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High-Level Motivation

Applications We Will Study
1 Solving Linear Systems

1 heat conduction (including difference equations)
2 image de-noising

2 Least Squares
1 motivated by statistical methods

3 Eigenvalues / Eigenvectors
1 image segmentation

4 Singular Value Decompositions
1 image compression
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Solving Linear Systems

How To Compute x = A−1b: In numerical linear algebra, we
never compute A−1 in order to compute A−1b. Instead we
compute x as the solution of Ax = b, via Gaussian elimination.
Big Picture of Gaussian Elimination

x x x x
x x x x
x x x x
x x x x


︸ ︷︷ ︸

A

→


x x x x
0 x x x
0 x x x
0 x x x


︸ ︷︷ ︸

A(1)

→


x x x x
0 x x x
0 0 x x
0 0 x x


︸ ︷︷ ︸

A(2)

→


x x x x
0 x x x
0 0 x x
0 0 0 x


︸ ︷︷ ︸

A(3)
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Solving Linear Systems

GE Algorithm

for i = 1, 2, ..., n-1
for k = i+1, ..., n

mult = aki / aii
aki = 0 not needed, but helpful for intuition
for j = i+1, ..., n

akj = akj− mult ∗aij update row k
end
bk = bk− mult ∗bi update RHS

end
end

At the end, A(n−1)x = b(n−1), is solved by back substitution.
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Solving Linear Systems - LU Factorizations

Theorem 1
If A can be reduced to RREF without interchanging rows, then
there is a unique factorization A = LU, where L is lower triangular
with 1s on its diagonal (i.e. unit diagonal), and U is upper
triangular. Moreover,

U = A(n−1), L =

 1 0
. . .

mult 1



Proof.
See the proof, starting on p144 of Matrix Analysis and Applied
Linear Algebra, by Carl D. Meyer.

Important Remark: Not every non-singular n× n matrix A has an

LU-decomposition. E.g. A =

[
0 1
1 1

]
.
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Solving Linear Systems - LU Factorizations

Then solving Ax = b is equivalent to solving LUx = b. Let
y = Ux . Then Ly = b. So we

1 Solve Ly = b by forward solving, then

2 Solve Ux = y by back solving.
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Solving Linear Systems - LU Factorizations

Forward Solve Algorithm

for i = 1, 2, . . . , n
yi = bi
for j = 1, 2, . . . , i − 1

yi = yi − lij ∗ yj
(
yi = bi −

∑i−1
j=1 lijyj

)
end

end
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Solving Linear Systems - LU Factorizations

Backward Solve Algorithm

for i = n, . . . , 1
xi = yi
for j = i + 1, . . . , n

xi = xi − uij ∗ xj
(
xi = yi −

∑n
j=i+1 uijxj

)
end
xi = xi/uii % diagonal entries not necessarily 1

end
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Solving Linear Systems - LU Factorizations
Complexity

1 flop = +/− / ∗ /÷ .
Consider the forward solve algorithm. For each i , the j-loop
performs 2(i − 1) flops.

Total flops =
n∑

i=1

2(i − 1)

= 2
n∑

i=1

i −
n∑

i=1

2

= 2
n(n + 1)

2
− 2n

= n2 + n − 2n

= n2 − n

∈ O(n2).

flops(back-solve) ∈ O(n2) (Exercise).
flops(LU factorization) = 2

3n
3 + O(n2) (Exercise).
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Solving Linear Systems - LU Factorizations

For large n, the factorization is more expensive than forward and
back solving.

10 / 35



Solving Linear Systems - LU Factorizations

Special Linear Systems

Exploit special structures of linear systems

More efficient LU factorization
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Solving Linear Systems - Symmetric Systems

LDMT factorization, variant of LU.

We do NOT assume that A is symmetric yet; the next Theorem
applies whether A is symmetric or not.

Definition 2
A principal submatrix is a smaller matrix constructed by deleting
rows and corresponding columns.
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Solving Linear Systems - Symmetric Systems

Some examples are
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 →
[
19 20
24 25

]

and 
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 →

 1 3 5
11 13 15
21 23 25

 .
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Solving Linear Systems - Symmetric Systems

The following results are reproduced from Chapter 3 of Matrix
Analysis and Applied Linear Algebra, by Carl D. Meyer.

Definition 3
The leading principal submatrices of A are defined to be those
submatrices taken from the upper-left-hand corner of A. That is

A1 =
[
a11

]
,

A2 =

[
a11 a12
a21 a22

]
,

...

An−1 =

 a11 · · · a1 n−1
...

...
an−1 1 · · · an−1 n−1

 ,

An = A
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Solving Linear Systems - Symmetric Systems

Theorem 4
Each of the following statements is equivalent to saying that a
non-singular n × n matrix A possesses an LU-factorization.

1 A zero pivot does not emerge during row-reduction to
upper-triangular form with Type III operations.

2 Each leading principal submatrix Ak is non-singular.
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Solving Linear Systems - Symmetric Systems
Proof: We will prove the statement concerning the leading
principal submatrices and leave the proof concerning the nonzero
pivots as an exercise.
First, assume that A has an LU-factorization.

For any 1 ≤ k ≤ n, partition A as

A = LU

=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 ∗

∗ ∗

]
,

where L11 and U11 are both k × k .

Then Ak = L11U11 is non-singular, because both of L11 and
U11 are non-singular (each is triangular, with non-zero
diagonal entries).

Since k was arbitrary, this shows that all of the leading
principal submatrices of A are nonsingular.
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Solving Linear Systems - Symmetric Systems

Second, assume that the leading principal submatrices of A are all
non-singular.

Let 1 ≤ k ≤ n be arbitrary.

We will prove by induction on k that each Ak has an
LU-factorization.

Then, since A = An, it follows that A has an LU-factorization.
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Solving Linear Systems - Symmetric Systems

Base (k = 1):

A1 =
[
a11

]
, so the assumption that A1 is non-singular

guarantees that a11 ̸= 0.

Then A1 =
[
1
] [
a11

]
is an LU-factorization of A1.

This completes the base case.
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Solving Linear Systems - Symmetric Systems
Induction (k > 1):

The induction hypothesis is that all Aℓ, for 1 ≤ ℓ < k, have
LU-factorizations.

In particular, Ak−1 has an LU-factorization.

Write Ak−1 = Lk−1Uk−1.

By assumption, Ak−1 is non-singular.

Therefore A−1
k−1 = U−1

k−1L
−1
k−1.

Define

cT = the first k − 1 components of the kth row of Ak ,

b = the first k − 1 components of the kth column of Ak ,

αk = the (k , k) entry of Ak .

With this notation, we can write

Ak =

[
Ak−1 b
cT αk

]
.
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Solving Linear Systems - Symmetric Systems

I claim that the following is an LU-factorization of Ak :[
Lk−1 0

cTU−1
k−1 1

]
︸ ︷︷ ︸

Lk

[
Uk−1 L−1

k−1b

0 αk − cTA−1
k−1b

]
︸ ︷︷ ︸

Uk
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Solving Linear Systems - Symmetric Systems
We verify that this works in each of the 4 blocks of Ak .

top-left k − 1× k − 1 block: Lk−1Uk−1 = Ak−1, by the
induction hypothesis.

row k , first k − 1 entries:
[
cTU−1

k−1 1
]︸ ︷︷ ︸

1×k

[
Uk−1

0

]
︸ ︷︷ ︸
k×k−1

= cT .

column k, first k − 1 entries:[
Lk−1 0

]︸ ︷︷ ︸
k−1×k

[
L−1
k−1b

αk − cTA−1
k−1b

]
︸ ︷︷ ︸

k×1

= b.

k, k entry:
[
cTU−1

k−1 1
]︸ ︷︷ ︸

1×k

[
L−1
k−1b

αk − cTA−1
k−1b

]
︸ ︷︷ ︸

k×1

=

cT U−1
k−1L

−1
k−1︸ ︷︷ ︸

=A−1
k−1

b + αk − cTA−1
k−1b = αk .
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Solving Linear Systems - Symmetric Systems

Observe that

Lk has 1s on its diagonal, and
Uk has non-zeros on its diagonal. The fact that
αk − cTA−1

k−1b ̸= 0 follows, because Ak and Lk are both

non-singular, hence Uk = L−1
k Ak must also be non-singular.

This completes the induction step, and hence the proof.

□
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Solving Linear Systems - Symmetric Systems

Theorem 5
If all the leading principal submatrices of A are nonsingular, then
there exist unique unit lower diagonal matrices L and M, and a
unique diagonal matrix D such that

A = LDMT
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Solving Linear Systems - Symmetric Systems

Proof.

Uniquely factor A = LU, with L unit lower triangular.

Define D = diag(d1, . . . , dn), di = uii , 1 ≤ i ≤ n.

Note, all di ̸= 0, by the hypothesis that A’s leading principal
submatrices are all non-singular.

Hence D−1 exists (its diagonal entries are the reciprocals of
D’s diagonal entries).

Let MT = D−1U.

Observe that D−1U is upper triangular, and moreover, it has
1s on its diagonal (by the construction of D−1).

This says that MT is unit upper triangular.

Therefore M is unit lower triangular.

Thus A = LU = LD(D−1U) = LDMT .
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Solving Linear Systems - Symmetric Systems

Remarks:

1 LU-factorization, and hence LDM-factorization, lie in O(n3).

Theorem 6
Keep the hypotheses on A from Theorem 5. If A is symmetric,
then A = LDLT .
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Solving Linear Systems - Symmetric Systems

Proof.

By Theorem 5, there is a unique factorization A = LDMT .

Since A is symmetric, we have

A = AT

= (LDMT )T

= (MT )TDTLT

=︸︷︷︸
D is diagonal, hence symmetric

MDLT .

By the uniqueness of the LDM-factorization, we have M = L.
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Solving Linear Systems - Positive Definite Systems

Definition 7
An n× n symmetric matrix A is positive definite if xTAx > 0, for
all non-zero n × 1 matrices x.

Roughly speaking, Definition 7 generalizes a definition for positive
scalars, i.e., a ∈ R is positive if xax > 0,∀x ∈ R, x ̸= 0. Consider
the function f (x) = xTAx , which is quadratic and A contains the
coefficients. Positive definiteness essentially asks if f is convex.
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Solving Linear Systems - Positive Definite Systems

Figure 1 shows examples of f with different A matrices.

positive definite positive semidefinite indefinite

Figure: Plotting of f = xTAx as a height function with x ∈ R2 and
different A ∈ R2×2.
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Solving Linear Systems - Positive Definite Systems

Remarks:

1 There is not universal agreement among mathematicians that
we should only ask if a matrix is positive definite if we already
know that it is symmetric.

2 E.g. A =

[
1 1
−1 1

]
satisfies xTAx > 0, for all 0 ̸= x ∈ R2, but

is clearly not symmetric.

3 In this course, we will only care if a matrix is positive definite
when we already know that it is symmetric.

4 This is why we make being symmetric part of the definition of
being positive definite.

5 Keep in mind that the definition of positive definiteness may
be different in other contexts, outside of this course.
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Solving Linear Systems - Positive Definite Systems
Equivalent Characterizations of Being Positive Definite

1 All eigenvalues are strictly positive. (This makes sense
because the eigenvalues of a symmetric matrix are all real.)

2 All pivots are strictly positive. (using the fact that for a
symmetric matrix, the signs of the pivots are the signs of the
eigenvalues.)

3 The kth pivot of a matrix is

dk =
det(Ak)

det(Ak−l)
,

where Ak is the kth leading principal submatrix. All the pivots
will be positive if and only if det(Ak) > 0 for all 1 ≤ k ≤ n.
So, if the determinants of the leading principal submatrices
are positive, then the matrix is positive definite.

4 A matrix A is positive definite if and only if it can be written
as A = RTR for some possibly rectangular matrix R with
independent columns.

30 / 35



Solving Linear Systems - Positive Definite Systems

Remarks:

1 I will not prove these equivalences in class.

2 If any student specifically asks to see the proofs, then I will
type them up and post them.

3 You can safely infer from the above two comments that you
are not responsible for knowing these proofs for this course.
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Solving Linear Systems - Positive Definite Systems

Theorem 8
If A is positive definite, then A−1 exists.

A useful result for PD matrices is given in Theorem 9.

Theorem 9
If A ∈ Rn×n is PD and X ∈ Rn×k has rank k ≤ n, then
B = XTAX is also PD (i.e., zTBz > 0,∀z ∈ Rk , z ̸= 0).

 An×n


 Xn×k

 [
Bk×k

] [z1
...
zk

] 
x1

...

xn


The above diagram shows the sizes of all the matrices/vectors in
Theorem 9.
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Solving Linear Systems - Positive Definite Systems

Proof.

Consider any 0 ̸= z ∈ Rk , then

zTBz = zTXTAXz = (Xz)TA(Xz).

Let x = Xz , which is a vector in Rn.

If x ̸= 0 then we are finished because
(Xz)TA(Xz) = xTAx > 0 since A is PD.

When can x = 0? This is equivalent to asking what the null
space of X is.

Since X has rank k it is full rank.

By the rank-nullity theorem dim(null(X )) = nullity(X ) = 0.

Hence, the null space of X contains only the zero-vector.

Thus, x = 0 only if z = 0. So zTBz = (Xz)TA(Xz) > 0 for
all z ̸= 0 ⇒ B is PD.
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Solving Linear Systems - Positive Definite Systems

Corollary 10

If A is PD, then all its principal submatrices are PD. In particular,
all diagonal entries are positive.

Proof.
Each diagonal entry is a principal submatrix with all other
rows/columns deleted. You can design (identity-like) matrices X to
“pick out” arbitrary principal submatrices using XTAX (which is
PD by Theorem 9), e.g.,

A =

−1 2 5
2 4 −4
5 −4 7

 , X =

1 0
0 0
0 1

 , ⇒ XTAX =

[
−1 5
5 7

]
.

Remarks:
1 The converse of the Corollary 10 holds, because A is a

principal submatrix of itself.
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Solving Linear Systems - Positive Definite Systems

Corollary 11

If A is PD, so that A = LDLT , then the diagonal matrix D has
strictly positive entries.

Proof.

Since L is unit lower triangular, therefore it is invertible.
Hence we have

A = LDLT

L−1AL−T = D.

By Theorem 9, D = L−1AL−T is PD.

By Corollary 10, D’s diagonal entries are all positive.
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