some coefficients ci, because the eigenvectors span the space. Now since Aqi = λiqi we
can write

Av(0) = c1λ1q1 + c2λ2q2 + · · ·+ cnλnqn.

Further multiplication by A gives

Akv(0) = c1λ
k
1q1 + c2λ

k
2q2 + · · ·+ cnλ

k
nqn,

= λk
1

(
c1q1 + c2

(
λ2

λ1

)k

q2 + · · ·+ cn

(
λn

λ1

)k

qn

)
.

Now if we have |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| and c1 = qT1 v
(0) ̸= 0, then we observe the

following: (
λi

λ1

)k

→ 0 as k →∞, for i > 1.

152

Therefore Akv(0) ≈ c1λ
k
1q1, for large k. Since the eigenvectors are orthonormal, the scale

factor doesn’t matter. We can normalize to find q1 as

q1 →
Akv(0)

∥Akv(0)∥
as k →∞.

This is the eigenvector for the the largest magnitude eigenvalue. The next theorem summa-
rizes this result.

Theorem 14.4 (Power iteration convergence). Suppose |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|, and
qT1 v

(0) ̸= 0, where q1 is the eigenvector for λ1. Then

∥∥v(k) − (±q1)
∥∥ = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
, and |λ(k) − λ1| = O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
,

as k →∞.

This is linear convergence for the eigenvector with convergence factor is
∣∣∣λ2

λ1

∣∣∣ . Convergence
is therefore slow if |λ2| ≈ |λ1|, i.e., if the first two eigenvalues are close in magnitude. There
will be no convergence at all if |λ2| = |λ1|. Algorithm 14.13 gives pseudocode for the power
iteration.

Algorithm 14.13 Power Iteration Algorithm

v(0) = initial guess, s.t.
∥∥v(0)∥∥ = 1

for k = 1, 2, . . .
w = Av(k−1) ▷ Apply A
v(k) = w

∥w∥ ▷ Normalize

λ(k) =
(
v(k)
)T

Av(k) ▷ Rayleigh Quotient
end for

Remark: We have not said at all yet how to know which k we might need to make our
approximation close enough.

153

15 Lecture 15: Eigenvectors / Eigenvalues - Iterative

Methods

Outline

1. Inverse iteration
(a) Shifting Eigenvalues

2. Rayleigh Quotient iteration
3. Computational Complexity
4. QR Iteration

In this lecture we look at three iterative methods for finding eigenvalues of a matrix A:

� power iteration,
� inverse iteration,
� Rayleigh Quotient iteration,
� QR Iteration.

15.1 Inverse Iteration

With the power iteration we can only recover q1. What about other eigenvectors? We can
find another eigenvector using the same idea of repeatedly multiplying a starting vector by
a matrix. The inverse iteration can recover the eigenvector qn associated with the smallest
magnitude eigenvalue.

We are assuming throughout this lecture that A is invertible. This is OK, because our
assumption from last time, that A is SPD, carries on throughout this lecture.

The inverse iteration instead multiplies the starting vector v(0) by A−1. Note that if

Ax = λx, then

x = λA−1x, and so
1

λ
x = A−1x, assuming λ ̸= 0.

Therefore, the eigenvalues of A−1 are the reciprocals of the eigenvalues of A:

If Λ(A) = {λi}, then Λ(A−1) =

{
1

λi

}
.

We can therefore use this to find qn instead of q1. The proof follows the same steps as the
one for the power iteration.

154

Proof. We have that

A−1v(0) =
c1q1
λ1

+
c2q2
λ2

+ . . .+
cnqn
λn

A−kv(0) =
c1q1
(λ1)k

+
c2q2
(λ2)k

+ . . .+
cnqn
(λn)k

=
1

(λn)k

(
c1q1

(
λn

λ1

)k

+ c2q2

(
λn

λ2

)k

+ . . .+ cnqn

)
For large k,

A−kv(0) ≈ cn

(
1

λn

)k

qn.

Since the eigenvectors are orthonormal, the scale factor doesn’t matter. We can normalize
to find qn as

qn →
A−kv(0)

∥A−kv(0)∥
as k →∞.

This is the eigenvector for the the smallest magnitude eigenvalue.

Note we don’t actually form A−1; we instead solve a linear system. The inverse iteration
pseudocode is given in Algorithm 15.14.

Algorithm 15.14 (Basic) Inverse Iteration Algorithm

v(0) = initial guess, s.t.
∥∥v(0)∥∥ = 1

for k = 1, 2, . . .
w = A−1v(k−1) ▷ Actually, solve a linear system:

▷ Aw = v(k−1)

v(k) = w
∥w∥

λ(k) =
(
v(k)
)T

Av(k) ▷ Rayleigh Quotient
end for

15.1.1 Shifting Eigenvalues

The inverse iteration still only allows us compute one eigenvector, qn. “Shifting” the eigen-
values will let us find more. The idea is to use the fact that the smallest possible magnitude
eigenvalue is zero! We then try to modify A so the “target” eigenvector has the small-
est magnitude eigenvalue near zero. Therefore, the inverse iteration will find this target
eigenvector.

Consider B = A− µI, with µ ̸= 0 not an eigenvalue. If A’s eigenvalues/vectors are known,
what are B’s? Since

Ax = λx, we have

Ax− µx = λx− µx, and so

(A− µI)︸ ︷︷ ︸
B

x = (λ− µ)x.

155

Therefore, for the matrix B we have that the

1. eigenvectors are the same,
2. eigenvalues are shifted: λj − µ for λj ∈ Λ(A).

If we (somehow) expect λj close to µ, then λj − µ is the smallest magnitude eigenvalue of
B. We can then apply the inverse iteration to find its eigenvector qj. This is an advantage
of the inverse iteration over the power iteration. With the inverse iteration we can select the
specific eigenvector to recover, if we can choose µ close to the corresponding λj.

The inverse iteration has linear convergence behaviour, as stated in the next theorem.

Theorem 15.1 (Inverse iteration, with shifting, convergence). Suppose λJ is the closest
eigenvalue to µ and λL is the next closest, or |µ− λJ | < |µ− λL| ≤ |µ− λj|, for j ̸= J , and
qTJ v

(0) ̸= 0.

Then ∥∥v(k) − (±qJ)
∥∥ = O

(∣∣∣∣µ− λJ

µ− λL

∣∣∣∣k
)
, and |λ(k) − λJ | = O

(∣∣∣∣µ− λJ

µ− λL

∣∣∣∣2k
)
,

as k →∞.

So convergence depends on ratios of shifted eigenvalues rather than original eigenval-
ues.

If we unluckily choose v(0) orthogonal to qJ , so that qTJ v
(0) = 0, we will not get convergence;

instead we will get to max-iterations, without any answer. In this case, we can make a
different guess for v(0), and try again.

Algorithm 15.15 gives pseudocode for the shifted inverse iteration.

Algorithm 15.15 (Shifted) Inverse Iteration Algorithm

For given µ:
v(0) = initial guess, s.t.

∥∥v(0)∥∥ = 1
for k = 1, 2, . . .

Solve (A− µI)w = v(k−1)

v(k) = w
∥w∥

λ(k) =
(
v(k)
)T

Av(k) ▷ Rayleigh Quotient
end for

15.2 Rayleigh Quotient Iteration

The shifted inverse iteration needs an estimate of the eigenvalue λj to use for µ. Observe
the following:

1. Rayleigh quotient, r(v), estimates an eigenvalue given its approximate eigenvector
v (with quadratic convergence).

2. Inverse iteration estimates an eigenvector given the approximate eigenvalue µ (with
linear convergence, by Theorem [Inverse Iteration Convergence]).

156

The Rayleigh quotient iteration combines the two! It is the inverse iteration that updates µ
with the latest guess for λj at each step (see figure below).

Pseudocode for the Rayleigh quotient iteration is given in Algorithm 15.16.

Algorithm 15.16 Rayleigh Quotient Iteration Algorithm

v(0) = initial guess, s.t.
∥∥v(0)∥∥ = 1

λ(0) =
(
v(0)
)T

Av(0)
(
= r(v(0))

)
▷ Rayleigh Quotient

for k = 1, 2, . . .
Solve (A− λ(k−1)I)w = v(k−1) ▷ Using current λ estimate

▷ instead of fixed initial µ
v(k) = w

∥w∥

λ(k) =
(
v(k)
)T

Av(k) ▷ Rayleigh Quotient
end for

The convergence when combining the Rayliegh quotient and the inverse iteration (i.e.,
Rayliegh quotient iteration) is cubic.

Theorem 15.2 (Rayleigh quotient iteration convergence). RQI converges cubically for “al-
most all” starting vectors v(0). That is,∥∥v(k+1) − (±qJ)

∥∥ = O
(∥∥v(k) − (±qJ)

∥∥3) ,
and

|λ(k+1) − λJ | = O
(
|λ(k) − λJ |3

)
.

In practice, each iteration roughly triples the number of digits of accuracy.

Remarks:

1. Note that “almost all” includes at least qTJ v
(0) ̸= 0.

For example, consider this matrix:

A =

21 7 −1
5 7 7
4 −4 20

 , v(0) =

11
1

 .

157

The estimated eigenvalue with the Rayleigh quotient iteration is (λ(0) as initial guess)

λ(0) = 22 v(0) =
[
1 1 1

]T
,

λ(1) = 24.0802 v(1) =
[
0.8655 0.3619 0.3462

]T
,

λ(2) = 24.0013 v(2) =
[
−0.8169 −0.4079 −0.4077

]T
,

λ(3) = 24.00000017 v(3) =
[
0.8164 0.4082 0.4082

]T
.

Remarks:

1. It is weird, but correct (verify it for yourself), that we get the negative of the previous
and future eigenvectors, as v(2).

15.3 Computational Complexity

The following gives the operation counts for each of the iterative methods discussed so
far.

� Power iteration: each step involved Av(k−1) → O(n2) flops.
� Inverse iteration: each step requires solving (A − µI)w = v(k−1). This would be
O(n3) per step, however, we can pre-factor into L and U at the start (Recall, at cost:
2
3
n3 +O(n2)). Then we just do forward/backward solves for each iteration. Hence, we

have O(n2) flops per step.
� Rayleigh quotient iteration: Matrix A − λ(k−1)I changes at each step so we can
not pre-factor. Therefore, for RQI we have O(n3) flops per iteration.

� For all three of the methods, if A is tridiagonal the operation counts reduce to O(n)
flops.

15.4 QR Iteration

In the previous sections we looked at the power, inverse, and Rayleigh quotient iterations
for finding a single eigenvector/eigenvalue. Our next goal is to find more than one eigen-
vector/eigenvalue pair at a time.

First some definitions are needed.

Definition 15.1. Matrices A and B are similar if B = X−1AX for some non-singular X.

Definition 15.2. If X ∈ Rn×n is nonsingular, then A → X−1AX is called a similarity
transformation of A.

Theorem 15.3. If matrices A and B are similar, then they have the same characteristic
polynomial, and hence the same eigenvalues.

158

Proof.

pB(z) = det(zI −X−1AX),

= det(X−1(zI − A)X),

= det(X−1) det(zI − A) det(X),

= det(zI − A), since det(X−1) =
1

det(X)
,

= pA(z).

The idea is to apply a sequence of similarity transformations to A that converge to a diagonal
matrix, which has the eigenvalues on its diagonal. Recall that we are only considering real
symmetric matrices. To achieve this we will rely on the QR factorization again.

Fun Fact: In 2000, the QR Iteration was named one of the top ten most important algo-
rithms for science and engineering developed in the 20th century.

Given A(k−1), we factor it:

A(k−1) = Q(k)R(k), so that(
Q(k)

)T
A(k−1) = R(k).

Defining the next matrix, A(k), as R(k)Q(k), then yields a similarity transformation:

A(k) := R(k)Q(k)

=
(
Q(k)

)T
A(k−1)Q(k).

Therefore, A(k−1) and A(k) are similar. The QR Iteration simply repeats this process as
shown in Algorithm 15.17.

Algorithm 15.17 Basic QR Iteration

A(0) = A
for k = 1, 2, . . .

Q(k)R(k) = A(k−1) ▷ Compute QR factors of A(k−1)

A(k) = R(k)Q(k) ▷ “Recombine” in reverse order
end for

That’s it! We just compute the QR factorization of A(k−1) = QR and reverse the order
to construct A(k) = RQ. Eventually A(k) becomes diagonal, with the eigenvalues of A on
the diagonal. As A(k) converges to eigenvalues on the diagonal (we will justify why this
happens in the next lecture), the product of the Q(k)’s gives the set of eigenvectors. That is,
denoting

Q(k) = Q(1)Q(2) . . . Q(k),

159

we have the relation

A(k) =
(
Q(k)

)T
AQ(k).

Consider the following QR Iteration example with

A =

2 1 1
1 3 1
1 1 4

 = A(0).

One can verify (say using Matlab) that A is SPD.

We can use this Matlab code to compute the first three QR iterations:

A0 = [2 1 1 ; 1 3 1 ; 1 1 4] ;
[Q1 ,R1] = qr (A0) ;
A1 = R1 * Q1;
[Q2,R2] = qr (A1) ;
A2 = R2 * Q2;
[Q3,R3] = qr (A2) ;
A3 = R3 * Q3;

Our results are then

A(1) =

 4.1667 1.0954 −1.2671
1.0954 2.0000 0.0000
−1.2671 0.0000 2.8333

 ,

A(2) =

5.0909 0.1574 0.6232
0.1574 1.8618 −0.5470
0.6232 −0.5470 2.0473

 ,

A(3) =

 5.1987 −0.0759 −0.2073
−0.0759 2.1818 0.4966
−0.2073 0.4966 1.6195

 .

The true solution for this matrix is Λ(A) = {5.2143, 2.4608, 1.3249}. At each iteration above
the off-diagonals get closer to zero. Moreover, the diagonal entires are converging to the true
eigenvalues.

Remarks:

1. QR Iteration is mathematically sound, but not good computationally.
2. Do not implement this algorithm!
3. In the next lecture we will discuss an equivalent algorithm that is computationally

better.

160

16 Lecture 16: Eigenvectors / Eigenvalues - Practical

QR

Outline

1. Simultaneous (aka Block Power) Iteration
2. Simultaneous Iteration vs. QR Iteration

(a) Convergence of QR Iteration
(b) Eigenvalue Problems Recap

3. Reduction to Upper Hessenberg
4. Aside: The QR Iteration’s Inventors

16.1 Simultaneous (aka Block Power) Iteration

Motivating Question: How can a simple algorithm possibly work to give us all eigen-
vector/eigenvalue pairs? We first consider the simpler-to-analyze simultaneous iteration.
Then, we argue that the simultaneous iteration is equivalent to the QR Iteration.

Simultaneous iteration (aka block power iteration) is when we apply power iteration to sev-
eral vectors at once, while maintaining linear independence among them. Start with a set of
p orthonormal vectors, v

(0)
1 , v

(0)
2 , . . . , v

(0)
p . The matrix multiplication Akv

(0)
1 converges to q1 as

k →∞, where |λ1| is the largest (as seen in Lecture 14). However, span
{
Akv

(0)
1 , . . . , Akv

(0)
p

}
also converges to span {q1, q2, . . . , qp}, where λ1, . . . , λp are the p largest magnitude eigenval-
ues.

In matrix form, denote V (0) =
[
v
(0)
1 v

(0)
2 · · · v

(0)
p

]
and V (k) = AkV (0). With the multipli-

cation of AkV (0) all the vectors are ultimately converging to (multiples of) q1. This provides a
very ill-conditioned basis for the space of eigenvectors. The solution is to orthonormalize
the vectors at each step using QR factorization.

Remarks:

1. Our algorithm would fall apart if we ever had Akv
(0)
ℓ = Akv

(0)
m , where ℓ ̸= m. Why can

this not happen? This would mean that A maps different input vectors to the same
output vector. In other words, A is not of full rank.

Algorithm 16.18 gives pseudocode for the simultaneous iteration.

Algorithm 16.18 Simultaneous Iteration Algorithm

Pick initial Q̂(0) ∈ Rn×p with orthonormal columns
for k = 1, 2, . . .

Z(k) = AQ̂(k−1) ▷ (Block) power iteration step
Z(k) = Q̂(k)R̂(k) ▷ (Reduced) QR factorization

end for

The column spaces of Q̂(k) and Z(k) are the same, and they both are equal to the column

161

space of AkQ̂(0) (could prove by induction on k).

Similar to power iteration, the simultaneous iteration relies on two assumptions:

1. The leading p+ 1 eigenvalues are distinct in absolute value, i.e.

|λ1| > |λ2| > · · · > |λp| > |λp+1| ≥ |λp+2| ≥ · · · ≥ |λn|, and

2. all of the leading principal submatrices of (Q̂(0))TV (0) are non-singular (i.e. none of the
p-many initial guess vectors comprising V (0) is orthogonal to the subspace generated
by the first p-many eigenvectors).

With the above assumptions we have the following theorem that states that the simultaneous
iteration converges linearly.

Theorem 16.1 (Simultaneous iteration convergence). Suppose the simultaneous iteration is
applied and the preceding two assumptions are satisfied. Then as k →∞,∥∥∥q(k)j − (±qj)

∥∥∥ = O(ck), j = 1, 2, · · · , p,

where c = max1≤k≤p

∣∣∣λk+1

λk

∣∣∣ < 1.

Remarks:

1. Why we need ± in front of the true eigenvector, qj, here: We might converge to the
negative of the true eigenvector, which is fine. In this case, without ±, the convergence
would not work as stated.

2. The ratio
∣∣∣λk+1

λk

∣∣∣ is present for the same reasons as in Power Iteration.

16.2 Simultaneous Iteration vs. QR Iteration

In this section we show that the QR Iteration is identical to the simultaneous iteration when
Q̂(0) = I and p = n. Since the matrices are square, we will drop the hats on Q̂ and R̂. We
will use the following notation:

� Q(k) for Q’s from QR Iteration,
� Q(k) for Q’s from simultaneous iteration, i.e. Q(k) = Q(1)Q(2) · · ·Q(k), similar to the
Householder notation.

Consider the QR Iteration and simultaneous iteration algorithms shown side by side below.
We add steps (C) and (D) just for the upcoming proof of Theorem 16.2.

162

Algorithm 16.19 Simultaneous Iteration

Q(0) = I
for k = 1, 2, . . .

Z(k) = AQ(k−1) ▷ (A)

Z(k) = Q(k)R(k) ▷ (B)

A(k) =
(
Q(k)

)T
AQ(k) ▷ (C)

R(k) = R(k)R(k−1) · · ·R(1) ▷ (D)
end for

Algorithm 16.20 QR Iteration

A(0) = A
for k = 1, 2, . . .

A(k−1) = Q(k)R(k) ▷ (A)
A(k) = R(k)Q(k) ▷ (B)
Q(k) = Q(1)Q(2) · · ·Q(k) ▷ (C)

R(k) = R(k)R(k−1) · · ·R(1) ▷ (D)
end for

Q & A

1. In the Simultaneous Iteration algorithm, should line (A) be corrected to

Z(k) = A(k−1)Q(k−1)?

A: No. Q(k) changes at ever iteration. The original A is used to compute Z(k) from

Q(k−1). The given notation is correct.

2. Then why do we need A(k) here at all?
A: We don’t need it for the computation itself. We will need it later, for convergence
purposes.

Theorem 16.2. The QR Iteration and simultaneous iteration algorithms generate identical
sequences of matrices, R(k), Q(k), A(k) satisfying

Ak = Q(k)R(k), (QR factorization of kthpower of A)

A(k) =
(
Q(k)

)T
AQ(k). (Similarity transform of A)

Remark: As a consequence, convergence for simultaneous iteration will work the same as
it does for QR iteration.

Proof. We will show

(1) Ak = Q(k)R(k), and

(2) A(k) = (Q(k))TAQ(k),

separately for both algorithms by induction on k. Note the distinction that Ak is a matrix
exponential (Ak = AA · · ·A︸ ︷︷ ︸

k times

), whereas, A(k) is a matrix on the kth iteration.

The base case k = 0 is trivial.

(1) A0 = Q(0) = R(0) = I,

(2) A(0) = A.

163

Now, assuming the equations hold for k − 1, we will now show they hold for k.

Simultaneous Iteration:

(1)

Ak

= AAk−1,

= AQ(k−1)R(k−1), by inductive hyp. (1), Ak−1 = Q(k−1)R(k−1)

= Q(k)R(k)R(k−1), by alg. (A) and (B), AQ(k−1) = Z(k) = Q(k)R(k)

= Q(k)R(k). by def. R(k) as in alg. (D)

(2) holds directly by (C).

QR Iteration:

(1)

Ak

= AAk−1,

= AQ(k−1)R(k−1), by inductive hyp. (1)

= Q(k−1)A(k−1)R(k−1), by inductive hyp. (2), i.e., AQ(k−1) = Q(k−1)A(k−1)

= Q(k−1) (Q(k)R(k)
)
R(k−1), by alg. (A)

= Q(k)R(k). by def. Q,R(k) in (C), (D)

(2)

A(k)

= R(k)Q(k), by alg. (B)

=
(
Q(k)

)T
A(k−1)Q(k), by alg. (A), i.e., A(k−1) = Q(k)R(k)

=
(
Q(k)

)T (
Q(k−1)

)T
AQ(k−1)Q(k), by inductive hyp. (2)

=
(
Q(k)

)T
A
(
Q(k)

)
. by def. Q(k) in (C)

Therefore the two algorithms yield the same matrix sequences for R(k), Q(k) and A(k).

16.2.1 Convergence of QR Iteration

Observe that Ak = Q(k)R(k) implies the QR Iteration is computing QR factors of Ak, i.e.,

an orthonormal basis of Ak. Also, A(k) =
(
Q(k)

)T
AQ(k) implies that diagonal entries of

A(k) are the Rayleigh quotients for column vectors in Q(k). Recall the Rayleigh quotient

is r(x) = xTAx
xT x

. As the columns of Q(k) approach eigenvectors, these Rayleigh quotients
approach the corresponding eigenvalues.

164

What about off-diagonal entries of A(k)? That is, with i ̸= j

A
(k)
ij =

(
qi

(k)
)T

Aqj
(k),

where qi
(k), qj

(k) are columns of Q(k). As qi
(k), qj

(k) converge to (orthonormal) eigenvectors,
qi, qj, then

A
(k)
ij ≈ qTi Aqj = qi(λqj) ≈ 0, for i ̸= j.

Hence, A(k) converges to a diagonal matrix.

Theorem 16.3 (QR Iteration convergence). Assume |λ1| > |λ2| > · · · |λn| and the cor-
responding eigenvector matrix Q has nonsingular leading principal submatrices. Then, as
k →∞, A(k) converges linearly to diag(λ1, λ2, . . . , λn) with constant

C = max
k

∣∣∣∣λk+1

λk

∣∣∣∣ .
The matrix Q(k) also converges linearly to Q with the same constant C.

For more details about the QR Iteration see Lecture 28 of Trefethen & Bau.

Remarks:

1. Why we need ± in front of the true eigenvector here: We might converge to the negative
of the true eigenvector, which is fine. In this case, without ±, the convergence would
not work as stated.

2. The ratio
∣∣∣λk+1

λk

∣∣∣ is present for the same reasons as in Power Iteration.

16.2.2 Eigenvalue Problems Recap

Here we give a recap of what we have discussed so far for eigenvalue problems.

� We used the Rayleigh quotient to recover an estimated eigenvalue, given an estimated
eigenvector.

� We saw the power iteration, inverse iteration, shifted inverse iteration, and Rayleigh
quotient iteration, as methods to recover individual eigenvectors.

� We introduced two schemes to find multiple eigenvectors/eigenvalues at once:
– QR Iteration,
– Simultaneous (block power) iteration.

Dense QR factorization at every single step of the QR Iteration algorithm is costly. This
takes approximately 4

3
n3 flops. In the next section we look at a way to make the QR Iteration

more practical (efficient).

The idea is to first pre-process A (with another similarity transform) to increase sparsity! If
A is non-symmetric, one can reduce to upper Hessenberg form. Upper Hessenberg matrices
only require → O(n2) flops for QR factorization. If A is symmetric we can reduce to a
tridiagonal matrix, which requires only → O(n) flops for QR factorization. Exercise: derive
efficient QR factorizations of UH and tridiagonal matrices.

165

16.3 Reduction to Upper Hessenberg

In the general case A can be non-symmetric. One might ask why would we reduce to just
upper Hessenberg form and not triangular? Wouldn’t having a triangular matrix be even
cheaper for QR factorization? Let’s consider this by attempting to reduce to triangular
instead.

16.3.1 First attempt:

Try to reduce A to triangular via usual Householder. Apply Householder Q1 to A.

A =

× × × ×
× × × ×
× × × ×
× × × ×


 QT

1 ×−−−→
× × × ×
0 × × ×
0 × × ×
0 × × ×


 = QT

1A

But to maintain similarity, also need to multiply by Q1 on the right

× × × ×
0 × × ×
0 × × ×
0 × × ×


 ×Q1−−→

× × × ×
× × × ×
× × × ×
× × × ×




So with Householder reflections our newly created zeros are just destroyed again!

16.3.2 Second Attempt:

We will be a little less ambitious and choose a different QT
1 that leaves the whole row

untouched. Then, when we multiply by Q1 on the right, it won’t destroy our progress (i.e.,
it will leave the 1st column alone).

To achieve this, the first Q matrix will have a form like:

166

This leaves the desired first row/column alone after computing QT
1AQ1, preserving the new

zeros. We apply the same idea to subsequent columns (similar to Householder QR).

This gives Q = Q1Q2 · · ·Qn−2 and QTAQ = an upper Hessenberg matrix. Algorithm 16.21
gives the pseudocode for the reduction to Hessenberg form.

Algorithm 16.21 Reduction to Hessenberg

for k = 1, 2, . . . , n− 2
x = A(k + 1 : n, k)
vk = sign(x1)∥x∥e1 + x ▷ Householder reflection
vk =

vk
∥vk∥

▷ Normalize

for j = k, k + 1, . . . , n ▷ Left multiply, QT
k×

A(k + 1 : n, j) = A(k + 1 : n, j)− 2vk
(
vTk A(k + 1 : n, j)

)
end for
for j = 1, 2, . . . , n ▷ Right multiply, ×Qk

A(i, k + 1 : n) = A(i, k + 1 : n)− 2 (A(i, k + 1 : n)vk) v
T
k

end for
end for

The cost is flops(Reduction to Hessenberg) ≈ 10
3
n3. However, this reduction to Hessenberg

is done only once, before QR Iteration.

16.3.3 Symmetric Matrices: Two-Phase Process

For the symmetric case, when A = AT , then

(QTAQ)T = QTAQ,

is also symmetric. A matrix that is both symmetric and upper Hessenberg is necessarily
tridiagonal. Reduction will produce zeros above the diagonal as well. Sparsity and symmetry

167

together reduce the cost of reduction from 10
3
n3 to 4

3
n3. The idea then to make the QR

Iteration more practical is a two-phased process:

1. Reduce A to tridiagonal via Householder operations (direct).
2. Perform QR Iteration until convergence (iterative).


× × × ×
× × × ×
× × × ×
× × × ×

 Phase 1−−−−−→
Reduction


× ×
× × ×
× × ×
× ×

 Phase 2−−−−−−−→
QR Iteration


×
×
×
×


A T = QTAQ D

QR Iteration can be additionally improved by:

� Applying shifting to achieve cubic convergence rates (similar to Rayleigh Quotient
Iteration).

� Breaking A(k) into sub-matrices once an eigenvalue is found (“deflation”).

16.4 Aside: The QR Iteration’s Inventors

John Francis published the (implicit, shifted) QR algorithm in 1961. It was named one
of the ten “most important” algorithms of the 20th century. John Francis left the field of
numerical analysis that same year. He was tracked down in 2007, and had no idea the huge
influence of his work! Concurrently, the algorithm was invented by Vera Kublanovskaya,
who continued to work in numerical analysis until passing away in 2012.

John Francis Vera Kublanovskaya

168

17 Lecture 17: Eigenvectors / Eigenvalues - Image

Segmentation

Outline

1. Definitions
2. Graph Laplacians

(a) Unnormalized Graph Laplacian
(b) Normalized Graph Laplacian

3. Clustering using Graph Laplacians
(a) Relaxation of RatioCut via Graph Laplacian
(b) Relaxation of Ncut via Graph Laplacian

4. K-means Clustering
5. Spectral Clustering: Cuts and K-means Together

(a) Choosing Weights W
6. Other Applications

(a) Geometric Mesh Processing
(b) Motion Analysis

In this lecture we will take a look at the application of eigenvalue problems in image seg-
mentation. First we will given some definitions and discuss the graph Laplacian. Then we
will make use of the graph Laplacian in spectral clustering.

Motivation: Divide and conquer, say for image de-noising.

Spectral clustering is a family of techniques that use the eigendecomposition of a matrix
to identify clusters/groups of “similar” or related elements in a dataset. See for example the
figure below.

Segmentation tasks (i.e., identifying distinct parts of an image or shape) can rely on cluster-
ing.

� Image segmentation tries to group similar and nearby pixels.
� Shape segmentation tries to identify distinct parts of an object.

169

Figure 17.29: Example graph G(V,E) (left) and the same graph with weighted edges (right).

17.1 Definitions

Consider an undirected graph G = (V,E), where V = {v1, . . . , vn} is a set of vertices and
E = {eij} is a set of edges. That is, the edge between vertices vi and vj is denoted eij.

Definition 17.1. The graph G is a weighted graph if each edge eij has an associated weight
wij ≥ 0. We denote by W = wij the weighted adjacency matrix of the graph.

Figure 17.29 gives an example of an undirected graph and a weighted version of the graph.
What is the weight matrix W for this graph in Figure 17.29 (right)? The matrix W has
zeros in entries (i, j) that do not have edges joining vi to vj. There are nonzeros equal to
the weights for any (i, j) that does have an edge, thus

W =


0 1 1 2 0 0
1 0 0 3 0 0
1 0 0 4 0 2
2 3 4 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0

 .

� This W is different from our earlier adjacency matrix, where diagonal entries could
be non-zero.

The definition of the vertex degree must now be altered to include the weights of edges.

170

Definition 17.2. The degree of a vertex vi is given by

di =
n∑

j=1

wij,

where D = diag(di) is the degree matrix.

This definition of degree is different from our earlier definition of degree, from matrix re-
ordering.

For the example in Figure 17.29 what is the degree of v4? It is just the sum of the fourth
column of W , so deg(v4) = d4 = 11. You can do this for all the vertices and construct the
degree matrix as

D =


4

4
7

11
2

2

 .

The indicator vector is useful when working with a subset of the graph.

Definition 17.3. Given a subset A ⊂ V , we define the indicator vector 1A =
[
x1 · · · xn

]T
such that

xi =

{
1 if vi ∈ A,

0 if vi /∈ A.

Definition 17.4. Given two subsets A,B, we define W (A,B) to be the total weight of all
the edges starting in A and ending in B, i.e.,

W (A,B) =
∑

i∈A,j∈B

wij.

For example, consider the two subsets of vertices, A = {v1, v2, v6} and B = {v3, v4, v5}, in
Figure 17.29. What are the indicator vectors 1A and 1B? They are given by

1A =


1
1
0
0
0
1

 and 1B =


0
0
1
1
1
0

 .

What is W (A,B) =
∑

i∈A,j∈B wij for this example? We have

W (A,B) = w13 + w14 + w15 + w23 + w24 + w25 + w63 + w64 + w65 = 8.

We will consider two ways to measure the size of a subset A ⊂ V.

171

Definition 17.5. This size of a subset is can be defined in terms of the number of vertices

|A| = number of vertices in A,

or the degrees of the vertices

vol(A) =
∑
i∈A

di = sum of (weighted) degrees of vertices in A.

For example, consider again the graph in Figure 17.29 and the two subsets of vertices A =
{v1, v2, v6} and B = {v3, v4, v5}. We have that |A| = 3 and |B| = 3. Furthermore, we have
that vol(A) = 10 and vol(B) = 20.

17.2 Graph Laplacians

The graph Laplacian is a generalization of our finite difference discrete Laplacian operator to
arbitrary graphs. We will consider two variants: the unnormalized graph Laplacian

L = D −W,

and the normalized graph Laplacian

L̂ = I −D−
1
2WD−

1
2 .

For example, with the graph in Figure 17.29 we have

L = D −W

=


4

4
7

11
2

2

−

0 1 1 2 0 0
1 0 0 3 0 0
1 0 0 4 0 2
2 3 4 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0



=


4 −1 −1 −2 0 0
−1 4 0 −3 0 0
−1 0 7 −4 0 −2
−2 −3 −4 11 −2 0
0 0 0 −2 2 0
0 0 −2 0 0 2

 .

Note that the general matrix pattern is similar to the finite difference discrete Laplacian.
The diagonal entries are all positive, while off-diagonals are negative. Moreover, the sum of
every row in L is zero.

172

17.2.1 Unnormalized Graph Laplacian

The following theorem gives some properties of the unnormalized graph Laplacian.

Theorem 17.1. The unnormalized graph Laplacian L satisfies:

1. For any vector x,

xTLx =
1

2

n∑
i,j=1

wij(xi − xj)
2,

2. L is symmetric and positive semi-definite,
3. The smallest eigenvalue of L is 0, with corresponding eigenvector being the constant

one vector 1 = [1, 1, . . . , 1]T ,
4. L has n non-negative eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn.

Proof. 1.

xTLx = xTDx− xTWx,

=
n∑

i=1

dix
2
i −

n∑
i=1

n∑
j=1

xixjwij,

=
1

2

(
2

n∑
i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

xixjwij

)
,

=
1

2

(
n∑

i=1

dix
2
i − 2

n∑
i=1

n∑
j=1

xixjwij +
n∑

j=1

djx
2
j

)
,

=
1

2

n∑
i=1

n∑
j=1

wij(xi − xj)
2.

2. The property 1. implies xTLx ≥ 0, i.e., positive semi-definite, since wij ≥ 0. It is
symmetric because D and W are symmetric.

3. Since row sums of L are zero we have Lx = 0 when x =
[
1, 1, . . . , 1

]T
. Therefore, the

smallest magnitude eigenvalue is zero with eigenvector x =
[
1, 1, . . . , 1

]T
.

4. Since L is positive semi-definite its eigenvalues are non-negative. Positive semi-definite
implies that xTAx ≥ 0. So if Ax = λx, then xTAx = xT (λx) = λ∥x∥2.

⇒ λ∥x∥2 ≥ 0,

⇒ λ ≥ 0.

17.2.2 Normalized Graph Laplacian

The next theorem gives properties of the normalized graph Laplacian.

Theorem 17.2. The normalized graph Laplacian L̂ satisfies:

173

1. For any vector x,

xT L̂x =
1

2

n∑
i,j=1

wij

(
xi√
di
− xj√

dj

)2

,

2. L̂ is symmetric and positive semi-definite,
3. The smallest eigenvalue of L̂ is 0 and the corresponding eigenvector is D

1
21,

4. L̂ has n non-negative eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn.

The multiplicity k of the eigenvalue 0 for both L and L̂ equals the number of connected
components A1, . . . , Ak in the graph. For example, the L and Λ for the following graph
are

L =


1 −1
−1 1

2 −2
−2 2

 , and Λ = {0, 0, 2, 4}.

A final fact compares the graph Laplacian with the finite difference Laplacian. Suppose
the graph is a 2D grid (e.g., representing an image) and we use weights wij = 1. Then,
the unnormalized graph Laplacian L is (a scalar multiple of) the usual 2D finite difference
Laplacian.

We will now explore how graph Laplacians are used for clustering data. Consider the prob-
lem of finding minimally weighted cuts that divide the graph into parts. This generally
leads to NP-hard problems, so we “relax” the problem, yielding our spectral clustering al-
gorithms.

The problem statement is as follows. Given a graph G with the weight matrix W , find a
partition of G such that the edges between the partitions have very low weight. See the
figure below for an example of what we want with k = 2 subsets.

174

17.3 Clustering using Graph Laplacians

One approach is called MinCut, which finds a partition A1, . . . , Ak that minimizes

cut(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Ai).

The notation Ai denotes the complement of Ai (i.e., vertices not in Ai).

The basic MinCut is fairly easy to solve, but it does not give useful results. The minimal
solution often separates out individual vertices, rather than finding large subsets of nodes
with low weight between them. For example, we would prefer the graph cut on the left
below, but MinCut will normally compute the right cut.

Better cuts in the graph would encourage the size of partitions to be larger, or more “bal-
anced”. Therefore, we should divide weights by the size of the subset (|Ai| or vol(Ai)). This
motivates the following definitions.

Definition 17.6. The RatioCut and Ncut (aka normalized cut) minimize the following,
respectively:

RatioCut(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

|Ai|
=

k∑
i=1

cut(Ai, Ai)

|Ai|
,

and

Ncut(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)
=

k∑
i=1

cut(Ai, Ai)

vol(Ai)
.

175

Recall that |Ai| is the number of vertices in the set and vol(Ai) is the sum of degrees of
vertices in the set.

17.3.1 Relaxation of RatioCut via Graph Laplacian

Sadly, minimizing for the RatioCut and Ncut is NP-hard. However, we can relax the mini-
mization problem once we rewrite it in terms of the graph Laplacian. First, we consider the
case of partitioning into 2 subsets, A and A, subject to

min
A

RatioCut(A,A).

We can rewrite this in terms of the graph Laplacian as follows.

Given a subset A ⊂ V , define x =
[
x1 · · · xn

]T
, where

xi =


+

√
|A|
|A| if vi ∈ A,

−
√
|A|
|A| if vi ∈ A.

We can show the following three results to rewrite the minimization problem:

1. xTLx = |V | · RatioCut(A,A),
2.

n∑
i=1

xi = 0, i.e., xT1 = 0,

3. ∥x∥2 = n.

Proof. 1. We plug the xi expressions into the following

xTLx =
1

2

n∑
i=1

n∑
j=1

wij(xi − xj)
2,

=
1

2

∑
i∈A

∑
j∈A

wij

√ |A|
|A|

+

√
|A|
|A|

2

+
1

2

∑
i∈A

∑
j∈A

wij

−√ |A|
|A|
−

√
|A|
|A|

2

,

=
1

2

k∑
i=1

W (Ai, Ai)

 |A||A| + |A||A| + 2
�

�
�

�
��>

1√
|A|
|A|
|A|
|A|

 ,

=
1

2

k∑
i=1

W (Ai, Ai)

(
|A|+ |A|
|A|

+
|A|+ |A|
|A|

)
,

= |V | · RatioCut(A,A), using |A|+ |A| = |V |.

2.

n∑
i=1

xi =
∑
i∈A

√
|A|
|A|
−
∑
i∈A

√
|A|
|A|

= |A|

√
|A|
|A|
− |A|

√
|A|
|A|

=

√
|A∥A| −

√
|A∥A| = 0,

176

3.

∥x∥2 =
n∑

i=1

x2
i = |A|

|A|
|A|

+ |A| |A|
|A|

= |A|+ |A| = n.

So the minimization problem becomes

min
A⊂V

xTLx,

subject to x ⊥ 1 and ∥x∥ =
√
n.

But this minimization problem is still discrete and NP-hard! The vertices are strictly only
in A or A. However, we can relax the problem by allowing x to consist of arbitrary real
numbers

min
x∈Rn

xTLx,

subject to x ⊥ 1 and ∥x∥ =
√
n.

The solution to this relaxed minimization problem turns out to be the eigenvector, x, of L
corresponding to the 2nd smallest eigenvalue (aka “Fielder vector”).

We can recover the separation into 2 clusters by thresholding x

vi ∈ A if xi ≥ 0,

vi ∈ A if xi < 0,

where xi are the components of the Fielder vector.

17.3.2 Relaxation of Ncut via Graph Laplacian

Applying the same idea for Ncut, but with a different measure of set size, we start from

min
A

Ncut(A,A).

We can rewrite this using the normalized graph Laplacian. Given a subset A ⊂ V , define
x = {x1, . . . , xn} where

xi =


+

√
vol(A)
vol(A)

if vi ∈ A,

−
√

vol(A)

vol(A)
if vi ∈ A.

We can then show that

1. xTLx = vol(V) · Ncut(A,A),
2.

n∑
i=1

dixi = 0, i.e., (Dx)T1 = 0,

177

3. xTDx = vol(V).

So the minimization problem becomes

min
A⊂V

xTLx, subject to Dx ⊥ 1 and xTDx = vol(V).

Again, this is still discrete and NP-hard to minimize. However, when we relax the minimiza-
tion problem we instead solve

min
x∈Rn

xTLx, subject to Dx ⊥ 1 and xTDx = vol(V).

Defining y = D
1
2x, the relaxed problem becomes

min
y∈Rn

yT L̂y, subject to y ⊥ D
1
21 and ∥y∥2 = vol(V).

The solution again becomes the Fielder vector, but for L̂ instead. So we threshold yi at zero
in order to determine the two clusters.

Notation:

� |V | is un-normed.
� vol(V) is normed, using the weights.

17.4 K-means Clustering

The above works for 2 clusters, but what about k > 2 clusters? For more clusters we can
not simply threshold to zero, since we have more than 2 groups. Instead, we will make use
of k-means clustering on data drawn from several eigenvectors. First, let us consider the
basic k-means algorithm.

Given a set of n data points/vectors { pj }, find the partition of the points A1, . . . , Ak such
that each point is assigned to the set whose mean µi is closest to it. K-means aims to solve
the problem

min
Ai

k∑
i=1

∑
p∈Ai

∥p− µi∥2.

There are two factors at play in this minimization problem:

� assignment of points to sets,
� distance of each point to the mean of its set.

Consider the example in the figure below. Given blue (2D) data points try to find k = 3
(how to choose k: later) means and an assignment of particles to the corresponding 3
clusters.

178

We would expect something like the red points as the means of the 3 clusters. The data
points would belong to the cluster whose mean is closest to them (as shown with blue, green,
and red encompassing circles).

The k-means algorithm performs the following steps:

1. Start with some initial guesses for the k means {µi},
2. Assign each point p to the cluster Ai if p is closer to µi than any of the other k means,
3. Re-compute new means {µi} for all partitions {Ai},
4. Repeat.

There is a nice interactive demo of k-means available online. Please visit http://alekseynp.
com/viz/k-means.html to try it out!

17.5 Spectral Clustering: Cuts and K-means Together

If k-means can do clustering why do we not just apply it to our problem? Spectral clus-
tering allows for:

� More general weights/measures of similarity (i.e., not just Euclidean distance),
� Non-convex clusters.

179

http://alekseynp.com/viz/k-means.html
http://alekseynp.com/viz/k-means.html

We can apply k-means for the k = 2 case instead of thresholding at zero, to assign points
into the two clusters. Specifically, considering the entries of the eigenvector {xi} as n data
points in R, then apply k-means with k = 2. The advantage of this is that it can be extended
to k > 2 clusters.

Intuitively, spectral clustering consists of the following (also depicted in Figure 17.30):

1. Interpret our input data as a graph and choose weights W to indicate our notions of
similarity,

2. Use the eigenvectors of the graph Laplacian to convert vertices into data points in Rk,
3. Apply k-means to cluster the points in Euclidean space (Rk).

Figure 17.30: Steps of spectral clustering.

In more detail, the unnormalized spectral clustering algorithm is:

1. Construct the unnormalized graph Laplacian L,
2. Compute the first k eigenvectors q1, . . . , qk of L (corresponding to smallest magnitude

eigenvalues),
3. Consider Qk = [q1, . . . , qk]. Let pi ∈ Rk be the vector given by row i of Qk (i.e.,

pi = Qk(i, :) in Matlab notation),
4. For the resulting n points {pi} in Rk, apply k-means to cluster them into k groups
{A1, . . . , Ak}.

180

The normalized version of the spectral clustering algorithm requires two changes.

1. First, we use L̂ instead of L.
2. Second, instead of pi, we use normalized rows for points, pi =

pi
∥pi∥ .

17.5.1 Choosing Weights W

The choice of the weight matrix W is meant to measure similarity between vertices of the
graph. This means W is problem dependent. Usually, we want non-zero weights only
between a small set of local graph neighbours, (e.g., within graph distance 1 or 2). The more
neighbours we include creates more non-zero entries in W . If we include fewer neighbours
we create a sparser graph Laplacian (having a lower cost of eigendecomposition).

For an image segmentation task we view pixels as graph vertices. We connect adjacent or
nearby pixels with graph edges which form our graph. For example,

� including the 4 adjacent pixels gives W with non-
zero structure similar to usual finite difference
Laplacian,

� including the 4 diagonal neighbours also would
give 8 neighbours, so W has at most 8 non-zeros
per row.

We will set wij to measure similarity between pixels i and j using two factors:

1. Euclidean distance between pixels i and j,
2. intensity difference between pixels i and j.

For i ̸= j we will use

wij =

(
e
−

∥xi−xj∥
2

σ2
dist

)(
e
−

∥Ii−Ij∥
2

σ2
int

)
,

where pixel i is at position xi with intensity Ii and likewise for pixel j. We define positions
as xi = (r, c) if pixel i is at row r, column c. The parameters σ2

dist and σ2
int can be varied to

adjust the relative importance of the terms.

17.6 Other Applications

Spectral approaches find many other applications in the field of graphics processing.

17.6.1 Geometric Mesh Processing

The following are visualizations of several eigenvectors associated to Laplacians defined on
3D triangle meshes.

181

source: https://www.cs.sfu.ca/~haoz/pubs/zhang_eg07star_spectral.pdf.

17.6.2 Motion Analysis

Extracting dominant motion “modes” in solids or fluids for analysis and efficient simula-
tion.

−→ increasing eigenvalue magnitude

The above images show the basis of divergent-free fields that are eigenfunctions of the vector
Laplacian. Basis fields have correspondence with spatial scales of vorticity. Their coefficients
form a discrete spectrum. Another example of motion analysis involves vibrating membranes,
see https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane.

To learn more, check out “A Tutorial on Spectral Clustering”, by Ulrike von Luxburg, http:
//www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_tutorial.pdf.

182

https://www.cs.sfu.ca/~haoz/pubs/zhang_eg07star_spectral.pdf
https://en.wikipedia.org/wiki/Vibrations_of_a_circular_membrane
http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_tutorial.pdf
http://www.tml.cs.uni-tuebingen.de/team/luxburg/publications/Luxburg07_tutorial.pdf

18 Lecture 18: Introduction to Singular Value Decom-

positions

Outline

1. Geometric Motivation: AV = UΣ
(a) Matrix Form
(b) Comparison with Eigendecomposition

2. Properties of the SVD
3. Computing the SVD - 1st Attempt

(a) Example

This lecture introduces the final decomposition called the singular value decomposition.
Lecture 4 of Trefethen & Bau provides more detail, see https://people.maths.ox.ac.uk/
trefethen/text.html.

18.1 Geometric Motivation: AV = UΣ

The image of the unit hypersphere S in Rn under any m× n matrix transformation A is a
hyperellipse in Rm. Figure 18.31 shows the geometric interpretation of this transformation.
Both the hypersphere and hyperellipse are in R2 in this example. However, the dimensions
can be any n and m, not necessarily n = m.

Figure 18.31: Transformation of unit hypersphere S (left) by matrix A into hyperellipse AS
(right).

The factors by which the hypersphere is scaled in each of the principal semi-axes of the
hyperellipse are called the singular values of A. The n singular values are denoted σi. By
convention we will order them such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Notice that all the singular values are non-negative.

183

https://people.maths.ox.ac.uk/trefethen/text.html
https://people.maths.ox.ac.uk/trefethen/text.html

The n left singular vectors, ui, of A are the unit vectors in the directions of the principal
semi-axes of the ellipse. The n right singular vectors, vi, are the unit vectors in S such
that

Avj = σjuj.

In other words, vi’s are the pre-image of ui’s under the transformation A.

18.1.1 Matrix Form

We can write the above equation

Avj = σjuj, for j = 1, 2, . . . , n,

in matrix form to define the reduced SVD. Pictorially, we have A


︸ ︷︷ ︸
A, m×n

v1 v2 · · · vn


︸ ︷︷ ︸

V, n×n

=

u1 u2 · · · un


︸ ︷︷ ︸

Û , m×n

σ1

. . .

σn


︸ ︷︷ ︸

Σ̂, n×n

The matrix Σ̂ is a diagonal matrix, with the singular values of A on its diagonal. The
matrices Û and V have orthonormal columns. Note that the hat notation indicates reduced
or economy-sized SVD

AV = ÛΣ̂.

Since V is orthogonal, if we multiply by V T on the right, we can equivalently write it as

A = ÛΣ̂V T .

The figure below shows this reduced SVD of A pictorially.

The full SVD is constructed in a similar way to how the full QR factorization was created
from the reduced QR factorization. We can define a full SVD by adding m − n more
orthonormal columns to Û to give a square, orthogonal U . Then we must also add extra
empty rows to Σ̂ to construct Σ. That is, replace Û → U and Σ̂→ Σ as shown in the figure
below.

184

� Every matrix A ∈ Rm×n has a singular value decomposition.
– We will prove this in the next lecture.
– Furthermore, the singular values are uniquely determined.

� Also, if A is square and σj are distinct, then the left and right singular vectors are
unique (up to signs).

18.1.2 Comparison with Eigendecomposition

The SVD is similar to the eigendecomposition we have seen previously. Consider the SVD
vs the eigendecomposition

A = UΣV T vs A = XΛX−1.

� Both decompositions act to diagonalize a matrix.
� The SVD uses two bases: U and V , the left and right singular vectors.
� The eigendecomposition uses only one basis, the set of eigenvectors.
� The SVD always uses orthonormal vectors.
� The eigenvectors are not orthonormal in general (though for the real symmetric ma-
trices we considered, they are).

� Finally, not all matrices have an eigendecomposition, but all matrices have an SVD,
even rectangular matrices.

18.2 Properties of the SVD

Next we will discuss some properties of the SVD. For the following theorems let A ∈ Rm×n

and r = # of non-zero singular values.

Theorem 18.1.
rank(A) = r.

Proof. Rank of a diagonal matrix is the number of non-zero diagonal entries. U and V are
both of full rank, by definition. Hence rank(A) = rank(Σ) = r.

Theorem 18.2.

range(A) = span{u1, u2, . . . , ur},
null(A) = span{vr+1, . . . , vn}.

185

Proof. We will not give a full proof of this theorem. Instead for the second property, we
show that a vector in span{vr+1, . . . , vn} is in null(A) (in other words, span{vr+1, . . . , vn} ⊆
null(A)).

Let x ∈ span{vr+1, . . . , vn} be arbitrary. Then

x =
n∑

i=r+1

wivi and so Ax =
n∑

i=r+1

wi(Avi).

Observe that

Avi = UΣV Tvi

= UΣei,

with the last equality holding because V is an orthogonal matrix. But Σei = 0 for i ∈ [r+1, n]
since the corresponding entries of Σ are zero. Therefore Ax = 0, so x ∈ null(A).

I claim that
∥A∥22 = λmax

(
ATA

)
.

Proof. � Recall that

∥A∥22 = max
∥x∥2=1

∥Ax∥22

= max
λ∈Λ(A)

|λ|2

= max
λ∈Λ(A)

λ2.

� The SVD of A gives

A = UΣV T , so that

ATA =
(
UΣV T

)T
UΣV T

= V ΣT UTU︸ ︷︷ ︸
=I

ΣV T

=︸︷︷︸
Σ is diagonal, thus symmetric

V Σ2V T .

� This is a similarity transformation, hence the eigenvalues of ATA equal the eigenvalues
of Σ2.

� But Σ is a diagonal matrix with A’s singular values on its diagonal.
� Hence the eigenvalues of ATA equal the squares of the singular values of A.

Lemma 18.2.1. Keeping all of the above notation, AT Ûm−n = 0.

186

Proof.

A = ÛΣ̂V T , so that

AT =
(
ÛΣ̂V T

)T
= V Σ̂T ÛT

=︸︷︷︸
Σ is diagonal

V Σ̂ÛT , so we can compute

AT Ûm−n =
(
V Σ̂ÛT

)
Ûm−n

= V Σ̂
(
ÛT Ûm−n

)
︸ ︷︷ ︸

=0

= 0,

where ÛT Ûm−n = 0 holds because Ûm−n’s columns are orthogonal to Û ’s columns.

Notation:

∥A∥2F =
∑
i,j

a2ij = tr
(
ATA

)
, where ∥A∥F is the Frobenius norm.

Recall that

tr(A) =
n∑

i=1

aii,

the sum of the diagonal entries of A.

Theorem 18.3. ∥A∥2 = σ1 and ∥A∥F =
√

σ2
1 + · · ·+ σ2

r .

Proof. We have λmax(A
TA) = λmax(Σ

2) = σ2
1 ⇒ ∥A∥2 = σ1.

Now for the Frobenius norm we have

∥A∥2F
= tr(ATA)

=︸︷︷︸
ATA=V Σ2V T

tr
(
V Σ2V T

)
= tr

(
(V Σ)(V Σ)T

)
,

= tr
(
(V Σ)T (V Σ)

)
, trace identity tr(XTY) = tr(XY T),

= tr
(
ΣV TV Σ

)
,

= tr(Σ2), by the orthogonality of V,

= σ2
1 + · · ·+ σ2

r .

187

Theorem 18.4. Non-zero singular values of A are the square roots of non-zero eigenvalues
of AAT or ATA.

Proof. ATA and AAT are similar to Σ2. We proved this for ATA above; the proof for AAT

is similar.

1. We showed above that ATA = V Σ2V T .
2. Similarly,

AAT = UΣV T
(
UΣV T

)T
= UΣ

���
��*I(

V TV
)
ΣTUT

= UΣ2UT , since Σ is diagonal.

Recall Notation: Λ(A) is the set of eigenvalues of A.

New Notation: σ(A) is the set of the singular values of A.

Theorem 18.5. If A = AT , then σ(A) = {|λ| : λ ∈ Λ(A)}. In particular, if A is SPD then
σ(A) = Λ(A).

Proof. Real symmetric matrices have orthogonal eigenvectors and real eigenvalues, so

A = QΛQT , with Q orthogonal.

Construct the SVD as
A = Q︸︷︷︸

U

|Λ|︸︷︷︸
Σ

sign(Λ)QT︸ ︷︷ ︸
V T

,

where |Λ| and sign(Λ) are diagonal matrices with entries |λj| and sign(λj), respectively. If
desired one can also insert orthogonal permutation matrices to sort the σ’s.

Theorem 18.6. The condition number for A ∈ Rn×n is κ2(A) =
σ1

σn
.

Proof. By the definition of κ and by Theorem 18.3, we have

κ2(A) = ∥A∥2∥A−1∥2 = σ1∥A−1∥2.

Since A = UΣV T , therefore A−1 = V Σ−1UT is the SVD of A−1. Therefore

∥A−1∥2 =
1

σn

⇒ κ2(A) =
σ1

σn

.

188

18.3 Computing the SVD - 1st Attempt

We first consider a näıve approach to computing the SVD. Since A = UΣV T we showed above
that ATA = V Σ2V T , which is an eigendecomposition of ATA! Therefore, the eigenvalues
of ATA are squares of the singular values of A. The eigenvectors of ATA are the right
singular vectors of A.

This suggests a (näıve) method for computing the SVD:

1. Form ATA (it’s symmetric and positive semi-definite, so its eigenvalues are real and
non-negative),

2. Compute eigendecomposition of ATA = V ΛV T ,

3. Compute Σ =

σ1

. . .

σn

, where σi =
√
λi and Λ =

λ1

. . .

λn

 ,

4. Solve UΣ = AV for orthogonal U (e.g., by QR factorization).

Recovering U from the above algorithm involves (note, we already have Σ, A, V):

� Multiply AV to get A′,
� QR factor A′ = QR,
� Identify U = Q,Σ = R.

This ensures that U = Q is properly orthogonal. Conveniently, R = Σ will be diagonal.

Unfortunately, this näıve method is inaccurate; the error satisfies

|σ̃k − σk| = O

(
ϵ ∥A∥2

σk

)
,

which can be very bad for small singular values! (Conceptually, this is similar to how
solving least squares by normal equations used ATA. Effectively this “squares the condition
number”, therefore making it less accurate than QR factorization). In the next lecture we
will discuss a better alternative for computing the SVD.

18.3.1 Example

We can find the SVD of A =

0 −1
2

3 0
0 0

 in a few different ways.

1. Method 1:

ATA =

[
0 3 0
−1

2
0 0

]0 −1
2

3 0
0 0


=

[
9 0
0 1

4

]
= V Σ2V T

= QΛQT

189

Therefore λ1 = 9, λ2 = 1
4
, v1 =

[
1
0

]
, v2 =

[
0
1

]
since Q = I. Therefore σ1 = 3, σ2 = 1

2
,

so

Σ̂ =

[
3 0
0 1

2

]
and V =

[
1 0
0 1

]
.

Then find U from UΣ = AV

[
u1 u2

] [3 0
0 1

2

]
=

0 −1
2

3 0
0 0

[1 0
0 1

]
=

0 −1
2

3 0
0 0


Hence

3u1 =

03
0

 therefore u1 =

01
0


1

2
u2 =

−1
2

0
0

 therefore u2 =

−10
0



Thus Û =

0 −11 0
0 0

 .

2. Method 2: Use AAT instead, same idea.
3. Method 3: Let’s exploit intuition about SVD and the simple structure of this matrix.

By inspection, range(A) = span{u1, u2} for u1 =

01
0

 and u2 =

10
0

, u1 and u2 are

orthonormal. The lengths of the principal axes are 3 and 1
2
.

Then by the definition of SVD

Av1 = σ1u10 −1
2

3 0
0 0

 v1 = 3

01
0


⇒ v1 =

[
1
0

]
Av2 = σ2u20 −1

2

3 0
0 0

 v2 =
1

2

10
0


⇒ v2 =

[
0
−1

]
The details of solving both systems follow.

190

0 −1
2

0
3 0 3
0 0 0


∼

3 0 3 R1←R2

0 −1
2

0 R2←R1

0 0 0


∼

1 0 1 R1← 1
3
R1

0 1 0 R2←−2R2

0 0 0


⇒ v1 =

[
1
0

]
0 −1

2
1
2

3 0 0
0 0 0


∼

3 0 0 R1←R2

0 −1
2

1
2

R2←R1

0 0 0


∼

1 0 0 R1← 1
3
R1

0 1 −1 R2←−2R2

0 0 0


⇒ v2 =

[
0
−1

]

So A =

0 1
1 0
0 0

[3 0
0 1

2

] [
1 0
0 −1

]
i.e. same solution, up to signs in U and V .

191

19 Lecture 19: Singular Value Decompositions Versus

Eigendecomposition

Outline

1. Alternative Formulation
(a) Alternate Approach Example

2. Proof of Existence of SVD
3. Stability Comparison
4. Golub-Kahan Bidiagonalization

Recall that SVD is the decomposition of any matrix A into UΣV T , where Σ is diagonal with
non-negative entries, and U, V are orthogonal. In the previous lecture we seen that the SVD
can be found from the eigendecomposition of ATA or AAT .

In this lecture we will see a more stable method using the eigendecomposition of

H =

[
0 AT

A 0

]
.

We will also prove the existence of the SVD, discuss stability, and discuss how to compute
the SVD efficiently.

19.1 Alternative Formulation

Assume A is square, i.e. A ∈ Rn×n. Consider the 2n× 2n symmetric matrix

H =

[
0 AT

A 0

]
.

By computing the eigendecomposition of H = QΛQT we can extract the singular values and
vectors. We have that σA = |λH |, and U, V can be recovered from the eigenvectors. Let us
see why all of this holds.

Write A = UΣV T , then we have AV = UΣ because V is orthogonal. Likewise,

AT = (UΣV T)T

= V ΣTUT

= V ΣUT , because Σ is diagonal.

Thus ATU = V Σ because U is orthogonal. Hence we have[
0 AT

A 0

]
︸ ︷︷ ︸

H

[
V V
U −U

]
︸ ︷︷ ︸

Q

=

[
ATU −ATU
AV AV

]

=

[
V Σ −V Σ
UΣ UΣ

]
=

[
V V
U −U

]
︸ ︷︷ ︸

Q

[
Σ 0
0 −Σ

]
︸ ︷︷ ︸

Λ

192

Therefore, HQ = QΛ, equivalently H = QΛQT , gives an eigendecomposition of H. Note,
we need to normalize the columns of Q, to make Q an orthogonal matrix.

Explanation Of Why Q’s Columns Are Orthogonal, Given U, V Are Orthogonal
Matrices

� Let 1 ≤ i < j ≤ n be arbitrary.
� Then we have [

vi
ui

]T [
vj
±uj

]
=

[
vTi uT

i

] [vj
±uj

]
= vTi vj ± uT

i uj

=︸︷︷︸
U,V are orthogonal

0± 0

= 0.

To summarize we have the following steps:

1. Form H =

[
0 AT

A 0

]
,

2. Compute eigendecomposition HQ = QΛ,
3. Set σA = |λH |,
4. Extract U, V from Q (normalizing for orthogonality).

This algorithm is preferable with respect to stability (see the more detailed section below).
The error in the singular values satisfies |σ̃k − σk| = O (ϵ∥A∥), compared to O (ϵ∥A∥2/σk)
for the algorithm using ATA. This approach can be extended to non-square matrices too.
Practical algorithms are based on this premise, but without explicitly forming the (large)
matrix H.

19.1.1 Alternate Approach Example

A =

[
0 −1

2

3 0

]
Therefore

H =

[
0 AT

A 0

]
=


0 0 0 3
0 0 −1

2
0

0 −1
2

0 0
3 0 0 0



193

MATLAB eigendecomposition gives

Q =
1√
2


1 0 0 1
0 1 1 0
0 1 −1 0
−1 0 0 1

 ,Λ =


−3

−1
2

1

2
3


Order may be different (of cols) so read off desired cols, for positive Σ entries.

One can verify that the following eigendecomposition (permuting the columns of the previous
one, to change the order of the eigenvalues) is also correct, and perfectly fits the shape
required of our setup:

Q =
1√
2


1 0 1 0
0 1 0 1
0 −1 0 1
1 0 −1 0

 ,Λ =


3

1

2
−3

−1
2


Even better, this modified eigendecomposition fits in perfectly with the remainder of the
computation.

Therefore

σ1 = 3

v1 =

[
1
0

]
u1 =

[
0
1

]
σ2 =

1

2

v2 =

[
0
1

]
u2 =

[
−1
0

]

So

U =

[
0 −1
1 0

]
V =

[
1 0
0 1

]
Σ =

[
3 0
0 1

2

]

194

Check:

UΣV T =

[
0 −1
1 0

] [
3 0
0 1

2

] [
1 0
0 1

]
=

[
0 −1

2

3 0

]
= A

19.2 Proof of Existence of SVD

We claimed in Lecture 18 that every matrix A ∈ Rm×n has a singular value decomposition.
We will now prove this result.

Proof. Let A be an arbitrary m× n matrix. The proof is by induction on n ≥ 1.

Recall that the induced matrix norm is defined as

∥A∥ := max
∥x∥=1

∥Ax∥ .

Let σ1 = ∥A∥2. Let v1 have ∥v1∥2 = 1 and a direction such that ∥Av1∥2 = ∥A∥2 = σ1. Also,
let u1 =

Av1
σ1

, so that Av1 = σ1u1.

Consider any extensions of vectors u1 and v1 to orthonormal bases U1 and V1:

U1 =
[
u1| · · ·

]
,

V1 =
[
v1| · · ·

]
.

Then we have

UT
1 AV1 =︸︷︷︸

definition

S =

[
σ1 wT

0 B

]
,

where 0 is the m − 1 column vector, wT is a n − 1 row vector, and B has dimensions
(m− 1)× (n− 1).

Note, the top-left comes from

Av1 = σ1u1

uT
1Av1 = σ1 u

T
1 u1︸︷︷︸
=1

= σ1.

The bottom-left is zero because

uT
i Av1 = uT

i (σ1u1),

= σ1u
T
i u1,

= 0, ∀i > 1.

195

Now, we can show w = 0 as follows: Consider∥∥∥∥[σ1 wT

0 B

] [
σ1

w

]∥∥∥∥
2

=

∥∥∥∥[σ2
1 + wTw
Bw

]∥∥∥∥
2

=

√
(σ2

1 + wTw)
2
+ (Bw)TBw,

=

√
(σ2

1 + wTw)
2
+ wT BTB︸ ︷︷ ︸

symm, + semi-def

w,

≥ σ2
1 + wTw

=
√
σ2
1 + wTw

∥∥∥∥[σ1

w

]∥∥∥∥
2

.

By the induced matrix norm definition, this implies ∥S∥2 ≥
√
σ2
1 + wTw. However, since U1

and V1 are orthogonal, therefore ∥S∥2 = ∥A∥2 = σ1. Thus we must have w = 0, and so

UT
1 AV1 =

[
σ1 0
0 B

]
.

For n = 1 (base case) this completes the proof. For n > 1 (induction case), by the inductive
hypothesis, the SVD of B exists. Write B = U2Σ2V

T
2 . Then if we let

A = U1

[
1 0
0 U2

]
︸ ︷︷ ︸

U

[
σ1 0
0 Σ2

]
︸ ︷︷ ︸

Σ

[
1 0
0 V2

]
V T
1︸ ︷︷ ︸

V T

,

it is easy to verify that this is an SVD of A. (Some explanation is given below.)

Therefore, in either case, the SVD of A always exists.

Additional Explanation: Earlier, we had

UT
1 AV1 =

[
σ1 0
0 B

]
.

Recall that U1 and V1 are orthogonal. Therefore left multiplying by U1 and right multiplying
by V1 yields

A = U1

[
σ1 0
0 B

]
V T
1 .

Thus it suffices to prove that[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]
=

[
σ1 0
0 B

]
,

where B = U2Σ2V
T
2 .

196

19.3 Stability Comparison

This section gives a more detailed comparison of the stability of the two approaches to
compute the SVD. Assume a stable algorithm is used for finding eigenvalues (e.g., QR
Iteration) such that

|λ̃k − λk| = O (ϵmachine∥A∥) ,

where λ̃k denotes the numerical approximation. This satisfies λ̃k = λk(A+ δA), with ∥δA∥∥A∥ =

O (ϵmachine). That is, we compute the exact eigenvalues for a slightly perturbed matrix,
A+ δA.

Applying this to H =

[
0 AT

A 0

]
, we can get the singular values with

|σ̃k − σk| = |λ̃k − λk| = O (ϵmachine∥H∥) = O (ϵmachine∥A∥) .

If we instead applied our eigenvalue routine to ATA

|λ̃k − λk| = O
(
ϵmachine∥ATA∥

)
≈ O

(
ϵmachine∥A∥2

)
.

Taking the square roots (i.e., divide by
√
λk) to get σk gives

|σ̃k − σk| = O

(
|λ̃k − λk|√

λk

)
= O

(
ϵmachine∥A∥2

σk

)
.

This is quite inaccurate for σk ≪ ∥A∥.

19.4 Golub-Kahan Bidiagonalization

This section describes a way of accelerating the SVD computation. We apply another two-
phase process, as we did for QR Iteration. We pre-process the matrix A to reduce the total
cost of computing the SVD.

The idea is to first convert to a bidiagonal matrix and then extract the SVD! This process
is depicted below. 

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

A

Phase 1−−−−→
Direct


× ×
× ×
× ×
×


︸ ︷︷ ︸

B

Phase 2−−−−→
Iterative


×
×
×
×


︸ ︷︷ ︸

Σ

197

Why bidiagonal? We do not have to maintain a similarity transformation for SVD (unlike
for the eigendecomposition). Therefore, we can apply different Householder reflectors on
left and right to introduce zeros:

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

 −→


× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

 −→


× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×

 −→

A UT
1 A UT

1 AV1
× × 0 0
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

 −→


× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×

 −→ etc...

UT
2 U

T
1 AV1 UT

2 U
T
1 AV1V2

Bidiagonalization ultimately uses n reflectors on the left, n− 2 on the right. Therefore, the
cost of bidiagonalization is

flops(bidagonalization) ≈ 2× flops(QR) ≈ 4mn2 − 4

3
m3.

For the case of m ≫ n, there exist faster algorithms (see Trefethen & Bau, Lecture 31 if
curious).

For computing the SVD the cost is as follows. In practice, the cost of bidiagonalization phase
≈ O(mn2) dominates over the eigendecomposition phase≈ O(n2). This cost is typically more
expensive than other factorizations we have seen previously. However, the SVD computation
is more numerically stable (i.e., preferable for ill-conditioned/rank-deficient matrices).

� Here, rank-deficient simply means not of full rank.

198

20 Lecture 20: Application - Image Compression

Outline

1. Best Approximation to A
2. Application of SVD to Image Compression

(a) Image Compression Demo

20.1 Best Approximation to A

The singular value decomposition (SVD) can be thought of as representing A as the sum of
rank-one matrices. In this lecture, we discuss approximating A using a truncation of this
sum (i.e. omitting some terms at the end).

Theorem 20.1. Let m ≥ n. Let A be an m×n matrix, having rank r. Then A is the sum of
r rank-one matrices, i.e. for 1 ≤ j ≤ r, there exist scalars σj and vectors uj ∈ Rm, vj ∈ Rn

such that each ujv
T
j has rank 1, and

A =
r∑

j=1

σjujv
T
j .

Proof. From the definition of the SVD of A:

A =
[
u1 · · · um

]

σ1

. . .

σr

0


v

T
1
...
vTn



=
[
u1 · · · um

]

σ1v

T
1

...
σrv

T
r

0

 ,

= σ1u1v
T
1 + · · ·+ σrurv

T
r =

r∑
j=1

σjujv
T
j .

Exercise: What is the reduced SVD of the rank-1 matrix A = xyT ?

We can construct an approximate version of A, denoted Ak, using only the first k singular

199

values as follows:

Ak =
[
u1 · · · um

]

σ1

. . .

σk

0


v

T
1
...
vTn



=
[
u1 · · · uk

]︸ ︷︷ ︸
Uk

σ1

. . .

σk


︸ ︷︷ ︸

Σk

v
T
1
...
vTk


︸ ︷︷ ︸

Vk

.

So, as above, we may write Ak = UkΣkV
T
k . Theorem 20.2 gives the following results:

1. Among all matrices B with rank ≤ k, Ak minimizes ∥A−B∥2. In other words, Ak

provides the best rank k approximation of A.
2. The approximation error is given by the singular value σk+1.

Theorem 20.2. Let m ≥ n. Let A be an m× n matrix, having rank r, and SVD:

A =
[
u1 · · · um

]

σ1

. . .

σr

0


v

T
1
...
vTn

 .

For any 1 ≤ k ≤ r, define

Ak =
k∑

j=1

σjujv
T
j .

Then

∥A− Ak∥2 = inf
rank(B)≤k

∥A−B∥2
= σk+1.

Proof. ∥A− Ak∥2 = σk+1:

We will establish ∥A− Ak∥2 = σk+1, using the definition of SVD. We know that

A− Ak =

(
r∑

j=1

σjujv
T
j

)
−

(
k∑

j=1

σjujv
T
j

)

=
r∑

j=k+1

σjujv
T
j

=
[
u1 · · · um

]

0

σk+1

. . .

σr

0


v

T
1
...
vTn

 ,

200

gives an SVD for A−Ak (subject to reordering). We showed in Theorem 18.3 that ∥A∥2 = σ1,
so we have ∥A− Ak∥2 = σk+1 (i.e. the largest remaining singular value).

Part Two: Optimality:

We will show ∥A− Ak∥2 = inf
rank(B)≤k

∥A−B∥2 using a proof by contradiction. Towards a

contradiction, suppose there exists B such that rank(B) ≤ k and ∥A−B∥2 < σk+1. That
is, B is a strictly better approximation to A, with rank ≤ k.

Recall that B is m× n, i.e. we can view left multiplication by B as a linear transformation
from Rn to Rm. By the rank-nullity theorem,

rank(B) + nullity(B) = n

⇒ nullity(B) = n− rank(B).

So null(B) has dimension ≥ n − k, and contains non-zero vectors v (such that Bv = 0, by
definition).

If there are non-zero vectors in null(B), then B kills them.

Further, if k = r = n, then Ak = A. (∥A− Ak∥ = 0, as small as possible).

Observe that null(B) and span{v1, . . . , vk+1} are subspaces of Rn, with

� nullity(B) ≥ n− k, and
� dim(span{v1, . . . , vk+1}) = k + 1 .

Since (n− k) + (k + 1) > n, therefore null(B) and span{v1, . . . , vk+1} must have a non-zero
intersection, i.e., ∃z ̸= 0 such that

z ∈ null(B) ∩ span{v1, . . . , vk+1}.

Without loss of generality, let ∥z∥2 = 1. We will obtain a contradiction by showing
∥A−B∥2 ≥ σk+1.

Note ∥A−B∥22 ≥ ∥(A−B)z∥22 (Recall the definition of the matrix 2-norm, ∥A∥2 = max ∥Ax∥2
with ∥x∥2 = 1). Since z ∈ null(B), Bz = 0, and therefore

∥(A−B)z∥22 = ∥Az −Bz∥22
= ∥Az − 0∥22
= ∥Az∥22

=

∥∥∥∥∥
(

n∑
i=1

σiuiv
T
i

)
z

∥∥∥∥∥
2

2

.

For an arbitrary 0 ≤ i ≤ n, the ith term of the sum equals σiuiv
T
i z.

Recall, ∥A∥ ≥ 0, for any A, (by properties of ∥ · ∥).

201

We also have z ∈ span{v1, . . . , vk+1} ⊆ Rn. The above ith term therefore equals

σiui

(
vTi z
)︸ ︷︷ ︸

scalar

= σi

(
vTi z
)
ui,

and therefore the above squared 2-norm expression equals(
n∑

i=1

σi

(
vTi z
)
ui

)T (n∑
j=1

σj

(
vTj z
)
uj

)

=
n∑

i=1

σ2
i

(
vTi z
)2

, using orthogonality of the uis

=
k+1∑
i=1

σ2
i

(
vTi z
)2

, since z ∈ span{v1, . . . , vk+1}

≥ σ2
k+1

k+1∑
i=1

(
vTi z
)2

, by the ordering of the σis.

Now I claim that
∑k+1

i=1

(
vTi z
)2

= 1. We have assumed that ∥z∥2 = 1. Since z ∈ span{v1, . . . , vk+1},
we may write z =

∑k+1
ℓ=1 cℓvℓ, for some cℓs. Then we have

1 = ∥z∥2
=
√
zT z

=

√√√√(k+1∑
ℓ=1

cℓvℓ

)T (k+1∑
j=1

cjvj

)

=

√√√√k+1∑
ℓ=1

c2ℓ (v
T
ℓ vℓ), by orthogonality of the vℓs

=

√√√√k+1∑
ℓ=1

c2ℓ , since each ∥vℓ∥2 = 1, and so

1 =
k+1∑
ℓ=1

c2ℓ .

202

Now we can compute

k+1∑
i=1

(
vTi z
)2

=
k+1∑
i=1

(
vTi

(
k+1∑
ℓ=1

cℓvℓ

))2

=
k+1∑
i=1

c2i
(
vTi vi

)2
, by orthogonality of the vis

=
k+1∑
i=1

c2i , since each ∥vi∥2 = 1

= 1, as claimed.

Putting everything together, we finally get

∥A−B∥22 ≥ ∥(A−B)z∥22

≥ σ2
k+1

k+1∑
i=1

(
vTi z
)2

= σ2
k+1,

implying ∥A−B∥2 ≥ σk+1 and contradicting the fact that ∥A−B∥2 < σk+1. Hence no such
B can exist. Note that the analogous statement holds true for the Frobenius norm

∥A− Ak∥F = inf
rank(B)≤k

∥A−B∥F =
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r .

A geometric interpretation of the low rank approximation is as follows. Consider trying to
determine the line segment that “best” approximates a (hyper)ellipsoid. The best approx-
imation is the line segment along the longest axis of the (hyper)ellipsoid. This example
corresponds to approximating A with k = 1. With k = 2, we can ask what ellipse gives
“best” approximation of the (hyper)ellipsoid? The best ellipse is the one spanning the two
longest axes (as shown with black curves in the figure below for the ellipsoid in R3). With
larger k the same idea holds.

203

20.2 Application of SVD to Image Compression

The SVD can be used to produce a cheaper approximate version of an image (or other
dataset) that captures the “most important” parts.

Consider and m×n pixel (grayscale) image as an m×n matrix A where Aij is the intensity
of the pixel (i, j). If we can store fewer thanmn entries, we have a compressed representation.

Let Ak =
∑k

i=1 σiuiv
T
i be the best rank-k approximation of A. Then Ak gives a compressed

version of the image A using the first k singular values. For example, given an input image
with m = 320, n = 200. For Ak, we need to only store vectors u1, . . . , uk and σ1v1, . . . , σkvk.
Thus, we have (m+ n)k entries to store in total.

This gives a compression ratio of (m+n)k
mn

. In our specific example we have

(320 + 200)k

320 · 200
≈ k

123
.

The table below gives values for different k. As can be seen from the relative error and the
compression ratios, this is an effective approach with small k.

204

20.2.1 Image Compression Demo

An example of code for image compression using the above ideas is given in Algorithm 20.2.1.
Note that sample code for colour images is given in SVDimageCompression.m (which just
computes an SVD for each colour channel separately).

Algorithm 20.22 : Grayscale Image Compression

A=rgb2gray(imread(’baboon.png’));
A=double(A);
[U,S,V]=svd(A);
k = 30; ▷ try different choices
Ak=U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
colormap(’gray’);
imagesc(Ak);
axis equal;

Given the input figure on the left below, the code computes the compressed grayscale output
on the right.

We had previously shown that ∥A− Ak∥2 = σk+1 gives the approximation error. So we can
plot the relative error as σk+1

σ1
against the choice of k (see below).

205

As depicted in the plot, the greater the k, the closer to the original image, thus a lower
approximation error.

206

21 Lecture 21: Convergence of Iterative Methods

Outline

1. Introduction
2. Richardson Convergence

(a) Choosing Optimal θ
3. Jacobi, Gauss-Seidel, & SOR Convergence
4. Convergence on Discrete Poisson Equation

(a) Richardson
(b) Jacobi
(c) GS and SOR

21.1 Introduction

We will now revisit iterative schemes to analyze aspects of their convergence behaviour in
detail. In this lecture we will study the stationary iterative methods:

1. Richardson,
2. Jacobi,
3. Gauss-Seidel, and
4. Successive-Over-Relaxation (SOR).

These methods were first discussed in Lecture 08.

Recall that the stationary iterative methods amount to different choices of M when splitting
A = M −N. The generic iteration is

xk+1 = xk +M−1(b− Axk).

For each method we have the following splittings of the matrix A:

1. Richardson: M = 1
θ
I for scalar θ > 0,

2. Jacobi: M = D,
3. Gauss-Seidel: M = D − L,
4. SOR: 1

ω
D − L for scalar ω > 0.

� 0 < ω < 1 indicates under-relaxation;
� 1 < ω indicates over-relaxation.

A =


. . . −U

D

−L . . .



We can rewrite the generic iteration as

xk+1 = (I −M−1A) xk +M−1b.

Then we call G = I −M−1A the iteration matrix for the scheme. The method converges
if and only if ρ(I − M−1A) < 1, where ρ(·) denotes the spectral radius of a matrix
(i.e., maximum eigenvalue magnitude – see Theorem 8.2). Note that a smaller ρ implies
faster convergence to the solution. We will now consider the convergence behaviour for SPD
matrices.

207

21.2 Richardson Convergence

The iteration matrix for the Richardson iteration is

GRich = I −M−1
RichA

= I − θA,

for scalar θ > 0. Let (λ, v) be an eigenpair of A. Then,

GRichv = (I − θA)v

= v − θλv

= (1− θλ)v.

Therefore, µ = 1− θλ is an eigenvalue for GRich.

Lemma 21.1. Let λmin and λmax satisfy λmin ≤ λi ≤ λmax,∀i. Then ρ(GRich) = max{|1−
θλmin|, |1− θλmax|}.

Proof.
λmin ≤ λ ≤ λmax,

1− θλmin ≥ 1− θλ ≥ 1− θλmax,

⇒ |µ| ≤ max{|1− θλmin|, |1− θλmax|}.

Note, if λmin < 0 and λmax > 0 then either

1− θλmin > 1 if θ > 0 or,

1− θλmax > 1 if θ < 0.

Hence, ρ(GRich) > 1 for this case and Richardson will diverge for such matrices. (Recall the
condition on ρ was necessary and sufficient for convergence – Theorem 8.2).

If we assume that A is SPD, then its eigenvalues cannot be negative.

Also, we usually assume that θ > 0.

Theorem 21.1. Assume all eigenvalues of A are positive (i.e., A is positive definite). Then
Richardson converges iff 0 < θ < 2

λmax
.

Proof. If 0 < θ < 2
λmax

, then multiplying through by λmax (and inserting the obvious θλmin ≤
θλmax) yields

0 < θλmin ≤ θλmax < 2,

−2 < −θλmax ≤ −θλmin < 0, (multiply by -1)

−1 < 1− θλmax ≤ 1− θλmin < 1 (add one)

208

Figure 21.32: Finding the optimal θ for Richardson iteration.

Therefore, |1− θλmax| < 1 and |1− θλmin| < 1⇒ ρ(GRich) < 1.

For the other direction assume ρ(GRich) < 1, then

−1 < 1− θλmax ≤ µ ≤ 1− θλmin < 1. (21.39)

From the left inequality of (21.39) we have

−1 < 1− θλmax,

−2 < −θλmax,

⇒ θ <
2

λmax

.

The right inequality of (21.39) gives

1− θλmin < 1,

−θλmin < 0,

⇒ θ > 0. (since λmin > 0)

So 0 < θ < 2
λmax

.

21.2.1 Choosing Optimal θ

Assume A is PD. Assume θ > 0. To optimize convergence speed we must minimize ρ(GRich).
Eigenvalues of A ∈ [λmin, λmax], so eigenvalues of Richardson iteration matrix I − θA are in
[1 − θλmax, 1 − θλmin]. Plotting this range gives the blue region in Figure 21.32 (left). But
to get the minimum spectral radius, we need the absolute value. Reflecting negative parts
over the x-axis gives Figure 21.32 (right).

For any choice of θ, the largest magnitude eigenvalue will sit at the top of the blue band,
shown by the black line in Figure 21.32 (right). Thus ρ is minimized where the two lines

209

|1− θλmin| and |1− θλmax| intersect. Hence, we must find where |1− θλmax| = |1− θλmin|
since this is where the largest µ “switches” lines. That is, the optimal θ is when

−(1− θoptλmax) = 1− θoptλmin

−1 + θoptλmax = 1− θoptλmin

θoptλmax + θoptλmin = 2

θopt(λmax + λmin) = 2

θopt =
2

λmin + λmax

.

Plugging θopt back in to find corresponding ρ gives

ρopt = 1− θoptλmin,

= 1− 2λmin

λmin + λmax

,

=

(
λmax + λmin − 2λmin

λmax + λmin

)
=

(
λmax − λmin

λmax + λmin

)(1
λmin

1
λmin

)

=
λmax

λmin
− 1

λmax

λmin
+ 1

=
κ2(A)− 1

κ2(A) + 1
.

Recall that κ2(A) =
|λmax|
|λmin| and λ > 0 was assumed in Theorem 21.1. Note that

1. we need eigenvalues (or estimates) to choose optimal θ, and
2. convergence can be slow, depending on λ’s.

21.3 Jacobi, Gauss-Seidel, & SOR Convergence

In this section we give convergence results for Jacobi, Gauss-Seidel, and SOR.

Theorem 21.2. If A and 2D − A are SPD, then the Jacobi iteration converges.

210

Proof. Let µ be an eigenvalue of GJ = I −M−1
J A = I −D−1A, with eigenvector v. Then

(I −D−1A)v = µv,

D−1(D − A)v = µv,

(D − A)v = µDv,

vT (D − A)v = µvTDv,

vTDv − vTAv = µvTDv,

vTDv − µvTDv = vTAv

(1− µ)vTDv = vTAv

> 0, since A is SPD.

So (1− µ)vTDv > 0, which implies µ < 1, because vTDv > 0, since A is SPD and hence D
is SPD. Similarly, since 2D − A is SPD,

vT (2D − A)v > 0

vTDv − vTAv > −vTDv

vT (D − A)v > −vTDv.

Now note that (
I −D−1A

)
v = µv

(D − A) v = µDv

vT (D − A) v = µvTDv,

and thus we can continue the above sequence of inequalities:

µvTDv > −vTDv

(µ+ 1)vTDv > 0

⇒ µ > −1, since D is SPD.

Hence, −1 < µ < 1⇒ ρ
(
GJ
)
< 1, i.e. a Jacobi iteration converges.

Theorem 21.3. If A is SPD then GS and SOR (for 0 < ω < 2) both converge.

The optimal value of ω for SOR is not known in general. It is only known for special cases,
e.g., for A that are tridiagonal and SPD we have

ωopt =
2

1 +
√

1− ρ(GJ)2
,

where GJ is Jacobi’s iteration matrix.

Gauss-Seidel and Jacobi also converge for another class of matrices, called M-matrices.

Definition 21.1. A is an M-matrix if

(i) aii > 0,

211

(ii) aij ≤ 0 for i ̸= j,
(iii) A−1 exists and (A−1)ij ≥ 0,∀i, j.

Theorem 21.4. If A is an M-matrix then Jacobi and GS converge and

ρ(I −M−1
GSA) ≤ ρ(I −M−1

J A) < 1,

i.e., GS converges at least as rapidly as Jacobi.

Stationary iteration methods are often slow for low-
frequency error components. Their modern use is often
in “multigrid” methods, that use multiple grid levels to
find a solution more quickly.

Since low frequency data has relatively high frequency on
coarser grids, those errors can be eliminated more quickly,
by transferring the solution between levels.

21.4 Convergence on Discrete Poisson Equation

Analytical expressions can be found for eigendecompositions of certain matrices. This can
give us a sense for how our iterative schemes fare in practice. We will consider the familiar
2D finite difference Laplacian matrix for the Poisson equation:

−∇ · ∇u = f,

−uxx − uyy = f.

Note that the negative sign in front of the Laplacian makes the finite difference matrix
positive definite (otherwise it is negative definite).

Theorem 21.5. Let A be the negative of a 2D Laplacian matrix with cell size h and m grid
points in each axis. Then the exact eigenvalues are

λij =
4

h2

[
sin2

(
πhi

2

)
+ sin2

(
πhj

2

)]
for 1 ≤ i, j ≤ m.

Note that the smallest eigenvalue is

λmin =
8

h2
sin2

(
πh

2

)
,

and the largest eigenvalue is

λmax =
8

h2
sin2

(
mπh

2

)
,

=
8

h2
sin2

(π
2
(1− h)

)
, using h =

1

m+ 1
or mh = 1− h,

=
8

h2
cos2

(
πh

2

)
, using sin

(π
2
− u
)
= cos(u).

212

The matrix A is both SPD and an M-matrix. Furthermore, the conditioning of A gets worse
with finer grids, e.g., consider two grid resolution cases

1) h =
1

10
, m = 9,

λmin ≈ 19.6,

λmax ≈ 780,

κ2 =
λmax

λmin

≈ 40.

2) h =
1

100
, m = 99,

λmin ≈ 19.7,

λmax ≈ 80000,

κ2 =
λmax

λmin

≈ 4000.

Finer Resolution → Worse conditioning.

21.4.1 Richardson

We will finish this lecture by showing convergence for the Poisson equation with the station-
ary iterative methods. For the Richardson iteration we have

ρ(I − θA) = max

{∣∣∣∣1− θ
8

h2
sin2

(
πh

2

)∣∣∣∣ , ∣∣∣∣1− θ
8

h2
cos2

(
πh

2

)∣∣∣∣} .

Hence, Richardson converges for

0 < θ <
2

λmax

=
h2

4 cos2
(
πh
2

) .
The optimal θ is

θopt =
2

λmax + λmin

=
2

8
h2

(
������������: 1

cos2
(
πh
2

)
+ sin2

(
πh
2

)) =
h2

4
,

which gives optimal convergence with

ρopt =
λmax − λmin

λmax + λmin

=
8
h2

(
cos2

(
πh
2

)
− sin2

(
πh
2

))
8
h2

= cos2
(
πh

2

)
− sin2

(
πh

2

)
= 1− 2 sin2

(
πh

2

)
, since cos2 x = 1− sin2 x

= cos(πh), since 1− 2 sin2(u) = cos(2u).

213

21.4.2 Jacobi

Since

D =
4

h2
I

= θ−1optI,

therefore we have that

GJ = I −D−1A

= I − θoptA.

Therefore, Jacobi iteration is equivalent to the optimal Richardson iteration for this case,
and hence

ρ = cos(πh).

The Taylor expansion of cos(x) gives

cos(x) = 1− x2

2
+

x4

4
+

Therefore,

ρ
(
I −D−1A

)
= cos(πh)

= 1− π2h2

2
+O

(
h4
)
.

For small h, Jacobi (and optimal Richardson) has slow convergence, since ρ
(
GJ
)
≈ 1.

21.4.3 GS and SOR

The spectral radius for Gauss-Seidel is the square of that for Jacobi [Proof still needed],
and so we have

ρ
(
I −M−1

GSA
)

=
[
ρ(I −M−1

J A)
]2

= cos2(πh),

= 1− sin2(πh),

= 1− π2h2 +O(h4). (Taylor expansion)

Notice there is no division by 2 compared to Jacobi, so GS convergence is 2 times better
than Jacobi. However, this is only a constant factor, therefore GS is still slow for small h.
This relationship is typical for SPD systems.

For SOR we have that

ωopt =
2

1 + sin(πh)
,

214

and thus

ρopt = ωopt − 1

=
1− sin(πh)

1 + sin(πh)
,

= 1− 2πh+O(h2).

Therefore, optimal SOR is much faster than GS/Jacobi/Richardson since the h factor is not
squared. For example, with h = 0.1 we have

ρ(GJ) = 0.95,

ρ(GGS) = 0.9,

ρ(GSOR) = 0.37.

Run the demo code StationaryIterativeConvergence.m to see a comparison of Jacobi,
GS, SOR, and optimal SOR iterations for solving the Laplace equation (i.e., the Poisson
equation with f = 0). It is apparent from the demo that optimal SOR converges much
faster.

215

22 Lecture 22: Convergence of Iterative Methods

Outline

1. Conjugate Gradient Convergence
2. Preconditioning Idea

(a) Symmetric Preconditioning
3. Common Preconditioners

(a) SGS Implementation
(b) “Incomplete” Cholesky preconditioning

4. Extensions
5. (Last) Graphics Application

In this final lecture of new material for which you will be responsible, we will examine
the convergence of the conjugate gradient method in more detail. We then introduce the
idea of preconditioning to accelerate convergence of the conjugate gradient method. The
conjugate gradient method was first introduced in Lecture 09.

22.1 Conjugate Gradient Convergence

Assumption: A is SPD.

We will need the following fact soon. For any k,

e(k) = x− x(k), so that

e(0) = x− x(0), and

Ae(0) = A
(
x− x(0)

)
= Ax− Ax(0)

= b− Ax(0)

= r(0).

Recall, at each step, CG finds the best solution x(k) in the span of search vectors so far,
under the A-norm. That is, the CG method minimizes∥∥e(k)∥∥

A
=
∥∥x− x(k)

∥∥
A
= min

x′∈Kk(A)
∥x− x′∥A ,

216

where x is the true solution and Kk is a Krylov subspace (see Lecture 09). We can write

∥∥e(k)∥∥
A

= min

∥∥∥∥∥∥∥∥∥∥
x−

(
x(0) +

k−1∑
i=0

αip
(i)

)
︸ ︷︷ ︸

x′∈Kk(A)

∥∥∥∥∥∥∥∥∥∥
A

, for αi ∈ R

= min

∥∥∥∥∥x− x(0) −
k−1∑
i=0

αip
(i)

∥∥∥∥∥
A

= min

∥∥∥∥∥e(0) −
k−1∑
i=0

αip
(i)

∥∥∥∥∥
A

= min

∥∥∥∥∥e(0) +
k−1∑
i=0

γiA
(i)r(0)

∥∥∥∥∥
A

, for γi ∈ R,

since span{p(0), p(1), . . . , p(k−1)} = span{r(0), Ar(0), A2r(0), . . . , Ak−1r(0)}, as in Lecture 09.

Now define the following polynomial function

Qk−1(x) = γ0 + γ1x+ γ2x
2 + . . .+ γk−1x

k−1.

Then taking the matrix A as the argument we have

Qk−1(A) = γ0 + γ1A+ γ2A
2 + . . .+ γk−1A

k−1,

=
k−1∑
i=0

γiA
i.

Now we can rewrite the error as

e(k) = e(0) +
k−1∑
i=0

γiA
ir(0)

= e(0) +Qk−1(A)r
(0)

= e(0) +Qk−1(A)Ae
(0), since r(0) = Ae(0) as above

= (I +Qk−1(A)A︸ ︷︷ ︸
Another polynomial

)e(0).

Define Pk(x) = 1+Qk−1(x)x, then deg(Pk) ≤ k and Pk(0) = 1. So, we have e(k) = Pk(A)e
(0)

and therefore

∥e(k)∥A = min
{∥∥Pk(A)e

(0)
∥∥
A
: Pk(A) = poly. of deg. ≤ k with Pk(0) = 1

}
.

That is, if P̃k(x) is any polynomial of degree≤ k with P̃k(A) = 1 then
∥∥e(k)∥∥

A
≤
∥∥∥P̃k(A)e

(0)
∥∥∥
A
.

So CG finds (implicitly) the optimal polynomial to minimize the error in the A-norm. By
choosing a particular polynomial we can obtain a bound on the error, given in the next
theorem (see Shewchuk’s article for expanded derivation).

217

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Theorem 22.1. ∥∥e(k)∥∥
A
≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k ∥∥e(0)∥∥
A
.

[Proof still needed]

The actual CG convergence depends on all eigenvalues and is often better. The above is a
worst case upper bound. Let us consider A with only 3 distinct eigenvalues

λ1 < λ2 < λ3 , some eigenvalue may have mulitplicity > 1.

We can show convergence in 3 iterations by choosing a “good” polynomial! Write the initial
error in terms of unit orthogonal, eigenvectors vj, of A

e(0) =
n∑

j=1

ξjvj, for some coefficients ξi.

Also observe Pk(A)vj = Pk(λj)vj. Now, form a Lagrange polynomial P3(x) with degree
≤ 3 such that P3(0) = 1 and P3(λj) = 0 for j = 1, 2, 3.

Note that

e(k) = Pk(A)
n∑

j=1

ξivj,

=
n∑

j=1

ξjPk(λj)vj, since vj is an eigenvector

⇒ Ae(k) =
n∑

j=1

ξjPk(λj)λjvj, since vj is an eigenvector

⇒
∥∥e(k)∥∥2

A
=

n∑
j=1

ξ2j [Pk(λj)]
2 λj. because of orthogonality

Hence, ∥∥e(3)∥∥
A
≤
∥∥P3(A)e

(0)
∥∥2
A
=

3∑
j=1

ξ2j [P3(λj)]
2 λj = 0,

which means the error will be zero after 3 iterations. Since CG picks the optimal polynomial,
it converges at least as fast as this, i.e., in 3 steps regardless of κ(A).

22.2 Preconditioning Idea

We have seen that depending on eigenvalues of A, convergence of CG may still be rather
slow. For the discretization of the Poisson equation, the asymptotic convergence of SOR
(with optimal ω) matches CG. (Note that CG has the advantage of not having to find any

218

optimal parameter.) How can we improve the speed of convergence for CG even further?
We speed up convergence using the idea of preconditioning.

We want to find a modified linear system, with nicer properties, but has the same
solution. We want a better condition number κ(A) (or more clustered eigenvalues), to
achieve faster convergence, i.e., fewer CG iterations.

Consider the system
(M−1A)x = M−1b vs. Ax = b.

The same x is a solution to both problems, but we would prefer to solve the “easier” one. In
this situation the matrix M is called a preconditioner. Similar to splitting in stationary
iterative methods, we desire

1. M ≈ A, (exercise: why?)
2. M−1 to be easy to build, or rather, My = c to be cheap to solve. (exercise: why?)

22.2.1 Symmetric Preconditioning

To use CG, we need our modified system to also be SPD. Note that M−1A is not necessarily
SPD, even if M and A are. If we let M be SPD, then a Cholesky factorization M = LLT

exists. We instead form a new modified system as

L−1AL−T︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸︷︷︸
b̃

.

Notice Ã is SPD by construction. The preconditioner is effectively split into left and right
parts.

Claim: Ã is similar to M−1A.

Proof: Observe that

M−1A =
(
LLT

)−1
A

= L−TL−1A, so that

LT
(
M−1A

)
L−T = LT

(
L−TL−1A

)
L−T

= L−1AL−T

= Ã,

and hence Ã is a similarity transform of M−1A.

Moral: This could now be solved by CG and this system has the same convergence behavior,
since M−1A and L−1AL−T have the same eigenvalues!

This leads to a näıve approach for preconditioning CG. The näıve approach is:

� form the modified system, L−1AL−T x̃ = b̃,
� apply basic CG,
� transform solution x̃ to recover x (solve LTx = x̃).

219

The downside of this näıve approach is that it requires factoring M , which is potentially very
costly. We must also run the full LLT process on it, possibly leading to a large fill.

22.3 Common Preconditioners

A better approach would be to not form Ã explicitly. Instead we modify the CG algorithm
itself (via change of variables) to include a single new “preconditioning step”

xk = M−1rk.

The theory only requires M to be SPD and we must be able to solve Mzk = rk (hopefully
cheaply). With this better approach, there is no need for factorization of M = LLT . The
preconditioned CG method is given in Algorithm 22.23. Note that we essentially add one
extra line; if M = I, we recover basic CG.

Algorithm 22.23 Preconditioned CG Algorithm

x0 = initial guess
r0 = b− Ax0

for k = 0, 1, 2, . . . , n− 1
zk = M−1rk (or preferably solve Mzk = rk)

βk =

{
0 if k = 0

(zk,rk)
(zk−1,rk−1)

otherwise

pk =

{
zk if k = 0
zk + βkpk−1 otherwise

αk = (zk,rk)
(pk,Apk)

xk+1 = xk + αkpk

rk+1 = rk − αkApk

end for

Common preconditioners for M often are related to our stationary iterative methods:

� Jacobi preconditioning:

MJ = D (easiest! but not great),

� Symmetric Gauss-Seidel:

MSGS = (D − L)D−1(D − U),

� Symmetric SOR:
MSSOR = (D − ωL)D−1(D − ωU).

220

22.3.1 SGS Implementation

One can express
MSGS = (D − L)D−1(D − U) = LMUM ,

as an LU factorization where

LM = (D − L)D−1,

UM = (D − U).

Since LM is lower triangular and UM is upper triangular, SGS preconditioning zk = M−1rk

just requires two triangular solves:

(I − LD−1)y = rk,

(D − U)zk = y.

22.3.2 “Incomplete” Cholesky preconditioning

The LMUM factorization above gives us the hint for using other factorizations. With incom-
plete Cholesky (IC) preconditioning we find a partial Cholesky factorization where LLT ≈ A
(only approximately). We construct L via a Cholesky-like process, but skip (some or all)
steps that would introduce new non-zero entries.

The IC preconditioner is not guaranteed to exist except in special cases (e.g., Laplacian,
other M-matrices, etc.). The figure below shows an example of the sparsity pattern of the
Cholesky and IC factorizations of the discrete Laplacian.

Laplacian A Cholesky Factor Incomplete Cholesky Factor

The sparsity pattern of L in the IC factorization stays close to A’s compared to the full
Cholesky factorization. Therefore, memory/speed cost remains low, but eigenvalues improve
enough to accelerate CG convergence significantly.

For example, with the discrete Laplacian for m = 14

κ(A) ≈ 90.5, λmax ≈ 1780, λmin ≈ 19.7, 23 CG iterations for tol = 10−7.

221

However, setting L = ichol(A) and Ã = L−1AL−T we have

κ(Ã) ≈ 8.9, λmax ≈ 1.2, λmin ≈ 0.135, 14 PCG iterations for tol = 10−7.

Notice, we now have a better condition number, smaller eigenvalues, and fewer iterations for
convergence.

MATLAB’s CG routine is pcg for preconditioned conjugate gradient. It accepts precondi-
tioner(s) as extra arguments. Incomplete Cholesky preconditioning is supported via ichol.
The demo code PCGDemo.m compares CG, PCG, and optimal SOR for solving the Laplace
equation. It can be seen from running this code that PCG converges much faster than the
other two methods.

22.4 Extensions

A big limitation to the CG method is that it only applies to SPD matrices. However, many
matrices encountered “in the wild” are not of this form. We briefly discuss how non-SPD
matrices are handled in this section.

Option #1: One could solve the linear system as a least-squares problem. The solution to
minx ∥Ax− b∥22 for square A satisfies Ax = b. So we just need to solve the normal equations
ATAx = AT b with CG (“CGNR”). For this approach:

� Simple to code and ATA is SPD!
� The condition is much worse (≈ squared).

Option #2: Extensions of CG ideas (“Krylov solvers”) exist for general systems:

� Symmetric indefinite systems: MINRES, SYMMLQ, . . .,
� General non-symmetric: GMRES, BiCGSTAB,

Similar to CG, these aim to satisfy certain optimality properties. For example, MINRES
seeks to minimize the norm of the residual.

For preconditioning there are also many others such as:

� (sparse) approximate inverse preconditioners,
� multilevel/multigrid preconditioners,
� parallel preconditioners,
� domain decomposition and block preconditioners, etc.

Preconditioners can also be applied to Krylov methods for indefinite and non-symmetric lin-
ear systems (MINRES, GMRES, etc.). Finding effective preconditioners for Krylov methods
can depend heavily on the specific application problem/domain and its matrix structure. For
more, see Preconditioning Techniques for Large Linear Systems: A Survey [Benzi 2002].

22.5 (Last) Graphics Application

Dr. Christopher Batty here at UWaterloo (and some of his students) enjoy animating viscous
liquids. However, the linear systems are very large and denser than Poisson/Laplacian. In

222

one example, of melting the Stanford Bunny, the cost of solving the linear system for the
viscosity costs way more (≈ 95% of total) than any other step of fluid animation!

Reducing the cost has been tackled in two ways:

� Adaptive grid structures,
� Specialized multigrid preconditioners.

Adaptive grid structures reduce the cost by adding fine grids only where fine detail is nec-
essary. In graphics, the interesting visual details are usual near the surface. Therefore, fine
grids are used near the surface and larger grids are used far away from the surface. The size
of the overall linear system is therefore smaller compared to using the fine grid throughout
the whole domain.

The idea of using a multigrid preconditioner is as follows. One creates a multi-level ap-
proximation of the physical domain, perform “smoothing” at each level (using local Cholesky
factorizations), and use the whole process as part of a CG preconditioner.

223

The moral of the story is that familiarity with numerical linear algebra can enable huge
speedups by:

a) Using existing algorithms more wisely,
b) Developing specialized algorithms for your problem/matrix.

224

23 Lecture 23: Principle Component Analysis (Op-

tional)

Outline

1. Principle Component Analysis
(a) PCA via Eigendecomposition
(b) PCA via SVD

2. Applications
(a) Dimensionality Reduction
(b) Eigenfaces

23.1 Principle Component Analysis

Another application of the SVD is for principle component analysis (PCA) of data.
PCA is a method of extracting/expressing the important components in a data set. For
example, consider an m × n matrix X (consisting of n column vectors xi, each of length
m).

� Each column represents a sample, and
� each row represents a variable.

Let’s find an orthogonal transformation PX = Y into a new basis, given by P , that “better”
expresses the data. That is, we want to find the orthogonal direction vectors that express
the most variation in the data (in descending order of importance).

This video explains the setup of the next diagram: https://youtu.be/FgakZw6K1QQ

The figure below (for m = 2) shows data samples (blue points) and their variation (red lines)
from the line of best fit (black line). The displayed data is already centred around the origin.
The black line is close to horizontal, so the difference lines are close to vertical.

First, we compute the mean vector

⟨x⟩ ≡ 1

n

n∑
i=1

xi

225

https://youtu.be/FgakZw6K1QQ

We will subtract the mean out from each sample to center the data around zero. Our
covariance matrix is defined by

C ≡ 1

n− 1

n∑
i=1

(xi − ⟨x⟩)(xi − ⟨x⟩)T

After subtracting the mean vector off from our data, we can express it as

C ≡ 1

n− 1
XXT

This essentially measures how correlated entries in the sample vectors are to each other (i.e.,
how much they agree).

23.1.1 PCA via Eigendecomposition

The desired “principle components” are simply the eigenvectors of the covariance ma-
trix

1

n− 1
XXT = QΛQT ,

so the orthogonal transformation is P = QT . The transformed data vectors in the new
basis are Y = PX. Entries of yi vectors express (orthogonal) contributions of principal
components to xi

yi =


p1 · xi

p2 · xi

p3 · xi
...

pm · xi

 .

We find yi for a given xi using dot products with the principle component vectors pj.

23.1.2 PCA via SVD

Actually forming XXT is not ideal numerically. Therefore, we apply a SVD approach that
works directly with X instead. We can form the SVD of

1√
n− 1

XT = UΣV T .

Then the columns of V are the desired principal components, i.e., P = V. Sample MATLAB
code for PCA via the SVD is below, and in the PCA.m file.

function output = PCA(data)
mn=mean(data , 2) ; %compute the mean

%fo r each dimension
[M,N]= s ize (data) ;
mns=repmat (mn, 1 ,N) ;
data=data=mns ; %sub t r a c t o f f the mean

226

%for each dimension
Y=data ’ / sqrt (N=1); %cons t ruc t the matrix Y
[U, S ,PC]=svd (Y) ; %ex t r a c t p r i n c i p a l components
s i g n a l s=PC’* data ; %pro j e c t the o r i g i n a l data
output=s i g n a l s ;

end

For more information on PCA see “A Tutorial on Principle Component Analysis” [Schlens
2014].

23.2 Applications

23.2.1 Dimensionality Reduction

Recall the low-rank approximation property of SVD. We know that larger singular values
contribute more to the data. Dimensionality reduction of data simply means discarding
the principal components associated with smaller singular values. That is, take

Yk = PkX,

where we keep only the components corresponding to the k largest singular values. Now
fewer variables are needed to express the data. The data becomes cheaper to store and
manipulate, similar to the earlier image compression example.

23.2.2 Eigenfaces

PCA was used in an early approach to facial recognition [Turk and Pentland 1991]. Faces
were treated as data vectors and assembled into a matrix X. Then, PCA/SVD/eigendecom-
position was performed to find the basis (eigen)vectors. Weighted combinations of eigenvec-
tor/images (“eigenfaces”) can recover the input faces. The video https://www.youtube.

com/watch?v=J0arU2PAMls demonstrates this idea.

The steps are as follows. Given an input image:

227

https://arxiv.org/abs/1404.1100
https://arxiv.org/abs/1404.1100
https://www.youtube.com/watch?v=J0arU2PAMls
https://www.youtube.com/watch?v=J0arU2PAMls

1. Subtract out the mean face,
2. Find a weight vector by projecting it onto the eigenvectors (eigenface),
3. Select the person/face with the closest matching set of weights.

Here are some drawbacks of this approach:

� Very dependent on the data set (only works on faces belonging to the input),
� Many eigenvectors capture lighting effects rather than facial features,
� Based only on 2D images, so does not understand the 3D shape of faces/heads.

228

24 Lecture 24: Course Review and Wrap-Up

Outline

1. Final Exam Details
2. Course Review
3. Course Wrap-up
4. Student Perception Surveys

24.1 Final Exam Details

The details will be posted at https://www.student.cs.uwaterloo.ca/~CS475/schedule.
shtml

24.2 Course Review

We finish this final lecture with a review of the central themes, which were:

� Direct vs. Iterative methods,
� Matrix properties, sparsity, and structure; their relationship to algorithms (and algo-
rithm design),

� Matrix factorizations (LU/Cholesky, eigendecomposition, QR, SVD) and their uses
(linear systems, least squares, eigenvalue problems),

� Orthogonality of vectors and matrices.

The topic map below gives an overview of all the material in this course.

229

https://www.student.cs.uwaterloo.ca/~CS475/schedule.shtml
https://www.student.cs.uwaterloo.ca/~CS475/schedule.shtml

24.3 Course Wrap-up

What questions do you have?

24.4 Student Perception Surveys

https://perceptions.uwaterloo.ca/

230

https://perceptions.uwaterloo.ca/

Index

Cholesky factor, 18
Cholesky factorization, 18

full rank, 7

lower bandwidth, 25

nonsingular (invertible) matrix, 7
null space, 7

permutation matrices, 43
positive definite, 14

range, 6

singular value decomposition, 174
sparse matrices, 27

upper bandwidth, 25

231

	Lecture 01: Linear Algebra Review
	Course Mechanics
	Basic Theory of Linear Algebra
	Q & A

	Lecture 02: Solving Linear Systems
	Solving Linear Systems
	LU Factorizations
	Symmetric Systems
	Positive Definite Systems

	Lecture 03: Solving Linear Systems
	Solving Linear Systems
	Symmetric Positive Definite (SPD) Systems
	Banded Matrices
	General Sparse Matrices

	Lecture 04: Finite Differences for Modelling Heat Conduction
	Finite Differences for Modelling Heat Conduction

	Lecture 05: Graph Structure of Matrices; Matrix Re-Ordering
	Graph Structure of Matrices
	Graph Structure
	Fill-in During Factorization

	Matrix Reordering
	Key Idea

	Lecture 06: Matrix Re-Ordering
	Matrix Reordering
	Key Idea
	Example with Natural Ordering
	Envelope Reordering
	Level sets
	Cuthill-McKee

	Lecture 07: Matrix Re-ordering; Image De-Noising
	Matrix Re-ordering
	Markowitz Reordering
	Minimum Degree Reordering
	Stability (Optional)
	Pivoting (Optional)

	Image De-Noising
	Inverse Problems
	Regularization Models

	Lecture 08: Iterative Methods
	Iterative Methods
	Stationary Iterative Methods

	Splitting Methods
	Richardson Iteration
	Jacobi Iteration
	Gauss-Siedel Iteration
	Successive Over-Relaxation (SOR)

	Convergence of Splitting Methods

	Lecture 09: Iterative Methods - Conjugate Gradient Method
	Solution by Steepest Descent
	Towards the Conjugate Gradient Method

	Another Search Direction Idea
	Gram-Schmidt (A-)orthogonalization
	Conjugate Directions Method

	Conjugate Gradient Method
	Efficient Conjugate Gradient Method
	Error Behaviour

	Lecture 10: Least Squares Problems
	Least Squares
	Method 1: Normal Equations
	Method 2: QR Factorization
	QR for Least Squares

	Lecture 11: Gram-Schmidt Orthogonalization
	QR factorization via Gram-Schmidt
	Orthonormalization for Q
	Upper Triangular Matrix R

	Modified Gram-Schmidt
	Complexity of Gram-Schmidt

	Lecture 12: Householder QR factorizations
	Householder Triangularization
	Householder QR Factorization Algorithm
	Example: Householder Reflector
	Example: QR Factorization via Householder

	Lecture 13: Givens Rotations
	Givens Rotations
	Hessenberg via Givens
	Least Squares: Normal Equations vs QR

	Lecture 14: Eigenvalues / Eigenvectors
	Eigenvalue Problem Definitions
	Traditional Eigenvalue Problem Review
	Solving Eigenvalue Problems (Naïve Approach)
	Eigenvalue/Eigenvector Review Example
	Rayleigh quotient
	Power Iteration

	Lecture 15: Eigenvectors / Eigenvalues - Iterative Methods
	Inverse Iteration
	Shifting Eigenvalues

	Rayleigh Quotient Iteration
	Computational Complexity
	QR Iteration

	Lecture 16: Eigenvectors / Eigenvalues - Practical QR
	Simultaneous (aka Block Power) Iteration
	Simultaneous Iteration vs. QR Iteration
	Convergence of QR Iteration
	Eigenvalue Problems Recap

	Reduction to Upper Hessenberg
	First attempt:
	Second Attempt:
	Symmetric Matrices: Two-Phase Process

	Aside: The QR Iteration's Inventors

	Lecture 17: Eigenvectors / Eigenvalues - Image Segmentation
	Definitions
	Graph Laplacians
	Unnormalized Graph Laplacian
	Normalized Graph Laplacian

	Clustering using Graph Laplacians
	Relaxation of RatioCut via Graph Laplacian
	Relaxation of Ncut via Graph Laplacian

	K-means Clustering
	Spectral Clustering: Cuts and K-means Together
	Choosing Weights W

	Other Applications
	Geometric Mesh Processing
	Motion Analysis

	Lecture 18: Introduction to Singular Value Decompositions
	Geometric Motivation: AV = U
	Matrix Form
	Comparison with Eigendecomposition

	Properties of the SVD
	Computing the SVD - 1st Attempt
	Example

	Lecture 19: Singular Value Decompositions Versus Eigendecomposition
	Alternative Formulation
	Alternate Approach Example

	Proof of Existence of SVD
	Stability Comparison
	Golub-Kahan Bidiagonalization

	Lecture 20: Application - Image Compression
	Best Approximation to A
	Application of SVD to Image Compression
	Image Compression Demo

	Lecture 21: Convergence of Iterative Methods
	Introduction
	Richardson Convergence
	Choosing Optimal

	Jacobi, Gauss-Seidel, & SOR Convergence
	Convergence on Discrete Poisson Equation
	Richardson
	Jacobi
	GS and SOR

	Lecture 22: Convergence of Iterative Methods
	Conjugate Gradient Convergence
	Preconditioning Idea
	Symmetric Preconditioning

	Common Preconditioners
	SGS Implementation
	``Incomplete" Cholesky preconditioning

	Extensions
	(Last) Graphics Application

	Lecture 23: Principle Component Analysis (Optional)
	Principle Component Analysis
	PCA via Eigendecomposition
	PCA via SVD

	Applications
	Dimensionality Reduction
	Eigenfaces

	Lecture 24: Course Review and Wrap-Up
	Final Exam Details
	Course Review
	Course Wrap-up
	Student Perception Surveys

