
Lecture 07: Matrix Re-ordering; Image
De-Noising

June 18, 2025

0 / 40

Outline

1 Matrix Re-ordering
1 Markowitz Reordering
2 Minimum Degree Reordering

2 Stability (Optional)
1 Matrix Condition Numbers

3 Pivoting (Optional)
1 Unnecessary Pivoting

4 Image De-Noising
1 Inverse Problems
2 Regularization Models

1 Tikhonov Regularization
2 Laplacian Regularization
3 Total Variation Regularization

1 / 40

Introduction

We have seen so far that a graph provides a useful abstraction of
the structure of symmetric matrices. The graph offers insight into
where fill-in can occur during factorization. In the previous lecture
we discussed envelope methods, such as (reverse) Cuthill-McKee,
which are a family of reorderings that can reduce fill by minimizing
the envelope.

Envelope/Level set methods,

(Reverse) Cuthill McKee,

Markowitz,

Minimum Degree.

In this lecture we will look at the last two reordering schemes
above.

2 / 40

Matrix Re-ordering - Markowitz Reordering

Markowitz [Markowitz 1957] is a local rule that tries to
(approximately) minimize fill on the current step only.

In other words, it greedily minimizes fill-in for the current step.

After k steps of LU factorization we have:

where A(k) indicates the lower right block matrix after k steps
of LU.

3 / 40

Matrix Re-ordering - Markowitz Reordering
Consider the fill that can occur during one step of LU
factorization from this point.

Normally, we subtract multiples of current row (k + 1) from
rows below (k + 2, . . . , n), if there is a non-zero in the column
to be zeroed out.

Specially, fill-in does not occur in rows that already have a
zero in the column, e.g.,

A(k) =

× × ×
× × ×
0
× × ×

 , (1)

where blue × denotes fill-in that has occurred.

The worst case fill-in at this step (using this pivot ×) is

4 entries

= (2 other non-zeros in row)× (2 other non-zeros in column).

4 / 40

Matrix Re-ordering - Markowitz Reordering

We can swap rows and columns on the fly to reduce the
resulting fill-in.

Consider all entries a
(k)
ij in the lower right block A(k).

The idea is to determine the entry that would minimize the
(worst-case) fill.

Then, swap it into the top-left (pivot) position of A(k).

The row that produces the least fill on this current step is
determined using the Markowitz product.

5 / 40

Matrix Re-ordering - Markowitz Reordering
Let r

(k)
i = nnz (number of nonzeros) in row i of A(k) and

c
(k)
j = nnz in column j of A(k).

The maximum possible fill using a
(k)
ij as the pivot is

(r
(k)
i − 1)(c

(k)
j − 1),

which is called the Markowitz product.

Brief Explanation: Consider the rows below the pivot row
first (i.e. the count of non-zero entries in the chosen column).
Zero entries below the pivot cannot cause fill-in, because we
don’t have to use the pivot row to eliminate a zero entry.

The Markowitz reordering algorithm swaps rows/columns to

choose the pivot a
(k)
ℓm that minimizes the Markowitz product,

i.e.,
(ℓ,m) = argmin

k≤i ,j
(r

(k)
i − 1)(c

(k)
j − 1).

6 / 40

Matrix Re-ordering - Markowitz Reordering

See the Lecture Notes for a concrete example.

If A is symmetric, then we select a
(k)
ℓℓ with

ℓ = argmin
k≤i

(r
(k)
i − 1),

since argmink≤i r
(k)
i = argmink≤j c

(k)
j .

So we only need to consider diagonal entries for symmetric
matrices.

By symmetrically swapping both rows and columns, a
(k)
ℓℓ

becomes the new pivot.

This approach has the following features:

preserves symmetry and diagonal dominance,
corresponds to node reordering.

7 / 40

Matrix Re-ordering - Markowitz Reordering

Aside: A matrix is (weakly) diagonally dominant if for every
row, the magnitude of the diagonal entry is larger than or
equal to the sum of the magnitudes of all the other entries in
that row. That is,

|aii | ≥
∑
i ̸=j

|aij |, for all i .

A matrix is (strongly) diagonally dominant if for every row,
the magnitude of the diagonal entry is strictly larger than the
sum of the magnitudes of all the other entries in that row.
That is,

|aii | >
∑
i ̸=j

|aij |, for all i .

We will see more on this when we discuss iterative methods.

8 / 40

Matrix Re-ordering - Minimum Degree Reordering
The symmetric case of Markowitz reordering inspires an
algorithm called minimum degree reordering.

Consider the (r
(k)
i − 1) for diagonal entries of this symmetric

matrix × × × × ×
× ×
× × ×
× × × ×
× × ×

 . (2)

Because the matrix is symmetric, therefore we only need to
consider diagonal entries.
We have that

a11 7→ 4,
a22 7→ 1,
a33 7→ 2,
a44 7→ 3,
a55 7→ 2,

so we would swap to use a22 as the pivot.
9 / 40

Matrix Re-ordering - Minimum Degree Reordering
But what do these values correspond to in the graph view?

The value of (r
(k)
i − 1) is number of off-diagonal non-zero

entries in the row, which is the same as the degree of the
corresponding node!
The original matrix in (2) gives the following graph:
× × × × ×
× ×
× × ×
× × × ×
× × ×

 ←→

While the reordering with a22 as the pivot gives:
× ×
× × × × ×
× × ×
× × × ×
× × ×

 ←→

10 / 40

Matrix Re-ordering - Minimum Degree Reordering
Minimum degree ordering chooses the node with (current)
minimum degree as the pivot element, at each step of
factorization.
When multiple nodes have same degree we need a strategy to
break ties.
Some possible strategies are:

1 select the node with smallest node number in the original
ordering,

2 pre-order with RCM, then select the node that is numbered
earlier according to an RCM ordering (computed in advance),

3 Various others, e.g. “multiple minimum degree” chooses
multiple nodes that don’t interact and eliminate them at once.

In practice, tie breaking may have a significant impact on the
order.
Minimum degree reordering is optimal for trees, i.e., MD
produces no fills on trees.
See the Lecture Slides for an explanation of this claim,
pseudocode, and useful examples.

11 / 40

Matrix Re-ordering - Minimum Degree Reordering

Finally, we mention some of the many possible improvements
of MD:

“supervariables”/indistinguishable nodes: nodes with identical
adjacency structure (neighbours) can be eliminated
simultaneously,
multiple elimination: non adjacent nodes of same degree can
also be safely eliminated simultaneously,
approximate minimum degree: use an approximation to the
degree updates of neighbours, which improves the run time,
quotient graph: smarter graph representation to reduce
storage.

Remember that our overall goal of reordering is to minimize
computation and storage costs of factorization on sparse
matrices by limiting fill.

Minimum degree ordering tries to greedily minimize fill at
each step by eliminating the node with least degree.

MD often outperforms RCM but is still just a heuristic!

12 / 40

Stability (Optional) - Matrix Condition Numbers
Here we will discuss some stability issues for factorization. We
consider another use for row/column swaps to now help with
stability.

How do small error/changes in a matrix problem Ax = b
affect the (exact) solution?

The matrix condition number, κ(A) = ∥A∥∥A−1∥ (where
∥A∥ = max ∥Ax∥

∥x∥), provides a measure for this.

Note that κ ≥ 1.

The condition number κ(A) can provide an upper bound on
the change in x due to the relative change δ in b and/or A.

Specifically, if

max

(
∥∆A∥
∥A∥

,
∥∆b∥
∥b∥

)
≤ δ,

then
∥∆x∥
∥x∥

≤ 2κ(A)δ + O
(
δ2
)
.

13 / 40

Stability (Optional)

Stability is a property of the numerical algorithm, which is
distinct from conditioning of the problem.

Essentially, stability is concerned with how errors or changes
in input to the numerical algorithm affect the output.

For example, do small errors magnify or shrink during
computation?

It is important to note that a highly stable algorithm cannot
prevent issues due to a poorly conditioned problem.

Furthermore, an unstable algorithm can give useless results,
even for a well-conditioned problem.

14 / 40

Stability (Optional)

Here we will discuss the stability of LU factorization.

The basic goal is to find L and U whose “size” remains under
control.

Huge entries will also inflate round off error and produce
useless results.

For example, we do not want re-multiplying LU together to
give a new Â that is far from the input A.

15 / 40

Pivoting (Optional) - Unnecessary Pivoting

Pivoting improves stability of the factorization, but tends to
reduce sparsity.

There is a tradeoff that needs to be considered.

But for certain matrices pivoting is never necessary.

Theorem 1
If A is symmetric positive definite, then during LU factorization the

pivot a
(k−1)
kk > 0 for all k .

Proof.
See Lecture Notes.

16 / 40

Pivoting (Optional) - Unnecessary Pivoting

Pivoting is also unnecessary for:
1 Row strictly diagonally-dominant matrices

|akk | >
∑
j ̸=k

|akj | for k = 1, . . . , n,

2 Column strictly diagonally-dominant matrices

|akk | >
∑
j ̸=k

|ajk | for k = 1, . . . , n.

That is, matrices whose diagonal entry is bigger in magnitude
than the sum of remaining entries in the row/column
(respectively).

17 / 40

Image De-Noising

Images often contain random “noise” (small errors), arising
from the sensors, capture method, or (lighting) conditions.
See for example Figure 1.

Figure: Example noisy images.

18 / 40

Image De-Noising
Synthetic images generated by raytracing have noise unless
you run them for a very long time. An alternative approach is
to raytrace for a short time, then clean up with some
de-noising. (see Figure 2).

Figure: Example noisy synthetic image (left) and denoised image
(right) from [Kalantari et al. SIGGRAPH 2015].

Often there is enough “signal” amidst the noise that we can
try to recover a version with the noise removed/reduced.

19 / 40

Image De-Noising - Inverse Problems

Image denoising is an inverse problem.

That is, given some observations we want to reconstruct the
source/factors that generated them.

Given some (noisy) observation u0 of some signal u∗ we want
to recover the clean signal u∗, i.e.,

u0 = u∗ + n,

where n is the noise.

Thus, we want to decompose the observation u0 into the sum
of two components: the clean signal u∗ and the noise n.

20 / 40

Image De-Noising - Inverse Problems

The observed image is u0 is
given.

The goal is to find an
approximation of u∗.

We treat grayscale images as
2D scalar functions

uij = pixel intensity value at row i , column j .

21 / 40

Image De-Noising - Inverse Problems

Two key assumptions enabling us to solve the inverse problem:

1 noise is not too large, i.e., observation u0 is “close” to signal
u∗

2 signal u∗ has some structure that we can exploit.

22 / 40

Image De-Noising - Regularization Models

We seek u satisfying

min
u

αR(u) + ∥u − u0∥22,

where R(u) is the regularization model.

In this form, the ∥u − u0∥22 term can be thought of as a
measure of the discrepancy between the observation u0 and
the numerical solution u.

(The notation ∥ · ∥22 should remind us of the square of the
2-norm, i.e. the square of the Euclidean distance, i.e. the sum
of the squares of the distances along each axis.)

23 / 40

Image De-Noising - Regularization Models

The parameter α > 0 is called the regularization constant,
which controls the trade-off between

regularity (“smoothness”) and
fit (fidelity to data u0).

The regularization constant balances the two goals:

α→ 0: ignores the first term (regularization) implying u ≈ u0,
so this basically outputs the observation u0,
α→∞: ignores the second term (observation) implying
u ≈ (minimizer of R(u)) giving a perfectly “regular” image.

Good recovery of a denoised image relies on

an appropriate tuning of α, and on
the regularization model R(u).

We will discuss three options here:
1 Tikhonov,
2 Laplacian, and
3 Total Variation regularizations.

24 / 40

Image De-Noising - Regularization Models - Tikhonov
Regularization

For Tikhonov regularization R(u) is a measure of the total
sum of pixel intensity

R(u) = ∥u∥22.

Therefore our optimization becomes

min
u

α∥u∥22 + ∥u − u0∥22.

25 / 40

Image De-Noising - Regularization Models - Tikhonov
Regularization

Solving this quadratic optimization (e.g., via Euler-Lagrange
equations - all details skipped) leads to

αu + (u − u0) = 0, so

(α+ 1)u = u0.

Hence, the new pixel intensities are given by

u =
u0

α+ 1
. (3)

From (3) we see that the solution with Tikhonov
regularization gives

u → u0 as α→ 0 and
u → 0 when α→∞.

Thus, α indeed balances matching the input data and being
close to a perfectly regular image (image of all zeros).
However, this is really not what we want from our
regularization since it is pushing us towards a zero intensity
image. 26 / 40

Image De-Noising - Regularization Models - Laplacian
Regularization

Consider a noisy “image” (signal) in 1D shown in Figure 3.

Figure: Example of a noisy signal (left) and smoother signal (right).

It can be seen from the noisy 1D image that there is drastic
change in slope throughout the image.
If one compared to the smoother 1D image the slope changes
more continuously.
Therefore, we should try to penalize changes in
slopes/derivatives, ∇u, instead of pixel values u.

27 / 40

Image De-Noising - Regularization Models - Laplacian
Regularization

The Laplacian regularization model R(u) is a measure of
the total sum of intensity gradients

R(u) = ∥∇u∥22.

So the optimization problem becomes

min
u

α∥∇u∥22 + ∥u − u0∥22.

The optimal solution (minimizer) satisfies the linear PDE

−α∇ · ∇u + (u − u0) = 0,

−α∆u + u = u0, (4)

where ∇ · ∇ = ∆ is the Laplace operator (from our PDE
application).

28 / 40

Image De-Noising - Regularization Models - Laplacian
Regularization

We can apply finite differences to (4) to compute a numerical
approximation of the minimizer uij at each pixel (i , j).

Using the finite difference approximation of the Laplacian ∆,
previously discussed in Lecture 4, we have

α

h2
(4uij − ui−1,j − ui+1,j − ui ,j−1 − ui ,j+1) + uij = u0ij .

This gives a matrix equation of the form (αA+ I)u = u0.

29 / 40

Image De-Noising - Regularization Models - Laplacian
Regularization

If the solution remains too noisy we can try iterating as

(αA+ I)uk+1 = uk , for k = 1, 2, . . . ,K .

However, the drawback of Laplacian regularization is that
it tends to smear out edges as shown in Figure 4.

Figure: Laplacian regularization for image denoising of the noisy
image (left). The result on the right is smeared out throughout the
image.

30 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

To avoid smearing edges the total variation regularization
takes

R(u) = ∥∇u∥1.
This still minimizes the slopes but with a different measure
that does not punish them too much (i.e., 1-norm, without
squaring).

So our optimization roughly becomes

min
u

α∥∇u∥1 + ∥u − u0∥22.

The minimization problem leads to another PDE to solve,
namely

−α∇ ·
(

1

∥∇u∥1

)
∇u + u = u0. (5)

The PDE (5) is similar to the Laplacian regularization PDE,
but with 1 instead of 1

∥∇u∥1 .

31 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

The effect is that the matrix coefficients (amount of
smoothing) depends on gradients in the image themselves.

1 Near big intensity jumps (edges of objects in an image)

∥∇uij∥ is large ⇒
1

∥∇uij∥
is small!

Therefore the 1st term becomes negligible giving u ≈ u0,
which leaves edges nearly unchanged staying close to data u0.

2 However, in “flat” regions, where intensity is roughly constant,

∥∇uij∥ is small ⇒ 1

∥∇uij∥
is large!

This implies more diffusion at pixel (i , j) since effectively we
have

−C∇ · ∇uij + uij = u0ij , where C is some large value.

The increase in diffusion makes these regions flatter/smoother.

32 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

To summarize, the behaviour of total variation regularization is

1 Edge-like regions are smoothed less, and

2 flatter regions are smoothed more.

So we get smoothing that roughly “stays within the lines”.

33 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

Figure 5 shows results from the original paper of a noisy
image (top) and total variation denoised image (bottom).

Figure: Noisy image (top) and denoised image (bottom) using total
variation regularization [Rudin et al. 1992].

34 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

We will now discuss how to compute a numerical
approximation to (5).

We can apply a finite difference discretization again of the
form

αA(u)u + u = u0,

but this equation is nonlinear.

The coefficients in the matrix A(u) depend on the solution u
itself.

We need to solve this equation numerically: we cannot solve
the PDE directly, as we did for the earlier techniques.

35 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

A simple approach to solve nonlinear equations is the fixed
point iteration.

We freeze the coefficients to make the equations linear, solve,
update, and repeat.

That is, solve

αA(uk)uk+1 + uk+1 = u0,

⇒ (αA(uk) + I)uk+1 = u0, for k = 0, 1, . . . ,K .

We pick an initial guess and compute an approximate solution
by solving the system.

The matrix A(uk) is then recomputed for the next iteration.

36 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

Note that such an iteration does not always converge to
the solution in general.

Fortunately, in this case the fixed point iteration does
converge.

There are different approaches to determine when to stop
iterating, i.e., what is K?

One approach is to stop iterating when the approximation is
not changing much anymore, i.e.

∥uk+1 − uk∥ < tol,

for some small tolerance.

37 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

Noisy Image Laplacian Total Variation

Figure: Comparison denoising an image with Laplacian and total variation
regularization (images from Mathworks Matlab manual).

Figure 6 compares the Laplacian and total variation
regularization.

The Laplacian regularization is unable to remove as much
noise as the total variation regularization.

Increasing the regularization parameter α for the Laplacian
regularization will just blur the image instead of removing
noise.

38 / 40

Image De-Noising - Regularization Models - Total
Variation Regularization

The effect of increasing α for total variation regularization is
shown in Figure 7.

Edges are still well preserved as α increases and the image
becomes smoother.

Figure: Effect of increasing the regularization parameter α with total
variation regularization.

39 / 40

Summary

Many questions about how to complete these computations
have been left unanswered so far.

When we work out such examples on the Crowdmark
assignments, all the required details will be specified.

40 / 40

	Introduction
	Matrix Re-ordering
	Markowitz Reordering
	Minimum Degree Reordering

	Stability (Optional)
	Matrix Condition Numbers

	Pivoting (Optional)
	Unnecessary Pivoting

	Image De-Noising
	Inverse Problems
	Regularization Models

