
Lecture 03 - Solving Linear Systems

May 14, 2025

0 / 44



Outline

1 Solving Linear Systems
1 Symmetric Positive Definite (SPD) Systems

1 Constructing the Cholesky Factor

2 Banded Systems
3 General Sparse Matrices

1 / 44



Symmetric Positive Definite (SPD) Systems

Theorem 1
If A is SPD, then there exists unique lower triangular G, with
strictly positive entries on its diagonal, such that

A = GGT .

2 / 44



Symmetric Positive Definite (SPD) Systems

Proof: By results from Lecture 02, write A = LDLT , for some
lower triangular L and D = diag(d1, . . . , dn), di > 0.

Define D
1
2 , one co-ordinate (i), at a time, as follows:

If the i th diagonal entry of L is positive, then the i th diagonal

entry of D
1
2 is

√
di .

Otherwise, if the i th diagonal entry of L is negative, then the

i th diagonal entry of D
1
2 is −

√
di .

Let G = LD
1
2 . Then G is lower triangular, with strictly positive

entries on its diagonal.

Further, GGT = LD
1
2 (LD

1
2 )T = LD

1
2D

1
2LT = LDLT = A.

3 / 44



Symmetric Positive Definite (SPD) Systems

Explanation for why the Cholesky Factorization is Unique:

Let A = GGT = HHT , for some lower triangular H with
strictly positive entries on its diagonal.

First, note that I = H−1GGTH−T :

HHT = A

= GGT , so that

H−1(GGT )H−T = H−1(HHT )H−T

= (H−1H)(HTH−T )

= I

4 / 44



Symmetric Positive Definite (SPD) Systems
Then we have

I = H−1GGTH−T

= H−1G (H−1G )T , and therefore (1)

H−1G = (H−1G )−T . (2)

The LHS of (2) is a product of lower triangular matrices,
hence it is lower triangular.
The RHS of (2) is upper triangular.
Let E = H−1G .
Then since E is both upper and lower triangular, therefore E
is diagonal. In particular ET = E .
Therefore (1) implies that E 2 = I , in other words E is
diagonal, with ±1 entries on its diagonal.
Because G = HE , therefore the two factorizations can differ
only by the signs of their columns.
But since the diagonal entries of both G and H must be
strictly positive, therefore they must be equal.

□ 5 / 44



Symmetric Positive Definite (SPD) Systems

The factorization A = GGT is called the Cholesky factorization.
The matrix G is referred to as the Cholesky factor.
Q & A

1 Will we need to reproduce proofs on Quizzes / Assignments /
Exams?
A: Not on Quizzes / Assignments, since they will be open
book. I may ask for short, new proofs, on Assignments. It is
also possible that I will ask for proofs on Exams. My idea
about Quizzes, so far, is to have you work out some examples
of the results we are proving in class.

6 / 44



Symmetric Positive Definite (SPD) Systems

Constructing the Cholesky Factor We now discuss how to
construct the Cholesky factor. Lecture 23 of Trefethen and Bau or
Section 4.2.5 of Golub and Van Loan are good supplemental reads.
First, view A as

A =

[
α vT

v B

]
,

where α = a11 ∈ R, v = a2:n,1 ∈ Rn−1, and
B = a2:n,2:n ∈ R(n−1)×(n−1).

7 / 44



Symmetric Positive Definite (SPD) Systems

The colon notation follows from MATLAB.

For a matrix A, ai ,: and a:,j denote the i-th row and the j-th
column, respectively.

Moreover, ai :j ,p:q denotes the submatrix with rows from i to j
and columns from p to q.

For example, a2:n,1 corresponds to entries in the 1st column of
A, from the 2nd to the nth row.

8 / 44



Symmetric Positive Definite (SPD) Systems

Cholesky factorization can intuitively be thought of as applying
Gaussian elimination in a “symmetric way”. The goal of Gaussian
elimination was to zero-out the column below by subtracting
multiples of the current row. The “work-in-progress”
LU-factorization of A after the first step of Gaussian elimination
can be viewed as

A =

[
1 0
v
α I

] [
α vT

0 B − vvT

α

]
,

where the first column of L becomes[
1
v
α

]
.

9 / 44



Symmetric Positive Definite (SPD) Systems

Reminder/Explanation about LU-factorization:

1 To eliminate the entries of v below α in column 1, the
multipliers are − v

α .

2 Thus, per our LU-factorization procedure, we record the
negatives of these multipliers, namely v

α , in column 1 of our L
matrix.

3 Why the B − vvT

α block is correct:
1 As above, the multipliers − v

α are required by the entries below
the pivot in column 1.

2 Because of symmetry, the entries that get applied to the lower
rows are vT .

This explains where the term − vvT

α comes from.

4 The provided multiplication creates a vvT

α term, which cancels

with − vvT

α , to leave the required B in the bottom right of the
product matrix.

10 / 44



Symmetric Positive Definite (SPD) Systems

However, applying just Gaussian elimination to get an LU
factorization does not take advantage of symmetry. Cholesky
factorization therefore aims to zero out the corresponding row also
to remain symmetric. The first stage of Cholesky factorization is

A =

[√
α 0
v√
α

I

] [
1 0

0 B − vvT

α

] [√
α vT

√
α

0 I

]
,

which gives the first column of G as[√
α
v√
α

]
.

11 / 44



Symmetric Positive Definite (SPD) Systems

Brief Explanation of the Change From LU to Cholesky
1 It is an exercise to verify that this “work-in-progress”

factorization of A is correct.
1 The job of the LH factor is to restore the entries below the

pivot.
2 The job of the RH factor is to restore the entries to the right

of the pivot.

2 In LU, we produce the L-factor on the left, and the U factor
by modifying the original A, on the right.

3 In Cholesky, we will produce by the end,

G I︸︷︷︸
where A was, originally

GT

12 / 44



Symmetric Positive Definite (SPD) Systems

This first step is derived by considering that the final form must be

A = GGT =

[
g11 0
G21 G22

] [
g11 GT

21

0 GT
22

]
=

[
g2
11 g11G

T
21

g11G21 G21G
T
21 + G22G

T
22

]
.

Therefore,

A =

[
α vT

v B

]
=

[
g2
11 g11G

T
21

g11G21 G22G
T
22 + G21G

T
21

]
,

13 / 44



Symmetric Positive Definite (SPD) Systems

implies

α = (g11)
2

⇒ g11 =
√
α,

v = g11G21

⇒ G21 =
v

g11

=
v√
α
.

This provides the ingredients (namely α and v) needed to compute

the matrix to be processed at the next step (namely B − vvT

α ).

14 / 44



Symmetric Positive Definite (SPD) Systems

The Cholesky factorization algorithm then works recursively on the
lower block B − vvT

α since it is also SPD. To see that B − vvT

α is
SPD consider multiplying by the full rank matrix

X =

[
1 − vT

α
0 I

]
.

We have that

XTAX =

[
α 0

0 B − vvT

α

]
,

hence by results from Lecture 02, the principal submatrix B − vvT

α
is PD. It is also symmetric since XTAX = (XTAX )T and A is
symmetric.

15 / 44



Symmetric Positive Definite (SPD) Systems

So we can Cholesky factor B − vvT

α as B − vvT

α = G1G
T
1 . The

recursion continues eliminating one row/column at a time. The
Cholesky factor of A itself will have the form

G =

[√
α 0
v√
α

G1

]
.

16 / 44



Symmetric Positive Definite (SPD) Systems
Cholesky Example:

So that we will know what our goal is, we first choose a G .
Then we compute our starting point, namely the matrix A, via
A = GGT .

With the help of a student, we selected

G =

 2 0 0
3 3 0
−4 −6 5

 , so that

A = GGT

=

 2 0 0
3 3 0
−4 −6 5

2 3 −4
0 3 −6
0 0 5


=

 4 6 −8
6 18 −30
−8 −30 77

 .

17 / 44



Symmetric Positive Definite (SPD) Systems

A is clearly symmetric.

To make absolutely certain that A has a Cholesky
factorization, we verify that A is also positive definite. It is an

exercise to verify that row reducing A yields

4 6 −8
0 9 −18
0 0 25

.
From this matrix, we can see that the pivots of A are 4, 9 and
25. They are all positive, and hence A is positive definite.

18 / 44



Symmetric Positive Definite (SPD) Systems

We carry out the algorithm to compute the Cholesky factor G .

1 Writing

 4 6 −8
6 18 −30
−8 −30 77

 =

[
α vT

v B

]
, we have

α = 4

v =

[
6
−8

]
B =

[
18 −30
−30 77

]
.

19 / 44



Symmetric Positive Definite (SPD) Systems

and therefore we obtain

g11 =
√
α

=
√
4

= 2

G21 =
v

g11

=

[
6
−8

]
2

=

[
3
−4

]
, so that

20 / 44



Symmetric Positive Definite (SPD) Systems

B − vvT

α
=

[
18 −30
−30 77

]
−

[
6
−8

] [
6 −8

]
4

=

[
18 −30
−30 77

]
−

[
36 −48
−48 64

]
4

=

[
18 −30
−30 77

]
−
[

9 −12
−12 16

]
=

[
9 −18

−18 61

]

21 / 44



Symmetric Positive Definite (SPD) Systems

2 Writing

[
9 −18

−18 61

]
=

[
α vT

v B

]
, we have

α = 9

v =
[
−18

]
B =

[
61
]
.

22 / 44



Symmetric Positive Definite (SPD) Systems

and therefore we obtain

g11 =
√
α

=
√
9

= 3

G21 =
v

g11

=

[
−18

]
3

=
[
−6

]
, so that

B − vvT

α
=

[
61
]
−

[
−18

] [
−18

]
9

=
[
61
]
−
[
36
]

=
[
25
]

23 / 44



Symmetric Positive Definite (SPD) Systems

3 Writing
[
25
]
=

[
α vT

v B

]
, we have

α = 25

and therefore we obtain

g11 =
√
α

=
√
25

= 5,

at which point, we are finished.

We have now recovered all the diagonal and subdiagonal entries
from the original choice of G .

24 / 44



Symmetric Positive Definite (SPD) Systems

Cost of Cholesky Factorization Algorithm 1 gives pseudocode
for the in-place Cholesky factorization. This implementation
exploits symmetry by working only on sub-diagonal entries. In the
end, the lower triangle is the Cholesky factor G .

25 / 44



Symmetric Positive Definite (SPD) Systems

Algorithm 1 : Cholesky Factorization

for k = 1, . . . , n ▷ iterate down rows
akk =

√
akk ▷ factor diagonal element (

√
α)

for i = k + 1, . . . , n ▷ go over rows
aik = aik/akk ▷ update current column entries below

diagonal (v/
√
α)

end for
for j = k + 1, . . . , n ▷ go over columns

for i = j , . . . , n ▷ go over rows
aij = aij − aik ∗ ajk ▷ update lower right block

B − vvT/α
end for

end for
end for

26 / 44



Symmetric Positive Definite (SPD) Systems

Note that Algorithm 1 assumes that the diagonal entries akk are
non-zero. Problems arise when these entries are zero or close to
zero. We will address this issue through pivoting, when we discuss
the stability of factorizations.
The cost of Cholesky factorization can be estimated by considering
just the inner most loop. For that loop there is one subtraction
and one multiplication. So the FLOP count is

n∑
k=1

n∑
j=k+1

n∑
i=j

2 =
n3

3
+ O

(
n2
)
,

which is calculated as displayed in the Lecture Notes. As promised
Cholesky factorization is half that of LU factorization, which had a
cost of 2n3

3 + O
(
n2
)
FLOPs.

27 / 44



Symmetric Positive Definite (SPD) Systems

Detailed Computation: See Lecture Notes.

28 / 44



Banded Systems

Banded matrices have nonzero entries only in “bands” adjacent to
the main diagonal. Some example banded matrices are (empty
entries are zero)


9 5

3 8
2 7

1

 and



5 6
7 7 1
4 2 9 2

7 5 3 8
3 8 2 7

4 7 1

 . (3)

29 / 44



Banded Systems

Definition 1.1
The matrix A = [aij ] has

1 upper bandwidth, q, if aij = 0 for j > i + q, and

2 lower bandwidth, p, if aij = 0 for i > j + p.

The general form of a banded matrix given in Definition 1.1 is



× · · · ×
...

. . .
. . .

×
. . .

. . .
. . .

×
. . .

. . .
...

× · · · ×


.

30 / 44



Banded Systems

In the examples in (3) the first matrix has q = 1, p = 0 and the
second has q = 1, p = 2. Exercise: how might you store these
banded matrices efficiently?
Q & A

1 Can there be a piece, inside the band (i.e. parallel to the
band), with all 0 entries?
A: Yes! Definition 3 says nothing about what happens within
the band. In the most extreme case, the zero matrix trivially
satisfies the definition of a banded matrix!

2 Do upper lower triangular matrices satisfy Definition 3?
A: Yes!

1 An upper triangular matrix satisfies p = 0.
2 A lower triangular matrix satisfies q = 0.

31 / 44



Banded Systems

Factoring Banded Matrices If A is banded then so are the
factorizations LU, LDMT , GGT .

Theorem 1
Let A = LU. If A has upper bandwidth q and lower bandwidth p,
then U has upper bandwidth q and L has lower bandwidth p.

32 / 44



Banded Systems

A

× · · · ×
...

. . .
. . .

×
. . .

. . .
. . .

×
. . .

. . .
...

× · · · ×



=

L

×
...

. . .
×

. . .
. . .

. . .
. . .

× · · · ×



U

× · · · ×
. . .

. . .

. . .
. . .

×
. . .

...
×


.

33 / 44



Banded Systems
A special case of banded matrices is tridiagonal matrices, which
have p = q = 1. One can show that the flop count for LU
factorization of tridiagonal matrices is O(n). Table 1 gives other
examples of important matrices we will see in this course.

Matrix Type Lower Bandwidth p Upper Bandwidth q

Diagonal 0 0
Upper Triangular 0 n − 1
Lower Triangular m − 1 0
Tridiagonal 1 1
Upper Bidiagonal 0 1
Lower Bidiagonal 1 0
Upper Hessenberg 1 n − 1
Lower Hessenberg m − 1 1

Table: Common types of matrices A ∈ Rm×n in this course and their
bandwidths.

34 / 44



Banded Systems

Cost of Banded LU Factorization

Algorithm 2 : Banded LU Factorization

for k = 1, . . . , n − 1 ▷ iterate over rows
for i = k + 1, . . . ,min(k + p, n) ▷ go over rows within band

aik = aik/akk ▷ determine multiplicative factors
end for
for i = k + 1, . . . ,min(k + p, n) ▷ go over rows within band

for j = k + 1, . . . ,min(k + q, n) ▷ go over columns
within band

aij = aij − aik ∗ akj ▷ subtract scaled row data only in
non-zero bands

end for
end for

end for

35 / 44



Banded Systems

Algorithm 35 gives the banded version of LU factorization.

We assume diagonal entries akk ̸= 0 for now in Algorithm 35.

Banded LU factorization is most beneficial when there are
many zeros in A.

In other words, when the upper/lower bandwidths (q/p) are
small relative to the size of the matrix (n).

If n ≫ p and n ≫ q, then banded LU is ∼2npq flops.

This is much faster than näıve implementation of LU
factorization ∼2n3

3 flops that would operate on zero entries.

For example, with n = 300, p = 2, q = 2, basic LU takes
∼18, 000, 000 flops but banded LU takes only ∼2400 flops.

36 / 44



Banded Systems
Exercises:

1 Verify flop count of banded LU factorization (leading order term).

2 Work out efficient algorithms for banded forward/backward triangular solves. That is,
modify the standard forward/backward solve algorithms to avoid touching entries you
know are always zero (based on bandwidth).

37 / 44



General Sparse Matrices

Patterns other than just simple bands are also common.

General sparse matrices (i.e. matrices having few non-zero
entries) contain mostly zero entries, but non-zeros can occur
on more than the diagonal bands.

For many problems the (max) number of non-zeros per row is
constant, i.e., the total number of non-zeros is O(n).

So we still only want to store the non-zero entries.

Various storage formats (data structures) exist for sparse
matrices.

We will not be coding our own in this course, but it is useful
to be aware of them.

The simplest approach is to have a vector of one (i , j , value)
triplet per non-zero, but this is inefficient.

38 / 44



General Sparse Matrices

A more common storage structure is the Compressed Row Storage
(CRS) (or Compressed Sparse Row (CSR)):

array of non-zero entries (“val”) with length = number of
non-zeros (nnz),

array of column indices (“colInd”) with length = nnz, and

array of indices where each row starts (“rowPtr”) with length
= number of rows.

39 / 44



General Sparse Matrices

For example, consider the CSR structure for the following matrix


2 5

3
6 −3

10 2

 ⇒

(We could include 0 for an
empty row.)

Remark: We have not made a rigourous definition of a sparse
matrix.

40 / 44



General Sparse Matrices
Factorization

For LU factorization the main cost is the row subtraction step:

aij = aij − aikakj/akk .

Since most entries are zero, our algorithms should skip
operating on them.

However, an important point to realize is that even if A is
sparse, its factorization may not be!
This happens because row subtractions can turn zeros into
non-zero entries, which is referred to as “fill-in”.

A classic example is the “arrow matrix”, which has fully dense
(triangular) L and U factors

A =


× × × × ×
× ×
× ×
× ×
× ×


41 / 44



General Sparse Matrices

Exercises:

1 Can you see why the L and U are dense (in corresponding
triangles)?

2 Therefore, what is the storage cost of the factors and what is
the complexity of the factorization?

42 / 44



General Sparse Matrices

The key intuition for general sparse matrices is that we must
reorder the system of equations. A matrix reordering permutes
rows/columns to yield a matrix whose LU factorization suffers no
fill-in (i.e., no new non-zeros).

43 / 44



General Sparse Matrices

With the arrow matrix for example we can solve the same system,
but reorder the equations so that

A =


× ×

× ×
× ×

× ×
× × × × ×



=


1

1
1

1
× × × × 1



× ×

× ×
× ×

× ×
×


= LU.

Matrix reorderings will be discussed in more detail later.

44 / 44


	Solving Linear Systems
	Symmetric Positive Definite (SPD) Systems
	Banded Systems
	General Sparse Matrices


