
Lecture 08: Iterative Methods

June 18, 2025

0 / 30

Outline

1 Iterative Methods
1 Stationary Iterative Methods

2 Splitting Methods
1 Richardson
2 Jacobi
3 Gauss-Seidel
4 Successive Over Relaxation (SOR)

3 Convergence of Splitting Methods

1 / 30

Iterative Methods

The previous lecture concluded our look at direct methods for
linear systems.

These methods are based on factoring the matrix A.

They solve the system in a known finite sequence of steps,
then return the solution.

In this lecture we begin looking at iterative methods for linear
systems.

These methods gradually and iteratively refine a solution.

They repeat the same steps over and over, then stop only
when a desired tolerance is achieved.

2 / 30

Iterative Methods
Possible benefits of iterative methods compared to direct methods:

1 They may be faster and tend require less memory.
2 They may be faster for typically large, sparse, higher-dimensional

problems, since they are usually less memory-intensive since no fill-in
occurs. LU factorization was O(n3) in the worst (fully dense) case
for A ∈ Rn×n. For iterative methods the operation count depends on
number of non-zeros (nnz), as well as, how many iterations it takes.

3 Another benefit for applications needing only approximate solutions
is that one can “quit early”. With iterative methods you can
increase your error tolerance to obtain a less accurate approximate
solution. Ideally, iterative approaches make gradual progress in the
solution quality up to the tolerance (or limits of floating point
arithmetic). Direct approaches give no solution at all until they
complete all operations. Depending on the problem one or the other
may get to a (satisfactory) solution first as shown in Figure 1.

4 Exact algorithms such as Gaussian elimination need to alter the
matrix A. The splitting algorithms discussed below do not. If we
cannot find a good ordering to (significantly) reduce the amount of
fill-in, then iterative algorithms should be used (for large problems).
The downside of course is that we give up computing an exact (up
to machine precision) solution.

3 / 30

Iterative Methods - Termination Criterion

The termination criterion is based on the error e = x − x̂ between

1 the (current, approximate) numerical solution x̂ and

2 the true solution x .

We terminate computation when e ≈ 0. However, we do not know
the true solution x since that is what we are trying to compute. So
a more practical indicator of the error is the norm of the residual

r = b − Ax̂ .

The residual measures how much the current approximation fails to
satisfy Ax̂ = b.

4 / 30

Iterative Methods - Termination Criterion

The residual and error satisfy Ae = r since

Ax = b,

⇒ Ax − Ax̂ = b − Ax̂ ,

⇒ A (x − x̂)︸ ︷︷ ︸
e

= b − Ax̂︸ ︷︷ ︸
r

,

⇒ Ae = r .

5 / 30

Iterative Methods - Termination Criterion

Therefore, the matrix condition number (See Stability in Lecture
07) can be used to bound the (relative) size of error e and residual
r as

∥e∥
∥x∥

≤ κ(A)
∥r∥
∥b∥

.

From this we see that a small residual can imply a small error, but
only if A is well conditioned (i.e., κ is small).

6 / 30

Iterative Methods - Termination Criterion

As an example, consider the 1× 1 linear system 5x = 300.

The true solution is obviously x = 60.

If our current best estimate is x̂ ≈ 50, then the error is
e = x − x̂ = 60− 50 = 10.

This is the exact error of how “wrong” x̂ is.

The residual in this case is r = b − Ax̂ = 300− 5(50) = 50
(i.e., how far is b − Ax̂ from zero?).

Notice also that the claim of Ae = r is satisfied since
5(10) = 50.

7 / 30

Stationary Iterative Methods
Iterative methods start from some (perhaps arbitrary or zero) guess
at the solution. Increasingly accurate approximations to the
solution are generated by iterating a basic procedure repeatedly.

Figure: Comparison of the path to solutions of iterative versus direct
methods.

8 / 30

Stationary Iterative Methods

Q & A

1 Do we always know that we will converge towards a solution?
A: No. We will need to be careful about this point, because
convergence is not guaranteed without additional assumptions.
We will discuss these convergence assumptions, soon.

2 If an iterative method converges, must it produce a “close
enough” answer more quickly than the direct methods that we
have studied?
A: No: Not all iterative methods are created equal, and the
meaning of “close enough” completely depends on the choice
of tolerance.

9 / 30

Splitting Methods

This section gives describes splitting methods for iteratively solving
linear equations. We can rewrite the linear system Ax = b as

(M − N)x = b ⇔ Mx = Nx + b, where A = M − N.

Important Notes About Notation:

1 We assume that M must be invertible.

2 (In each method described below, you should think about
what extra constraints this would place on the coefficient
matrix, A.)

3 However, we do not necessarily compute M−1 to solve a
system involving M.

4 We abuse notation slightly in what follows, by writing M−1b
as shorthand for the solution, x , to the system Mx = b.

10 / 30

Iterative Methods

Then, starting with some initial guess x0, we can iteratively
find x by repeatedly solving

Mxk+1 = (Nxk + b). (1)

Then we have:

Mxk+1 = Nxk + b

= (M − A)xk + b

= Mxk − Axk + b

= Mxk + (b − Axk)

xk+1 = xk +M−1 (b − Axk)︸ ︷︷ ︸
rk , at step k (x̂=xk)

(2)

11 / 30

Iterative Methods

For the splitting method (1) to be effective, we need to
choose M (hence N) so that

1 it is easy to solve the linear system (1), i.e., My = z should be
easy to solve.

2 M is close to A, in the sense of having small norm
∥I −M−1A∥.

At one extreme we could choose M = A, and the iterative
procedure (1) will “converge” in one iteration since

xk+1 = xk + A−1(b − Axk) = xk + x − xk = x .

However, using the actual A−1 is too expensive (and defeats
the purpose).

The cost would be solving a general linear system Ax = b.

There is a trade-off between the two goals, so we want to take
M ≈ A.

12 / 30

Splitting Methods - Richardson
Richardson iteration is perhaps the simplest method.

The choice of M the scaled identity matrix

M =
1

θ
I ,

where θ > 0 is some appropriately chosen constant.

How to choose θ will be detailed when we discuss the
convergence of iterative methods in Section 3.

We have from (2) that the Richardson iteration is

xk+1 = xk + θ(b − Axk).

Or, for a particular i th entry we have

xk+1
i = xki + θ

(
bi −

∑n
j=1 aijx

k
j

)
.

Note that the new value xk+1 is a weighted sum of old value
xk and the residual b − Axk .

Clearly, each iteration costs O(nnz(A)).

Note that we need to store 2 separate vectors, xk and xk+1.
13 / 30

Splitting Methods - Jacobi

The next three methods will rely on the
following labelled submatrices of A

D = main diagonal (all diagonal
entries non-zero),

−L = (strictly) below diagonal,

−U = (strictly) above diagonal.

A =


. . . −U

D

−L
. . .


With the choice

M = D := diag(A),

we have the Jacobi iteration from (2):

xk+1 = xk + D−1(b − Axk).

14 / 30

Splitting Methods - Jacobi

Intuitively, we “exactly” solve each row equation
independently for the corresponding entry, using the current
estimate of vector xk . For example, consider if row 7 looks like

2x5 − 5x6 + 10x7 + 3x9 = 14.

Then to find xk+1 for row index i = 7 we set

xk+1
7 =

1

10

(
14− 2xk5 + 5xk6 − 3xk9

)
,

using the other known (step k) values of x .

Again, each iteration costs O(nnz(A)) and we must store 2
vectors.

15 / 30

Splitting Methods - Jacobi

Let us write the Jacobi iteration more explicitly for the ith
entry as

xk+1
i = xki +

1

aii

bi −
∑
j

aijx
k
j

 ,

=
1

aii

bi −
∑
j ̸=i

aijx
k
j

 .

16 / 30

Splitting Methods - Jacobi

Motivation for the Jacobi iteration:

Recall the residual vector r = b − Ax .

Clearly, x is a solution iff r = 0.

Given the current iterate xk , the Jacobi iteration tries to zero
out the i-th residual ri , in turn:

ri = 0

⇐⇒ bi −
∑
j ̸=i

aijx
k
j − aiix

k+1
i = 0

⇒ xk+1
i =

1

aii

bi −
∑
j ̸=i

aijx
k
j

 .

17 / 30

Splitting Methods - Jacobi

The Jacobi iteration is easy to implement but unfortunately
quite slow.

However, it is trivially parallelizable.

Given xk , we can update the components in the next iteration
xk+1 in parallel.

18 / 30

Splitting Methods - Gauss-Seidel

The Gauss-Siedel iteration is very similar to the Jacobi
iteration.

The difference is instead of using “old” data, xk , use “new”
xk+1 data for entries that have already been updated so far
on this pass.

That is,

xk+1
i = xki +

1

aii

bi −
∑
j<i

aijx
k+1
j −

∑
j≥i

aijx
k
j


=

1

aii

bi −
∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

 .

19 / 30

Splitting Methods - Gauss-Seidel
Recall we are zeroing out the residual at ith step - this gives
the first equation.

If we rearrange the updates we have∑
j≤i

aijx
k+1
j = b −

∑
j>i

aijx
k
j ,

or in matrix form

(D − L)xk+1 = b + Uxk

⇒ xk+1 = xk + (D − L)−1(b − Axk),

so
M = D − L.

Again, each iteration costs O(nnz(A)).

Gauss-Seidel however only needs to store one vector since you
can update/overwrite xk entries as you go!

20 / 30

Splitting Methods - Backward Gauss-Seidel

There exist variants of Gauss-Siedel (GS).

There is nothing special about proceeding to update xk from
top to bottom (i.e ., GS runs over rows from i = 1, . . . , n).

The reverse ordering gives backward Gauss-Seidel.

This swaps the role of L and U giving

xk+1 = xk + (D − U)−1(b − Axk),

which corresponds to update the elements of x in the reverse
order (i.e., i = n, n − 1, . . . , 1).

Thus
M = D − U.

21 / 30

Splitting Methods - Symmetric Gauss-Seidel

Of course, we can also combine (forward) Gauss-Siedel with
backward Gauss-Siedel to construct symmetric Gauss-Seidel

xk+1/2 = xk + (D − L)−1(b − Axk),

xk+1 = xk+1/2 + (D − U)−1(b − Axk+1/2)

=︸︷︷︸
See Lecture Notes

xk + (D − U)−1D(D − L)−1(b − Axk).

So that for symmetric Gauss-Seidel, the matrix M is

M = (D − L)D−1(D − U).

22 / 30

Splitting Methods - Red-black Gauss-Seidel (Optional)

Gauss-Siedel usually converges faster than the Jacobi iteration.

However, GS is an inherently sequential algorithm and is
harder to parallelize.

Red-black Gauss-Seidel is an update ordering that allows for
some parallelization (see Figure 2 left).

It alternates between sweeps of updating (1) only red nodes
and (2) only black nodes.

We can update all red nodes in parallel since they only use
(old) black data, and vice versa.

One can generalize the red-black GS idea to non-grid
structured problems by coloring a graph.

You ensure no neighbours have same color and then update
all same color neighbours simultaneously (see Figure 2 right).

See for example the application of real time cloth simulation
by [Fratarcangeli et al. 2016] in this video.

23 / 30

https://www.youtube.com/watch?v=xIfuplNTjHc

Splitting Methods - Gauss-Seidel

Figure: Example colorings for parallelizing the Gauss-Seidel iteration.

24 / 30

Splitting Methods - Successive Over Relaxation (SOR)
A common strategy to accelerate fixed-point iterations is
averaging.

For instance, by averaging the current iterate xk with the GS
update according to a relaxation factor ω > 0, we obtain
SOR:

xk+1
i = (1− ω)xki + ω(xk+1

i)GS

= (1− ω)xki +
ω

aii

bi −
∑
j<i

aijx
k+1
j −

∑
j>i

aijx
k
j

 ,

or in matrix notation

xk+1 = xk +

(
1

ω
D − L

)−1 (
b − Axk

)
.

Hence, for SOR the matrix M is

M =
1

ω
D − L.

25 / 30

Splitting Methods - Successive Over Relaxation (SOR)

See the Lecture Notes for a detailed explanation of the setup
above.

For 0 < ω < 1 the update is called under-relaxation, while

for ω > 1 the update is called over-relaxation.

When ω = 1, SOR equals Gauss-Seidel.

For certain choices of ω(> 1), SOR may converge
substantially faster than GS.

26 / 30

Convergence of Splitting Methods

The key questions involving the convergence of splitting
methods are:

1 under what conditions does the iteration converge to the
correct solution?

2 if it does converge, how quickly does it do so (in terms of
number of iterations)?

These convergence questions depend on the spectral radius
of A, denoted ρ(A).

The spectral radius is defined in terms of the eigenvalues of A.

27 / 30

Convergence of Splitting Methods

Definition 3.1
An eigenvalues λ ∈ R and corresponding eigenvector v ∈ Rn of
A ∈ Rn×n satisfy

Av = λv and v ̸= 0.

Definition 3.2
The spectral radius of A is

ρ(A) = max
i

|λi |,

where λi are the eigenvalues of A. In other words, ρ(A) is the
largest magnitude of an eigenvalue of A.

28 / 30

Convergence of Splitting Methods
We can rewrite our usual iteration as

xk+1 = xk +M−1(b − Axk) = (I −M−1A)xk +M−1b.

We call the matrix I −M−1A the iteration matrix for a
particular method.
The following theorem gives a sufficient condition for
convergence.

Theorem 1
Let the true solution x∗ satisfy x∗ = (I −M−1A)x∗ +M−1b. If
∥I −M−1A∥ < 1 for some induced matrix norm, then the
stationary iterative method converges.

That is, for any initial guess x0,

lim
k→∞

xk = x∗.

Proof.
See Lecture Notes. 29 / 30

https://en.wikipedia.org/wiki/Matrix_norm

Convergence of Splitting Methods
Note that an induced matrix norm is defined as
∥A∥ := max∥x∥=1 ∥Ax∥.
A necessary and sufficient theorem for convergence is given
next (we will not prove this).

Theorem 2
The iterative method xk+1 = xk +M−1(b − Axk) converges for
any x0 and b if and only if ρ(I −M−1A) < 1.

The speed of convergence depends on the size of
ρ(I −M−1A) since the error satisfies

∥xk+1 − x∗∥ ≤ ρ(I −M−1A)∥xk − x∗∥.

That is, magnitude of the error scales by ρ(I −M−1A) on
each iteration.

We will call ρ(I −M−1A) the convergence factor.
Smaller ρ (closer to zero) implies faster convergence.

For even more on convergence see Saad textbook, sections
4.2.1 and 1.8.4.

30 / 30

	Iterative Methods
	Stationary Iterative Methods
	Stationary Iterative Methods

	Splitting Methods
	Richardson
	Jacobi
	Gauss-Seidel
	Successive Over Relaxation (SOR)

	Convergence of Splitting Methods

