Lecture 02 - Solving Linear Systems

May 7, 2025
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© High-Level Motivation
@ Solving Linear Systems
@ LU factorizations
@ Complexity
® Symmetric Systems
@ Positive Definite Systems
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High-Level Motivation

Applications We Will Study

@ Solving Linear Systems
©® heat conduction (including difference equations)
@ image de-noising

@ Least Squares
@ motivated by statistical methods

© Eigenvalues / Eigenvectors
@ image segmentation

@ Singular Value Decompositions
@ image compression
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Solving Linear Systems

How To Compute x = A~1b: In numerical linear algebra, we
never compute A~ in order to compute A~1h. Instead we
compute x as the solution of Ax = b, via Gaussian elimination.
Big Picture of Gaussian Elimination

X X X X X X X X
X X X X 0 x x x
— —
X X X X 0 x x x
X X X X 0 x x x
A A)
X X X X X X X X
0 x x x 0 x x x
_>
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0 0 x x 0 0 0 x
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Solving Linear Systems

GE Algorithm

fori=1,2, .. n-1
for k =i+1, ..., n
mult = ay; / aji

a,i =0 not needed, but helpful for intuition
forj =i+1, ..., n
ayj = axj— mult xa; update row k
end
b = bx— mult *b; update RHS
end

end

At the end, A" Dx = p("=1) is solved by back substitution.
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Solving Linear Systems - LU Factorizations

Theorem 1

If A can be reduced to RREF without interchanging rows, then
there is a unique factorization A = LU, where L is lower triangular
with 1s on its diagonal (i.e. unit diagonal), and U is upper
triangular. Moreover,

1 0
U=A01D | = _
mult 1
Proof.
See the proof, starting on pl44 of Matrix Analysis and Applied
Linear Algebra, by Carl D. Meyer. O

Important Remark: Not every non-singular n x n matrix A has an

LU-decomposition. E.g. A= [2 ﬂ
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Solving Linear Systems - LU Factorizations

Then solving Ax = b is equivalent to solving LUx = b. Let
y = Ux. Then Ly = b. So we

@ Solve Ly = b by forward solving, then
@ Solve Ux = y by back solving.
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Solving Linear Systems - LU Factorizations

Forward Solve Algorithm

fori=1,2,...,n

yi = b;
for j=1,2,...,i—1
yi=yi—lj*y (yi = b -] /ijyj>
end
end
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Solving Linear Systems - LU Factorizations

Backward Solve Algorithm

fori=n,...,1
Xi = Yi
forj=i+1,...,n
Xi = Xj = Ujj * X (X,- =Yi— i i Uinj)
end
x; = x;j/uji % diagonal entries not necessarily 1
end
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Solving Linear Systems - LU Factorizations
Complexity
e lflop=+/—/x/+.
@ Consider the forward solve algorithm. For each /7, the j-loop
performs 2(i — 1) flops.

Total flops = Z 2(i—1)

c 0o(n?).

o flops(back-solve) € O(n?) (Exercise).

o flops(LU factorization) = 2n® + O(n?) (Exercise).
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Solving Linear Systems - LU Factorizations

For large n, the factorization is more expensive than forward and
back solving.
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Solving Linear Systems - LU Factorizations

Special Linear Systems
@ Exploit special structures of linear systems

@ More efficient LU factorization
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Solving Linear Systems - Symmetric Systems

e LDMT factorization, variant of LU.

We do NOT assume that A is symmetric yet; the next Theorem
applies whether A is symmetric or not.

Definition 2

A principal submatrix is a smaller matrix constructed by deleting
rows and corresponding columns.
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Solving Linear Systems - Symmetric Systems

Some examples are

2—3—4—5
6—F—8—9—10
H—3P—313—34—15| — [19 20]
16 17 18 19 20 24 25
21 22 283 24 25
and
1 2 3 4 5
6—F—8—9—106 1 3 5
11 1p 13 14 15| — (11 13 15
16—31F—18—19—20 21 23 25
21 2 23 24 25
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Solving Linear Systems - Symmetric Systems

The following results are reproduced from Chapter 3 of Matrix
Analysis and Applied Linear Algebra, by Carl D. Meyer.

Definition 3

The leading principal submatrices of A are defined to be those
submatrices taken from the upper-left-hand corner of A. That is

A1

A

[311] )

a1 a1
|a21 ax]’
ai a1 n—1
)
|4n—11 - @dn-1n-1
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Solving Linear Systems - Symmetric Systems

Theorem 4
Each of the following statements is equivalent to saying that a
non-singular n X n matrix A possesses an LU-factorization.

© A Zzero pivot does not emerge during row-reduction to
upper-triangular form with Type Il operations.

@ Each leading principal submatrix Ay is non-singular.
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Solving Linear Systems - Symmetric Systems
Proof: We will prove the statement concerning the leading
principal submatrices and leave the proof concerning the nonzero
pivots as an exercise.
First, assume that A has an LU-factorization.
@ For any 1 < k < n, partition A as

A = LU
_ [Lll 0 } [Un U12}
Loy Ly | O Uxn

_ |:L11 Ui *]

* *

where L11 and Uj1 are both k x k.
@ Then Ax = L11Uq1 is non-singular, because both of L1; and
Ui are non-singular (each is triangular, with non-zero
diagonal entries).
@ Since k was arbitrary, this shows that all of the leading
principal submatrices of A are nonsingular.
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Solving Linear Systems - Symmetric Systems

Second, assume that the leading principal submatrices of A are all
non-singular.

o Let 1 < k < n be arbitrary.

@ We will prove by induction on k that each A, has an
L U-factorization.

@ Then, since A= A,, it follows that A has an LU-factorization.
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Solving Linear Systems - Symmetric Systems

Base (k =1):

0 A = [311], so the assumption that A; is non-singular
guarantees that aj; # 0.

@ Then A1 = [1] [311] is an LU-factorization of Aj.

@ This completes the base case.
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Solving Linear Systems - Symmetric Systems
Induction (k > 1):

@ The induction hypothesis is that all Ay, for 1 < ¢ < k, have
LU-factorizations.

In particular, Ax_1 has an LU-factorization.
Write Ax_1 = Lx_1Uk_1.

By assumption, Ak_1 is non-singular.
Therefore A, 1, = U M LY

Define

¢’ = the first k — 1 components of the k" row of Ay,

b = the first k — 1 components of the k¥ column of Ay,
ax = the (k, k) entry of Ag.

@ With this notation, we can write

A1 b
Ak:[:Tl ozk]
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Solving Linear Systems - Symmetric Systems

| claim that the following is an LU-factorization of Ag:

[ Li—1 0] [Uk_l Ltb
cTU 1] 0 ap—cTA b

Ly Uk
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Solving Linear Systems - Symmetric Systems
We verify that this works in each of the 4 blocks of Ag.
o top-left k —1 x k — 1 block: Lx_1Ux_1 = Ak_1, by the
induction hypothesis.

o row k, first k — 1 entries: [cT U, ', 1] [Uk_l] —cT.
—

0

kxk—1

1xk

@ column k, first k — 1 entries:

Loy o[ bt 1oy
=l —cTAL ] T

k—1xk
kx1

Lt b
[~Ty1 k—1 —
@ k, k entry: [C U 1] [ak B CTAk_llb] =

1xk
kx1

T /-1 -1 T p—1 _
c'U L bt+ak—c A b= a.
N——
,A*I
k-1
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Solving Linear Systems - Symmetric Systems

@ Observe that

e Ly has 1s on its diagonal, and
@ Uk has non-zeros on its diagonal. The fact that
Qp — CTA;_llb = 0 follows, because Ay and Ly are both

non-singular, hence Uy, = L;lAk must also be non-singular.
@ This completes the induction step, and hence the proof.
U
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Solving Linear Systems - Symmetric Systems

Theorem 5

If all the leading principal submatrices of A are nonsingular, then
there exist unique unit lower diagonal matrices L and M, and a
unique diagonal matrix D such that

A=LDMT
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Solving Linear Systems - Symmetric Systems

Proof.

Uniquely factor A = LU, with L unit lower triangular.
Define D = diag(d1,...,dp),di = uji, 1 <i<n.

Note, all d; # 0, by the hypothesis that A's leading principal
submatrices are all non-singular.

Hence D! exists (its diagonal entries are the reciprocals of
D's diagonal entries).

Let MT = D71U.
Observe that D~1U is upper triangular, and moreover, it has
1s on its diagonal (by the construction of D~1).

This says that M7 is unit upper triangular.
Therefore M is unit lower triangular.
Thus A= LU = LD(D'U) = LDM.
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Solving Linear Systems - Symmetric Systems

Remarks:

© LU-factorization, and hence LDM-factorization, lie in O(n3).

Theorem 6
Keep the hypotheses on A from Theorem 5. If A is symmetric,
then A= LDLT.
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Solving Linear Systems - Symmetric Systems

Proof.
@ By Theorem 5, there is a unique factorization A= LDMT.

@ Since A is symmetric, we have

A = AT
= (LDMTYT
— (MT)TDTLT
= MDLT.

D is diagonal, hence symmetric

@ By the uniqueness of the LDM-factorization, we have M = L.
]
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Solving Linear Systems - Positive Definite Systems

Definition 7
An n x n symmetric matrix A is positive definite if xT Ax > 0, for

all non-zero n x 1 matrices x.

Roughly speaking, Definition 7 generalizes a definition for positive
scalars, i.e., a € R is positive if xax > 0,Vx € R, x # 0. Consider

the function f(x) = x" Ax, which is quadratic and A contains the
coefficients. Positive definiteness essentially asks if f is convex.
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Solving Linear Systems - Positive Definite Systems

Figure 1 shows examples of f with different A matrices.

positive definite positive semidefinite indefinite

Figure: Plotting of f = xT Ax as a height function with x € R? and
different A € R2%2,
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Solving Linear Systems - Positive Definite Systems

Remarks:

@ There is not universal agreement among mathematicians that
we should only ask if a matrix is positive definite if we already
know that it is symmetric.

Q@ Eg. A= [_11 ﬂ satisfies xT Ax > 0, for all 0 # x € R?, but
is clearly not symmetric.

© In this course, we will only care if a matrix is positive definite
when we already know that it is symmetric.

@ This is why we make being symmetric part of the definition of
being positive definite.

© Keep in mind that the definition of positive definiteness may
be different in other contexts, outside of this course.
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Solving Linear Systems - Positive Definite Systems
Equivalent Characterizations of Being Positive Definite

All eigenvalues are strictly positive. (This makes sense
because the eigenvalues of a symmetric matrix are all real.)
All pivots are strictly positive. (using the fact that for a
symmetric matrix, the signs of the pivots are the signs of the
eigenvalues.)

The kth pivot of a matrix is

det(Ak)

k= det(Ak,/) ’

where Ay is the k' leading principal submatrix. All the pivots
will be positive if and only if det(Ax) > 0 forall 1 < k < n.
So, if the determinants of the leading principal submatrices
are positive, then the matrix is positive definite.

A matrix A is positive definite if and only if it can be written
as A= RTR for some possibly rectangular matrix R with
independent columns.
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Solving Linear Systems - Positive Definite Systems

Remarks:
© | will not prove these equivalences in class.

@ If any student specifically asks to see the proofs, then | will
type them up and post them.

© You can safely infer from the above two comments that you
are not responsible for knowing these proofs for this course.
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Solving Linear Systems - Positive Definite Systems

Theorem 8
If A is positive definite, then A~ exists.

A useful result for PD matrices is given in Theorem 9.

Theorem 9
IfFA e R™" js PD and X € R"™k has rank k < n, then
B = XTAX is also PD (i.e., zT Bz > 0,Yz € RX 2z #0).

X1

Z1

An><n Xn><k |: Bk><k :| [
Zk

| I

Xn

The above diagram shows the sizes of all the matrices/vectors in
Theorem 9.
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Solving Linear Systems - Positive Definite Systems
Proof.

e 6 ¢ o

Consider any 0 # z € R¥, then
z"Bz = z"XTAXz = (Xz) T A(Xz).

Let x = Xz, which is a vector in R".

If x # 0 then we are finished because

(Xz)TA(Xz) = xT Ax > 0 since A is PD.

When can x = 07 This is equivalent to asking what the null
space of X is.

Since X has rank k it is full rank.

By the rank-nullity theorem dim(null(X)) = nullity(X) = 0.
Hence, the null space of X contains only the zero-vector.

Thus, x =0 only if z=0. So z" Bz = (Xz)TA(Xz) > 0 for
all z# 0= B is PD.
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Solving Linear Systems - Positive Definite Systems

Corollary 10

If A is PD, then all its principal submatrices are PD. In particular,
all diagonal entries are positive.

Proof.
Each diagonal entry is a principal submatrix with all other
rows/columns deleted. You can design (identity-like) matrices X to

“pick out” arbitrary principal submatrices using X T AX (which is
PD by Theorem 9), e.g.,

-1 2 5 10 15
A=1|2 4 -4, X=10 0}, :>XTAX:[5 7].
5 —4 7 01
O
Remarks:

© The converse of the Corollary 10 holds, because A is a

principal submatrix of itself.
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Solving Linear Systems - Positive Definite Systems

Corollary 11

If Ais PD, so that A= LDLT, then the diagonal matrix D has
strictly positive entries.

Proof.

@ Since L is unit lower triangular, therefore it is invertible.
Hence we have

A = LDLT
L7AL-T = D.

@ By Theorem 9, D = L*AL~T is PD.

e By Corollary 10, D’s diagonal entries are all positive.
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