Lecture 09: Iterative Methods - Conjugate Gradient Method

June 18, 2025

Outline

Solution by Steepest Descent

- Towards the Conjugate Gradient Method
- Another Search Direction Idea
 - Gram-Schmidt (A-)orthogonalization
 - Onjugate Directions Method
- Onjugate Gradient Method
 - I Efficient Conjugate Gradient Method
 - error Behaviour

- In Lecture 08 we looked at stationary iterative methods.
- We will now begin to look at other iterative methods for solving Ax = b.
- The steepest descent method and the conjugate gradient method are discussed in this lecture.

- There is an equivalent minimization interpretation of solving Ax = b.
- We assume $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) and consider the quadratic function

$$F(x) = \frac{1}{2}x^T A x - b^T x, \quad x \in \mathbb{R}^n.$$

• We will show that the solution of Ax = b is equivalent to the solution of the minimization problem

 $\min_{x} F(x).$

- Consider visualizing the case with n = 2 as shown in Figure 1.
- Here x is a length-2 vector $x = [x_1, x_2]^T$.
- The function F(x) is a scalar that gives height in the plot.
- Plotting F gives a paraboloid with minimum value at $x = A^{-1}b$.
- Note that A being SPD implies F is convex.

Figure: Visualization of F(x) when n = 2.

Theorem 1

The solution of the linear system and minimization form are the same.

Proof.

The solution of the minimization satisfies $\nabla F(x) = 0$, i.e.,

$$\frac{\partial F}{\partial x_i} = 0, \forall i.$$

Since $\nabla F(x) = Ax - b$ (See Lecture Notes), therefore the solution of Ax = b corresponds to a stationary point. However, since F(x) is (strictly) convex any local minimum is the global minimum.

- By Theorem 1, if we can solve the minimization problem, we have solved the linear system.
- So we will try to find the minimum by "walking downhill".
- The main idea is, at each step, first choose a search direction vector p ≠ 0.
- Then find the point along that direction with the lowest value.
- Therefore, we iterate as $x^{k+1} = x^k + \alpha p$, where $\alpha \in \mathbb{R}$.
- We want to find α that gives the minimum value of $F(x^{k+1}) = F(x^k + \alpha p)$.

Let

$$f(\alpha) = F(x^{k} + \alpha p),$$

$$= \frac{1}{2}(x^{k} + \alpha p)^{T}A(x^{k} + \alpha p) - (x^{k} + \alpha p)^{T}b,$$

$$= \frac{1}{2}(x^{k})^{T}Ax^{k} + \left(\frac{\alpha}{2}p^{T}Ax^{k} + \frac{\alpha}{2}(x^{k})^{T}Ap\right)$$

$$+ \frac{\alpha^{2}}{2}p^{T}Ap - (x^{k})^{T}b - \alpha p^{T}b,$$

$$= \underbrace{\left[\frac{1}{2}(x^{k})^{T}Ax^{k} - (x^{k})^{T}b\right]}_{F(x^{k})}$$

$$+ \alpha \left[p^{T}Ax^{k} - p^{T}b\right] + \frac{\alpha^{2}}{2} \left[p^{T}Ap\right].$$

 To optimize we differentiate f with respect to α, set it to 0, and solve for α.

$$f'(\alpha) = -p^{T}(b - Ax^{k}) + \alpha p^{T}Ap = 0,$$

$$\Rightarrow \alpha = \frac{p^{T}(b - Ax^{k})}{p^{T}Ap} = \frac{p^{T}r^{k}}{p^{T}Ap},$$

where $r^k = b - Ax^k$ is the residual of the *k*th iterate.

- This is the optimal α given the update rule x^{k+1} = x^k + αp and search vector p ≠ 0.
- Note that since A is SPD, p^TAp > 0. So α gives the minimum point along a given search direction.

- Now consider choosing the search directions *p*.
- What is the optimal search direction?
- A vector pointing straight from x^k towards the solution x, so $p = x x^k$.

- This p would give the solution in **one step**.
- Unfortunately we do not know x!
- Therefore, we pick the search directions in a *locally optimal* manner.
- That is, we determine what direction reduces *F* as rapidly as possible **at the current point**.

- We saw above that $f'(\alpha) = p^T (Ax^k b) + \alpha p^T A p$.
- This gives the rate of change at distance α along the search vector.
- So, f'(0) gives rate of change along p at the current position (i.e., x^k).
- The idea is to pick p to make f'(0) as negative as possible.
- This gives the direction of fastest decrease.
- We have that f'(0) = p^T(Ax^k − b) = p^T∇F(x^k), so f'(0) is minimized for

$$egin{aligned} p &= -rac{
abla F(x^k)}{\|
abla F(x^k)\|}, & (ext{assuming we want unit } p, \|p\| = 1) \ &= rac{b - Ax^k}{\|b - Ax^k\|} = rac{r^k}{\|r^k\|}. \end{aligned}$$

- It is actually not necessary to normalize the search direction vector.
- Therefore we take $p = r^k$, which gives the iteration $x^{k+1} = x^k + \alpha r^k$ and optimal α as

$$\alpha = \frac{p^T r^k}{p^T A p} = \frac{(r^k)^T r^k}{(r^k)^T A r^k}.$$

• Intuitively, we are finding the negative gradient of F (i.e., residual) and following it "downhill" as shown in Figure 2.

Figure: Example contours and gradient vectors of a function F.

- The steepest descent algorithm is given in the Lecture Notes.
- For efficiency, instead of recomputing the residual from scratch at each step we can derive a simple **update rule**

$$r^{k+1} = b - Ax^{k+1},$$

= $b - A(x^k + \alpha r^k),$
= $b - Ax^k - \alpha Ar^k,$
= $r^k - \alpha Ar^k.$

- The term *Ar^k* is already needed in the algorithm, so we can save one matrix-vector product per iteration by storing its result.
- Note that you can view steepest descent as a **nonlinear** iterative method with the iteration matrix $M = M^k = \frac{1}{\alpha_k}I$ that *changes* on each iteration.

- The steepest descent algorithm actually behaves quite poorly in terms of convergence.
- Since we assumed A was SPD steepest descent will indeed converge.
- However, steepest descent can be "shortsighted" and will often yield slow (zig-zag-like convergence towards the solution) as seen below.

• For a SPD matrix A the error vectors $e^k = x^k - x^*$ for steepest descent satisfy

$$||e^{k+1}||_{A} \leq \left(\frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}}\right)||e^{k}||_{A},$$

where $|| \cdot ||_A$ indicates the "A-norm" or **energy norm**: $||x||_A = \sqrt{x^T A x}$.

- For a proof of this result see Saad textbook, Section 5.3.1 or [Shewchuk 1994].
- Next we will look at the **conjugate gradient** method, which chooses a different sequence of steps that can sometimes perform much better.

Solution by Steepest Descent - Towards the Conjugate Gradient Method

- Recall the steepest descent method.
- We considered finding the x that gives the minimum of

$$F(x) = \frac{1}{2}x^T A x - b^T x, \quad x \in \mathbb{R}^n,$$

which also is the solution to Ax = b.

- We developed an iteration $x^{k+1} = x^k + \alpha p^k$ with:
 - search direction $p^k = r^k = b Ax^k$,
 - step length $\alpha = \frac{(r^k)^T p^k}{(p^k)^T A p^k} = \frac{(r^k)^T r^k}{(r^k)^T A r^k}$,
- The search direction gives a locally fastest decrease, but not the globally "best" direction.
- This leads to zig-zag like convergence towards the solution.
- We now discuss how we can do better, starting with the **conjugate directions** method, then refining it to finally arrive at the **conjugate gradient** method.

- Imagine an approach that (somehow) finds the solution in the x_1 axis, then in the x_2 axis, ..., then in the x_n axis.
- It would complete in *n* iterations, touching each **orthogonal** axis **once**.
- Can we achieve something like this?

- Choosing step $p^k = axis_k$ does not actually work.
- The lowest point (minimum value) along each axis in *not* the solution for that axis.
- The figure below depicts this idea.
- The blue vectors are what we would like.
- But, the red is the (bad) result if we use axes as search directions.

- Choosing orthogonal directions (axes) and minimizing along them one at a time clearly does not work.
- Let us try something else, based on A-orthogonality.
- We first need to some definitions.

Definition 2.1

Suppose A is SPD, then the A-inner product is defined as

$$(p,q)_A = p^T A q.$$

Definition 2.2

The A-norm is given by

$$||p||_A = \sqrt{(p,p)_A}.$$

Definition 2.3

Two vectors p, q are A-orthogonal (or conjugate) if $(p, q)_A = 0$.

- Figure 3 visualizes vectors that are A-orthogonal.
- In general, A-orthogonal vectors are not orthogonal in the standard Euclidean space.
- The vectors are instead orthogonal when you transform to the new space by multiplying by *A*.

A-orthogonal vector pairs (are not orthogonal!)

Corresponding orthogonal vector pairs after stretching the space according to A

Figure: Visualization of the concept of A-orthogonality.

- Intuitively, A-orthogonality is a kind of orthogonality that respects the properties of A.
- We build a new search direction method based on *A*-orthogonality.
- We choose each search direction to be *A*-orthogonal to **all** previous search directions.
- This will avoid searching redundant directions repeatedly.
- So we now need an algorithm to construct A-orthogonal vectors.
- We will use Gram-Schmidt A-orthogonalization.

- Gram-Schmidt A-orthogonalization construct a set of *A*-orthogonal vectors, incrementally.
- Suppose the previous search directions p⁰, p¹, p², ..., p^{k-1} are all mutually A-orthogonal.
- Given a new proposed direction u^k, we convert it into a p^k that is A-orthogonal to all prior pⁱ.
- The idea is to subtract out the components of u^k that are *not* A-orthogonal to earlier p^i 's, leaving behind a vector that *is*.

- Figure 4 gives a visualization of one step of Gram-Schmidt in 2D (for regular orthogonality).
- Consider some vector *u*, and a (previous) basis vector *a*.
- Then the vector $u (u^T a)a$ will be orthogonal to a.
- Let's derive a Gram-Schmidt process to construct A-orthogonal vectors.

Figure: Orthogonalizing a vector u with respect to a.

We start with a vector u^k and subtract all prior pⁱ components to form p^k, so

$$p^k = u^k + \sum_{i=0}^{k-1} \beta_i p^i.$$

- Now we just need to find the coefficients β_i .
- For each p^j for j = 0,..., k 1 use A-orthogonality against p^k:

$$0 = (p^{k}, p^{j})_{A},$$

= $\left(u^{k} + \sum_{i=0}^{k-1} \beta_{i} p^{i}, p^{j}\right)_{A},$
= $(u^{k}, p^{j})_{A} + \sum_{i=0}^{k-1} \beta_{i} (p^{i}, p^{j})_{A}.$

- Earlier p^i 's were mutually A-orthogonal, so $(p^i, p^j)_A = 0$ for $i \neq j$.
- Therefore,

$$0 = (u^{k}, p^{j})_{A} + \beta_{j}(p^{j}, p^{j})_{A},$$

$$\Rightarrow \beta_{j} = -\frac{(u^{k}, p^{j})_{A}}{(p^{j}, p^{j})_{A}}.$$
 (1)

 Using this strategy we can construct an A-orthogonal set of *p^k* vectors spanning ℝⁿ, when given input *u^k*'s.

Another Search Direction Idea - Conjugate Directions Method

- To summarize, the conjugate directions method starts with a given set of vectors u^k spanning ℝⁿ.
- We then A-orthogonalize them by Gram-Schmidt to get A-orthogonal search directions p^k.
- The same basic iteration as steepest descent is then performed to compute the solution x to Ax = b.
- The changes to the steepest descent iteration are:
 - use new p^k as search directions (instead of residuals r^k),
 - use our original step length expression $\alpha = \frac{(r^k)^T p^k}{(p^k)^T A p^k}$ (i.e., not $\frac{(r^k)^T r^k}{(p^k)^T A r^k}$).

Another Search Direction Idea - Conjugate Directions Method

The drawbacks of conjugate directions (w/ Gram-Schmidt) are as follows.

- With respect to memory we need to keep *all* prior search vectors p^i .
- In terms of computational cost we need to perform complete Gram-Schmidt at each step, which takes $O(n^3)$ flops.
- There is also the lingering question about how to choose the input (non-A-orthogonal) u^k vectors?
- A fun fact is that if the proposed search vectors u^k at each step (before *A*-orthogonalization) are the axes, this gives Gaussian Elimination again!

Conjugate Gradient Method

- The conjugate gradient method is a variation on the conjugate directions method that improves in two ways:
 - choose the vectors u^k at each step to be the residual r^k (to be A-orthogonalized),
 - Carefully exploit (A-)orthogonality to avoid storing all prior search vectors.
- Item 1. immediately turns our earlier Gram-Schmidt process into

$$p^{k} = r^{k} + \sum_{i=0}^{k-1} \beta_{i} p^{i} = r^{k} - \sum_{i=0}^{k-1} \frac{(r^{k}, p^{i})_{A}}{(p^{i}, p^{i})_{A}} p^{i}, \qquad (2)$$

which gives the first version of the conjugate gradient algorithm in the Lecture Notes.

• This first version is still costly, do not implement this version!

- Let's work towards a more efficient algorithm.
- We want concise recursive expressions for
 - $\bullet\,$ the step lengths α ,
 - step directions p, and
 - Gram-Schmidt coefficients β .
- We will need to consider the spaces involved and their relationships, as well as, repeatedly exploit orthogonality and *A*-orthogonality.

• Consider the space spanned by vectors p^i for i = 0, ..., k - 1.

$$span\{p^{0}, p^{1}, \dots, p^{k-1}\}$$

$$= span\{r^{0}, r^{1}, \dots, r^{k-1}\}, \quad (by \text{ Gram-Schmidt})$$

$$= span\{r^{0}, Ar^{0}, A^{2}r^{0}, \dots, A^{k-1}r^{0}\} \quad (See \text{ Lecture Notes}).$$

A space constructed this way (powers of A times a vector) is called a (k-dimensional) Krylov subspace, denoted K_k(A, r⁰).

- It can also be shown (See Lecture Notes) that $r^{k} \perp \operatorname{span} \{p^{0}, p^{1}, \dots, p^{k-1}\} = \operatorname{span} \{r^{0}, r^{1}, \dots, r^{k-1}\}$, i.e., $(r^{k}, r^{j}) = 0$ for $j = 0, 1, \dots, k - 1$.
- That is, the current residual is orthogonal to the prior search directions and residuals.
- Currently, the step length is computed as $\alpha_k = \frac{(r^k, p^k)}{(p^k, p^k)_A}$.
- Observe however that

$$(r^{k}, p^{k}) = \left(r^{k}, r^{k} + \sum_{i \neq 0}^{k-1} \beta_{i} p^{i}\right)^{0}, \text{ (since } (r^{k}, p^{i}) = 0 \text{ for } i < k)$$

= $(r^{k}, r^{k}),$ (3)

which gives a new way of computing α_k as

$$\alpha_k = \frac{(r^k, r^k)}{(p^k, p^k)_A}.$$

• To make computing the search direction more efficient we need the identity

$$(r^k, p^i)_A = 0$$
 for $i = 0, 1, \dots, k - 2.$ (4)

Proof.

See the Lecture Notes.

- Now we can construct search direction p^k without storing all prior pⁱ.
- Starting from (2), Gram-Schmidt gives

$$p^{k} = r^{k} - \sum_{i=0}^{k-1} \frac{(r^{k}, p^{i})_{A}}{(p^{i}, p^{i})_{A}} p^{i},$$

= $r^{k} - \frac{(r^{k}, p^{k-1})_{A}}{(p^{k-1}, p^{k-1})_{A}} p^{k-1},$

by (4).

- Hence, only the current residual and previous step direction are needed to compute p^k .
- This saves us storage and flops.

- To arrive at the standard conjugate gradient method we further simplify β_{k-1}.
- Equation (1) gave $\beta_{k-1} = -\frac{(u^k, p^{k-1})_A}{(p^{k-1}, p^{k-1})_A}$.
- Later replacing u^k by r^k gave

$$\beta_{k-1} = -\frac{(r^k, p^{k-1})_A}{(p^{k-1}, p^{k-1})_A}.$$
(5)

- In the numerator we have $(r^k, p^{k-1})_A$.
- By the residual update rule, $r^k = r^{k-1} \alpha_{k-1}Ap^{k-1}$, so applying (r^k, \cdot) to this rule, we get that

$$(r^k, r^k) = (\underline{r^k, r^{k-1}}) - \alpha_{k-1}(r^k, Ap^{k-1}),$$

=0 since the $r{\rm 's}$ are orthogonal

Rearranging, we get that the numerator is

$$(r^{k}, p^{k-1})_{A} = (r^{k}, Ap^{k-1}) = -\frac{1}{\alpha_{k-1}}(r^{k}, r^{k}).$$

- Now consider the denominator $(p^{k-1}, p^{k-1})_A$.
- We have that $(r^k, p^{k-1}) = 0$ by orthogonality.
- Applying (\cdot, p^{k-1}) to the residual update rule gives

$$\underbrace{(r^{k}, p^{k-1})}_{=0} = (r^{k-1}, p^{k-1}) - \alpha_{k-1}(Ap^{k-1}, p^{k-1})$$
$$0 = (r^{k-1}, r^{k-1}) - \alpha_{k-1}(p^{k-1}, p^{k-1})_{A},$$

because earlier (3) we showed $(r^{k-1}, p^{k-1}) = (r^{k-1}, r^{k-1})$.

• Rearranging, gives the denominator as $(p^{k-1}, p^{k-1})_A = \frac{1}{\alpha_{k-1}}(r^{k-1}, r^{k-1}).$

• Combining the numerator and denominator we have

$$\beta_{k-1} = -\frac{(r^k, p^{k-1})_A}{(p^{k-1}, p^{k-1})_A},$$

= $-\left(-\frac{(r^k, r^k)}{\underline{\alpha_{k-1}}}\right)\left(\frac{\underline{\alpha_{k-1}}}{(r^{k-1}, r^{k-1})}\right),$
= $\frac{(r^k, r^k)}{(r^{k-1}, r^{k-1})}.$

- The more efficient version of the conjugate gradient method is given in the Lecture Notes, based on the simplifications above.
- Now conjugate gradient just needs 1 matrix-vector multiply and 2 inner-products per step:
 - matrix-vector multiply Ap^k ,
 - dot products (r^k, r^k) and (p^k, Ap^k) .

- Note that at most *n* A-orthogonal vectors are needed to span \mathbb{R}^n .
- Therefore conjugate gradient will terminate in (at most) *n* steps with an exact solution (under exact arithmetic).
- At each iteration, the current conjugate gradient solution's error has the minimum A-norm within the subspace it has already explored, i.e.,

$$x^k = \underset{x \in \mathcal{K}_k}{\operatorname{arg\,min}} ||e^k||_A^2 = \underset{x \in \mathcal{K}_k}{\operatorname{arg\,min}} ||x^k - x^*||_A^2.$$

- This is because at each iteration, conjugate gradient zeroes out one of the error components.
- To see this let $e^i = x^* x^i$, where x^* is the true solution.
- We therefore have $r^i = Ae^i$.

• Now express e^0 as a linear combination of search directions

$$e^0 = \sum_{j=0}^{n-1} \delta_j \rho^j$$
, for coefficients δ_j .

• Left multiplying by $(p^k)^T A$ (to exploit A-orthogonality) gives

$$(p^{k})^{T}Ae^{0} = \sum_{j=0}^{n-1} \delta_{j}(p^{k})^{T}Ap^{j},$$

$$(p^{k}, e^{0})_{A} = \sum_{j=0}^{n-1} \delta_{j}(p^{k}, p^{j})_{A},$$

$$= \delta_{k}(p^{k}, p^{k})_{A}, \quad \text{(by A-orthogonality)}$$

$$\Rightarrow \delta_{k} = \frac{(p^{k}, e^{0})_{A}}{(p^{k}, p^{k})_{A}}.$$

• Continuing the calculation with the generic $e^k = e^0 - \sum_{i=0}^{k-1} \alpha_i p^i$ (because the iteration is $x^{k+1} = x^k + \alpha_k p^k$) gives

$$\delta_k = \frac{(p^k, e^0)_A}{(p^k, p^k)_A}$$
$$= \frac{(p^k, e^k + \sum_{i=0}^{k-1} \alpha_i p^i)_A}{(p^k, p^k)_A}$$
$$= \frac{(p^k, e^k)_A}{(p^k, p^k)_A},$$

by the A-orthogonality of the p^i 's.

But recall that

$$\begin{aligned} \alpha_k &= \frac{(p^k)^T r^k}{(p^k, p^k)_A} \\ &= \frac{(p^k)^T A e^k}{(p^k, p^k)_A}, \text{ since } r^k = A e^k \\ &= \frac{(p^k, e^k)_A}{(p^k, p^k)_A}. \end{aligned}$$

 Hence, α_k = δ_k, so conjugate gradient zeroes out one component of the error at each iteration:

$$e^{i} = e^{0} - \sum_{j=0}^{i-1} \alpha_{j} p^{j} = \left(\sum_{j=0}^{n-1} \delta_{j} p^{j} - \sum_{j=0}^{i-1} \delta_{j} p^{j} \right) = \sum_{j=i}^{n-1} \delta_{j} p^{j}.$$
 (6)

• After *n* steps, all the components of e^0 will be gone.

• Consider using conjugate gradient on the following example:

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} x = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

starting from

$$x^0 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
.

• Conjugate gradient converges in 2 steps since we are in \mathbb{R}^2 as shown in Figure 5.

• If you are interested in more details, our discussion borrowed heavily from Shewchuk's notes on conjugate gradient.

Steepest Descent

Conjugate Gradient

Figure: Comparison of steepest descent and conjugate gradient methods in $\mathbb{R}^2.$

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition $1\frac{1}{4}$ Jonathan Richard Shewchuk

August 4, 1994

