
Lecture 06 - Matrix Re-Ordering

June 18, 2025

0 / 36



Outline

Outline
1 Matrix Re-Ordering

1 Key Idea
2 Example with Natural Ordering
3 Envelope Reordering
4 Level sets
5 Cuthill-McKee

1 / 36



Key Idea

Symmetric Permutations

The special case of symmetric permutation is of particular
importance.

A symmetric permutation is when we replace A with PAPT ,
i.e., we permute the rows and columns in the same way
(Q = PT ).

Symmetric permutations naturally preserve symmetry for
symmetric matrices (more generally when the sparsity pattern
is symmetric).

2 / 36



Key Idea
Q: What does a symmetric permutation do to the graph of A?
A: The structure will be unchanged; the nodes will be
re-numbered.
Given a particular reordering, what is P for a symmetric
permutation? Reordering gives a list of before/after labels, e.g.,

1→ 2,

2→ 3,

3→ 1,

4→ 4.

This says which old row moves to which new row. We apply the
desired row swaps to the identity matrix I to get the permutation
P. In the example above,

I =


1

1
1

1

 =⇒ P =


1

1
1

1

 .

3 / 36



Example with Natural Ordering

Idea: We saw earlier that bandwidths are preserved when we
factorize A. Thus, when we have some choice of how to write A,
making a choice which affords minimum bandwidth is desirable.
Consider the 2D Laplacian matrix on a non square domain, with
mx ≫ my , and natural rowwise ordering. This domain and rowwise
ordering (first along x-axis, then y -axis) is depicted below.

4 / 36



Example with Natural Ordering

What is the bandwidth of the 2D Laplacian ma-
trix with natural rowwise ordering? Consider
row i , which has entries at columns

i (diagonal),

i − 1, i + 1 (inner bands),

i −mx , i +mx (outer bands).

Hence, the bandwidth is mx .

5 / 36



Example with Natural Ordering

Consider instead columnwise ordering along y -axis first, and then
x-axis. In this case, the bandwidth becomes my instead!

Consider row j , which has entries at columns

j (diagonal),

j − 1, j + 1 (inner bands),

j −my , j +my (outer bands).

Hence, the bandwidth is my .

6 / 36



Example with Natural Ordering

Ordering along the y -axis first gives narrower bandwidth (in this
case) since mx ≫ my .

The columnwise ordering of the 2D Laplacian matrix produces less
fill.

7 / 36



Example with Natural Ordering

Recall when factoring banded matrices the L and U factors of a
band matrix have the same lower and upper bandwidths,
respectively, as the input A. That is, the widths of the bands are
preserved. Therefore, fill can only occur between the outermost
bands (e.g., see Figure 1).

× × • • ×
× × × • • ×
• × × × • • ×
• • × × • • • ×
× • • • × × • • ×
× • • × × × • • ×
× • • × × × • • ×
× • • × × • • • ×
× • • • × × • •
× • • × × × •
× • • × × ×
× • • × ×


Figure: Example of where fill can occur for banded matrices. The
possible fill occurs where • are depicted.

8 / 36



Example with Natural Ordering

One can verify that flops(banded GE) ≈ O(npq) for
bandwidths p, q and n gridpoints.

Therefore, the cost is O(m2n) for bandwidth m.

For the rowwise ordering we have flops = O(m2
xn), whereas

for the columnwise ordering we only have flops = O(m2
yn).

But what can we do for more general sparsity patterns?

Finding the true optimum ordering of the graph is NP
complete (i.e. it is hard).
There do exist many ordering algorithms based on good
heuristics.

We will look at some common algorithms next:

Envelope/Level set methods,
(Reverse) Cuthill McKee,
Markowitz,
Minimum Degree.

9 / 36



Example with Natural Ordering

Q & A

1 Last week we discussed upper- and lower-bandwidths. What
does “bandwidth” mean, unqualified?
A: If upper and lower bandwidths are equal, then writing
“bandwidth”, unqualified, is clear enough.

10 / 36



Envelope Reordering

In this lecture we will look at the first two types of methods.

The next lecture will discuss Markowitz and Minimum degree
reorderings.

In practice, bandwidth may vary a lot between individual rows.

11 / 36



Envelope Reordering

The envelope is the contiguous part of the matrix containing all
non-zero entries, indicated by dotted lines in the picture.
Note, we are not asserting that all entries inside the envelope are
non-zero; we are asserting that all entries outside the envelope are
zero.

12 / 36



Envelope Reordering

Remarks:

1 Recall that fill-in during factorization is bad, hence it is to be
minimized.

2 In each row of L, fill can only occur between 1st non-zero
entry (from the left) and the diagonal entry.

3 This motivates us to limit fill by keeping the envelope as close
to the diagonal as possible.

4 This further motivates the next section, on Level Sets.

13 / 36



Envelope Reordering

Q & A:

1 Does our matrix have to be symmetric?
A: All graphs coming up are undirected, which requires A to
be symmetric. So although our setup does not require A to be
symmetric, we will demand that A be symmetric to agree with
the convention in the notes.

2 Can the envelope sit both above and below the diagonal?
A: Yes, as in the above picture.

14 / 36



Envelope Reordering

Q: What does this imply about a good numbering of nodes?
A: The graph neighbours should have numbers as close together as
possible.

15 / 36



Level sets

We assume the sparsity pattern of the matrix is symmetric, i.e.,
the underlying graph representation is undirected. Envelope
methods are based on graph level sets Si defined below.

Definition 1.1
Let A be a symmetric matrix. Let {sj} be the nodes of the graph
of A. Then the level sets Si are the sets of nodes that are the
same graph distance from some starting point. That is,

S1 = {the single starting node},
S2 = {all immediate neighbours of the node in S1},
S3 = {all immediate neighbours of nodes in S2, not in S1 or S2},
...

Si = {all immediate neighbours of nodes in Si−1, not in S1,S2, . . . ,Si−1}.

16 / 36



Level sets

Figure 2 shows an example of the level sets of a graph.

Figure: Level sets of an example graph.

17 / 36



Level sets

Q: Why do we care about level sets?
A: Envelope methods:

1 order the nodes in S2, S3, . . . ,Sk , and

2 “do something” with the ordered list of nodes.

18 / 36



Level sets

Envelope methods order nodes in S2, then nodes in S3, and so
on.

This is similar to a breadth first traversal (BFS).

19 / 36

https://en.wikipedia.org/wiki/Breadth-first_search


Cuthill-McKee

How do we order nodes within each level set? In the
Cuthill-McKee (CM) algorithm a heuristic is used based on the
degree of a node.

Definition 1.2
The degree of a node v, denoted deg(v), is the number of adjacent
nodes (i.e. the number of incident edges).

For example, in the graph in Figure 2 we have deg(3) = 4 and
deg(5) = 1.

20 / 36



Cuthill-McKee

The Cuthill-McKee ordering heuristic is as follows. When visiting a
node during traversal, order its neighbors (yet to be visited) in
increasing order of degree and add them to the queue in this order.
Cuthill-McKee algorithm is given in Algorithm 1, which consists of
the following:

1 pick an arbitrary starting node and number it 1,

2 find all un-numbered neighbours of node 1 and number them
in increasing order of degree,

3 for each of node 1’s neighbours, order their neighbours in
increasing order of degree,

4 continue recursively until all nodes have been numbered.

Ties are broken in an arbitrary manner, e.g., based on the initial
node ordering.

21 / 36



Cuthill-McKee

Remarks:

1 This assumes that the graph is connected.

2 If the graph is not connected, then the corresponding matrix
(possibly under some permutation of rows/columns) can be
decomposed into diagonal blocks, each of which corresponds
with a connected subgraph.

3 Then we could solve each subsystem independently of the
others.

4 Thus we lose no generality by assuming that our graph is
connected.

22 / 36



Cuthill-McKee

Algorithm 1 : Cuthill-McKee Ordering

1: Input: undirected graph G = (V ,E )
2: Output: ordered level sets Si
3: choose starting node s ▷ for each connected component
4: S1 ← {s}, mark s
5: i = 1
6: while Si ̸= ∅
7: Si+1 ← ∅
8: for each u ∈ Si ▷ in order of increasing degree
9: for each unmarked v adjacent to u ▷ in order of

increasing degree
10: Si+1 ← Si+1 ∪ {v}
11: mark v
12: end for
13: end for
14: i = i + 1 ▷ move on to the next level set
15: end while

23 / 36



Cuthill-McKee - Q & A

1 Q: What is a good choice of starting node for CM?
A: A vertex with as low a degree as possible.

24 / 36



Reverse Cuthill-McKee (RCM)
The reverse Cuthill-McKee (RCM) algorithm is exactly
what it sounds like!
You compute the CM numbering then reverse it, i.e.,

nodeRCMi = nodeCMn−i+1 for i = 1, . . . , n.

This is simple, but why perform the reversal? John Alan
George (“Computer Implementation of the finite element
method”, 1971) observed by simply reversing the
Cuthill-McKee ordering, we can reduce the amount of fill-in
for many graphs (matrices).

The RCM has the same envelope of CM but better observed
behavior in practice.
The patterns produced by RCM are more like the low fill
downward arrow matrix, rather than the upward arrow.
Figure 3 shows an example on a random symmetric matrix.
As expected the CM algorithm produces a matrix with a
smaller bandwidth.
The RCM algorithm has the same bandwidth but is more
“down-arrow” like.

25 / 36

https://en.wikipedia.org/wiki/J._Alan_George
https://en.wikipedia.org/wiki/J._Alan_George


Cuthill-McKee

Figure 3 shows an example on a random symmetric matrix. As
expected the CM algorithm produces a matrix with a smaller
bandwidth. The RCM algorithm has the same bandwidth but is
more “down-arrow” like.

Random Symmetric Matrix Cuthill-McKee Reverse Cuthill-McKee

Figure: Comparison of CM (middle) vs RCM (right) for a symmetric
matrix (left).

26 / 36



Cuthill-McKee

Example: In this example, we will compute the CM ordering, and
the RCM ordering, for this graph:

D

B A C F

E

Assumptions:

1 Select node A as your starting node.

2 Break any ties with respect to the degrees of nodes in a level
set according to the usual alphabetic order of the nodes.

27 / 36



Cuthill-McKee
Computing the CM and RCM Orderings:

1 Start by numbering:
1. A

2 Number the un-numbered neighbours of node A in ascending
order of their degrees:
2. B (degree 1)
3. C (degree 3)

3 B has no un-numbered neighbours. Number the un-numbered
neighbours of node C in ascending order of their degrees:
4. D (degree 2)
5. F (degree 3)

4 D has no un-numbered neighbours. Number the un-numbered
neighbours of node F in ascending order of their degrees:
6. E (degree 1)

5 This yields the Cuthill-Mckee ordering:
1 2 3 4 5 6
A B C D F E

6 This yields the Reverse Cuthill-Mckee ordering:
1 2 3 4 5 6
E F D C B A

28 / 36



Cuthill-McKee

Initial Graph:

A

F B

G

E C

D

29 / 36



Cuthill-McKee

CM−→ 1

7 3

2

6 4

5



× ×
× × × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


Lots of fill-in!

30 / 36



Cuthill-McKee

RCM−→ 7

1 5

6

2 4

3



× ×
× ×
× ×
× ×
× ×

× × × × × × ×
× ×


No fill-in!

Figure: CM and RCM orderings for the initial graph. The CM algorithm
is started at node A and ties are broken alphabetically.

31 / 36



Cuthill-McKee
Detailed Explanation of Fig 4:

1 Start by numbering:
1. A

2 Number the un-numbered neighbours of node A in ascending
order of their degrees:
2. G (degree 6)

3 Number the un-numbered neighbours of node G in ascending
order of their degrees:
3. B (degree 1)
4. C (degree 1)
5. D (degree 1)
6. E (degree 1)
7. F (degree 1)

4 This yields the Cuthill-Mckee ordering:
1 2 3 4 5 6 7
A G B C D E F

5 This yields the Reverse Cuthill-Mckee ordering:
1 2 3 4 5 6 7
F E D C B G A

32 / 36



Cuthill-McKee
Theorem 1
(RCM is optimal on trees.) On a tree, no matter which node we start
with, RCM ordering produces no fill.

Proof.
We argue that the first node in the RCM ordering has to be a leaf
(degree 1).

Towards a contradiction, suppose the starting node is s and the first
node in RCM is a non-leaf node u.
Then u is connected to at least two nodes v and w .
In constructing the CM ordering we may have reached (from s) at
most one of v and w before reaching u (otherwise we have a cycle
v · · · s · · ·wuv , which can not happen for a tree).

But then after we have reached u we need to continue the CM
ordering to the other (or both) child node, so u cannot be the last
node in CM (i.e. u cannot be the first note in the RCM ordering).

This is a contradiction, so u must be a leaf node.
Now note that if we remove the node u, and rerun CM, we would
get the same ordering (without u).

Thus, recursively, we see that in the elimination of the graph by
following RCM, we are always removing leaf nodes hence will not
introduce any new edges.

33 / 36



Cuthill-McKee
Note that Theorem 1 does not hold in general for the CM
ordering.

Further, RCM does not necessarily produce the optimal
ordering for general graphs.

Determining the optimal ordering that introduces the least
amount of fill-in is NP-complete [Yannakakis 1981].

The example in Figure 5 shows the optimality of RCM on a
small tree.

Initial Graph:

D

A E

B C F G

34 / 36



Cuthill-McKee

CM−→ 4

1 5

2 3 6 7

× × × ×
× × × ×
× × × ×
× × × × ×

× × × ×
× × ×
× × ×



35 / 36



Cuthill-McKee

RCM−→ 4

7 3

6 5 2 1



× ×
× ×

× × × ×
× × ×

× ×
× ×

× × × ×


Figure: CM and RCM ordering for a tree graph. Notice that RCM
produces a reordering with no fill (shown as ×).

36 / 36


	Matrix Re-Ordering
	Key Idea
	Example with Natural Ordering
	Envelope Reordering
	Level sets
	Cuthill-McKee


