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Solution by Steepest Descent

In Lecture 08 we looked at stationary iterative methods.

We will now begin to look at other iterative methods for
solving Ax = b.

The steepest descent method and the conjugate gradient
method are discussed in this lecture.
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Solution by Steepest Descent

There is an equivalent minimization interpretation of solving
Ax = b.

We assume A ∈ Rn×n is symmetric positive definite (SPD)
and consider the quadratic function

F (x) =
1

2
xTAx − bT x , x ∈ Rn.

We will show that the solution of Ax = b is equivalent to the
solution of the minimization problem

min
x

F (x).
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Solution by Steepest Descent
Consider visualizing the case with n = 2 as shown in Figure 1.

Here x is a length-2 vector x = [x1, x2]
T .

The function F (x) is a scalar that gives height in the plot.

Plotting F gives a paraboloid with minimum value at
x = A−1b.

Note that A being SPD implies F is convex.

Figure: Visualization of F (x) when n = 2.
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Solution by Steepest Descent

Theorem 1
The solution of the linear system and minimization form are the
same.

Proof.
The solution of the minimization satisfies ∇F (x) = 0, i.e.,

∂F

∂xi
= 0,∀i .

Since ∇F (x) = Ax − b (See Lecture Notes), therefore the solution
of Ax = b corresponds to a stationary point. However, since F (x)
is (strictly) convex any local minimum is the global minimum.
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Solution by Steepest Descent

By Theorem 1, if we can solve the minimization problem, we
have solved the linear system.

So we will try to find the minimum by “walking downhill”.

The main idea is, at each step, first choose a search
direction vector p ̸= 0.

Then find the point along that direction with the lowest value.

Therefore, we iterate as xk+1 = xk + αp, where α ∈ R.
We want to find α that gives the minimum value of
F (xk+1) = F (xk + αp).
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Solution by Steepest Descent

Let

f (α) = F (xk + αp),

=
1

2
(xk + αp)TA(xk + αp)− (xk + αp)Tb,

=
1

2
(xk)TAxk +

(α
2
pTAxk +

α

2
(xk)TAp

)
+
α2

2
pTAp − (xk)Tb − αpTb,

=

[
1

2
(xk)TAxk − (xk)Tb

]
︸ ︷︷ ︸

F (xk )

+α
[
pTAxk − pTb

]
+

α2

2

[
pTAp

]
.
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Solution by Steepest Descent

To optimize we differentiate f with respect to α, set it to 0,
and solve for α.

f ′(α) = −pT (b − Axk) + αpTAp = 0,

⇒ α =
pT (b − Axk)

pTAp
=

pT rk

pTAp
,

where rk = b − Axk is the residual of the kth iterate.

This is the optimal α given the update rule xk+1 = xk + αp
and search vector p ̸= 0.

Note that since A is SPD, pTAp > 0. So α gives the
minimum point along a given search direction.
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Solution by Steepest Descent

Now consider choosing the search directions p.

What is the optimal search direction?

A vector pointing straight from xk towards the solution x , so
p = x − xk .

This p would give the solution in one step.

Unfortunately we do not know x!

Therefore, we pick the search directions in a locally optimal
manner.

That is, we determine what direction reduces F as rapidly as
possible at the current point.
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Solution by Steepest Descent

We saw above that f ′(α) = pT (Axk − b) + αpTAp.

This gives the rate of change at distance α along the search
vector.

So, f ′(0) gives rate of change along p at the current position
(i.e., xk).

The idea is to pick p to make f ′(0) as negative as possible.

This gives the direction of fastest decrease.

We have that f ′(0) = pT (Axk − b) = pT∇F (xk), so f ′(0) is
minimized for

p = − ∇F (xk)

∥∇F (xk)∥
, (assuming we want unit p, ∥p∥ = 1)

=
b − Axk

∥b − Axk∥
=

rk

∥rk∥
.
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Solution by Steepest Descent
It is actually not necessary to normalize the search direction
vector.
Therefore we take p = rk , which gives the iteration
xk+1 = xk + αrk and optimal α as

α =
pT rk

pTAp
=

(rk)T rk

(rk)TArk
.

Intuitively, we are finding the negative gradient of F (i.e.,
residual) and following it “downhill” as shown in Figure 2.

Contours of F Gradient Vectors

Figure: Example contours and gradient vectors of a function F . 11 / 42



Solution by Steepest Descent

The steepest descent algorithm is given in the Lecture Notes.

For efficiency, instead of recomputing the residual from
scratch at each step we can derive a simple update rule

rk+1 = b − Axk+1,

= b − A(xk + αrk),

= b − Axk − αArk ,

= rk − αArk .

The term Ark is already needed in the algorithm, so we can
save one matrix-vector product per iteration by storing its
result.

Note that you can view steepest descent as a nonlinear
iterative method with the iteration matrix M = Mk = 1

αk
I

that changes on each iteration.
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Solution by Steepest Descent

The steepest descent algorithm actually behaves quite poorly
in terms of convergence.

Since we assumed A was SPD steepest descent will indeed
converge.

However, steepest descent can be “shortsighted” and will
often yield slow (zig-zag-like convergence towards the
solution) as seen below.
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Solution by Steepest Descent

For a SPD matrix A the error vectors ek = xk − x∗ for
steepest descent satisfy

||ek+1||A ≤
(
λmax − λmin

λmax + λmin

)
||ek ||A,

where || · ||A indicates the “A-norm” or energy norm:
||x ||A =

√
xTAx .

For a proof of this result see Saad textbook, Section 5.3.1 or
[Shewchuk 1994].

Next we will look at the conjugate gradient method, which
chooses a different sequence of steps that can sometimes
perform much better.
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Solution by Steepest Descent - Towards the Conjugate
Gradient Method

Recall the steepest descent method.

We considered finding the x that gives the minimum of

F (x) =
1

2
xTAx − bT x , x ∈ Rn,

which also is the solution to Ax = b.

We developed an iteration xk+1 = xk + αpk with:
search direction pk = rk = b − Axk ,

step length α = (rk )T pk

(pk )TApk = (rk )T rk

(rk )TArk
,

The search direction gives a locally fastest decrease, but not
the globally “best” direction.

This leads to zig-zag like convergence towards the solution.

We now discuss how we can do better, starting with the
conjugate directions method, then refining it to finally arrive
at the conjugate gradient method.
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Another Search Direction Idea

Imagine an approach that (somehow) finds the solution in the
x1 axis, then in the x2 axis, . . . , then in the xn axis.

It would complete in n iterations, touching each orthogonal
axis once.

Can we achieve something like this?
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Another Search Direction Idea
Choosing step pk = axisk does not actually work.

The lowest point (minimum value) along each axis in not the
solution for that axis.

The figure below depicts this idea.

The blue vectors are what we would like.

But, the red is the (bad) result if we use axes as search
directions.
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Another Search Direction Idea
Choosing orthogonal directions (axes) and minimizing along
them one at a time clearly does not work.

Let us try something else, based on A-orthogonality.

We first need to some definitions.

Definition 2.1
Suppose A is SPD, then the A-inner product is defined as

(p, q)A = pTAq.

Definition 2.2
The A-norm is given by

||p||A =
√
(p, p)A.

Definition 2.3
Two vectors p, q are A-orthogonal (or conjugate) if (p, q)A = 0.
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Another Search Direction Idea
Figure 3 visualizes vectors that are A-orthogonal.
In general, A-orthogonal vectors are not orthogonal in the
standard Euclidean space.
The vectors are instead orthogonal when you transform to the
new space by multiplying by A.

A-orthogonal vector pairs Corresponding orthogonal vector pairs
(are not orthogonal!) after stretching the space according to A

Figure: Visualization of the concept of A-orthogonality.
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Another Search Direction Idea

Intuitively, A-orthogonality is a kind of orthogonality that
respects the properties of A.

We build a new search direction method based on
A-orthogonality.

We choose each search direction to be A-orthogonal to all
previous search directions.

This will avoid searching redundant directions repeatedly.

So we now need an algorithm to construct A-orthogonal
vectors.

We will use Gram-Schmidt A-orthogonalization.
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Another Search Direction Idea - Gram-Schmidt
(A-)orthogonalization

Gram-Schmidt A-orthogonalization construct a set of
A-orthogonal vectors, incrementally.

Suppose the previous search directions p0, p1, p2, . . . , pk−1 are
all mutually A-orthogonal.

Given a new proposed direction uk , we convert it into a pk

that is A-orthogonal to all prior pi .

The idea is to subtract out the components of uk that are not
A-orthogonal to earlier pi ’s, leaving behind a vector that is.
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Another Search Direction Idea - Gram-Schmidt
(A-)orthogonalization

Figure 4 gives a visualization of one step of Gram-Schmidt in
2D (for regular orthogonality).

Consider some vector u, and a (previous) basis vector a.

Then the vector u − (uTa)a will be orthogonal to a.

Let’s derive a Gram-Schmidt process to construct
A-orthogonal vectors.

Figure: Orthogonalizing a vector u with respect to a.
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Another Search Direction Idea - Gram-Schmidt
(A-)orthogonalization

We start with a vector uk and subtract all prior pi

components to form pk , so

pk = uk +
k−1∑
i=0

βip
i .

Now we just need to find the coefficients βi .

For each pj for j = 0, . . . , k − 1 use A-orthogonality against
pk :

0 = (pk , pj)A,

=

(
uk +

k−1∑
i=0

βip
i , pj

)
A

,

= (uk , pj)A +
k−1∑
i=0

βi (p
i , pj)A.

23 / 42



Another Search Direction Idea - Gram-Schmidt
(A-)orthogonalization

Earlier pi ’s were mutually A-orthogonal, so (pi , pj)A = 0 for
i ̸= j .

Therefore,

0 = (uk , pj)A + βj(p
j , pj)A,

⇒ βj = − (uk ,pj )A
(pj ,pj )A

. (1)

Using this strategy we can construct an A-orthogonal set of
pk vectors spanning Rn, when given input uk ’s.
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Another Search Direction Idea - Conjugate Directions
Method

To summarize, the conjugate directions method starts with a
given set of vectors uk spanning Rn.

We then A-orthogonalize them by Gram-Schmidt to get
A-orthogonal search directions pk .

The same basic iteration as steepest descent is then
performed to compute the solution x to Ax = b.

The changes to the steepest descent iteration are:

use new pk as search directions (instead of residuals rk),

use our original step length expression α = (rk )T pk

(pk )TApk (i.e., not

(rk )T rk

(pk )TArk
).

25 / 42



Another Search Direction Idea - Conjugate Directions
Method

The drawbacks of conjugate directions (w/ Gram-Schmidt) are as
follows.

With respect to memory we need to keep all prior search
vectors pi .

In terms of computational cost we need to perform complete
Gram-Schmidt at each step, which takes O(n3) flops.

There is also the lingering question about how to choose the
input (non-A-orthogonal) uk vectors?

A fun fact is that if the proposed search vectors uk at each
step (before A-orthogonalization) are the axes, this gives
Gaussian Elimination again!
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Conjugate Gradient Method

The conjugate gradient method is a variation on the
conjugate directions method that improves in two ways:

1 choose the vectors uk at each step to be the residual rk (to be
A-orthogonalized),

2 carefully exploit (A-)orthogonality to avoid storing all prior
search vectors.

Item 1. immediately turns our earlier Gram-Schmidt process
into

pk = rk +
k−1∑
i=0

βip
i = rk −

k−1∑
i=0

(rk , pi )A
(pi , pi )A

pi , (2)

which gives the first version of the conjugate gradient
algorithm in the Lecture Notes.

This first version is still costly, do not implement this version!
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

Let’s work towards a more efficient algorithm.

We want concise recursive expressions for

the step lengths α,
step directions p, and
Gram-Schmidt coefficients β.

We will need to consider the spaces involved and their
relationships, as well as, repeatedly exploit orthogonality and
A-orthogonality.
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

Consider the space spanned by vectors pi for i = 0, . . . , k − 1.

span{p0, p1, . . . , pk−1}
= span{r0, r1, . . . , rk−1}, (by Gram-Schmidt)

= span{r0,Ar0,A2r0, . . . ,Ak−1r0} (See Lecture Notes).

A space constructed this way (powers of A times a vector) is
called a (k-dimensional) Krylov subspace, denoted
Kk(A, r

0).
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

It can also be shown (See Lecture Notes) that
rk ⊥ span{p0, p1, . . . , pk−1} = span{r0, r1, . . . , rk−1}, i.e.,
(rk , r j) = 0 for j = 0, 1, . . . , k − 1.
That is, the current residual is orthogonal to the prior search
directions and residuals.
Currently, the step length is computed as αk = (rk ,pk )

(pk ,pk )A
.

Observe however that

(rk , pk) =

rk , rk +

�
�
�
��
0

k−1∑
i=0

βip
i

 , (since (rk , pi ) = 0 for i < k)

= (rk , rk), (3)

which gives a new way of computing αk as

αk =
(rk , rk)

(pk , pk)A
.

-
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

To make computing the search direction more efficient we
need the identity

(rk , pi )A = 0 for i = 0, 1, . . . , k − 2. (4)

Proof.
See the Lecture Notes.
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

Now we can construct search direction pk without storing all
prior pi .

Starting from (2), Gram-Schmidt gives

pk = rk −
k−1∑
i=0

(rk , pi )A
(pi , pi )A

pi ,

= rk − (rk , pk−1)A
(pk−1, pk−1)A

pk−1,

by (4).

Hence, only the current residual and previous step direction
are needed to compute pk .

This saves us storage and flops.
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

To arrive at the standard conjugate gradient method we
further simplify βk−1.

Equation (1) gave βk−1 = − (uk ,pk−1)A
(pk−1,pk−1)A

.

Later replacing uk by rk gave

βk−1 = − (rk ,pk−1)A
(pk−1,pk−1)A

. (5)

In the numerator we have (rk , pk−1)A.
By the residual update rule, rk = rk−1 − αk−1Ap

k−1, so
applying (rk , ·) to this rule, we get that

(rk , rk) = (rk , rk−1)︸ ︷︷ ︸
=0 since the r ’s are orthogonal

−αk−1(r
k ,Apk−1),

Rearranging, we get that the numerator is

(rk , pk−1)A = (rk ,Apk−1) = − 1

αk−1
(rk , rk).
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

Now consider the denominator (pk−1, pk−1)A.

We have that (rk , pk−1) = 0 by orthogonality.

Applying (·, pk−1) to the residual update rule gives

(rk , pk−1)︸ ︷︷ ︸
=0

= (rk−1, pk−1)− αk−1(Ap
k−1, pk−1)

0 = (rk−1, rk−1)− αk−1(p
k−1, pk−1)A,

because earlier (3) we showed (rk−1, pk−1) = (rk−1, rk−1).

Rearranging, gives the denominator as
(pk−1, pk−1)A = 1

αk−1
(rk−1, rk−1).
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Conjugate Gradient Method - Efficient Conjugate Gradient
Method

Combining the numerator and denominator we have

βk−1 = − (rk , pk−1)A
(pk−1, pk−1)A

,

= −
(
−(rk , rk)

���αk−1

)(
���αk−1

(rk−1, rk−1)

)
,

=
(rk , rk)

(rk−1, rk−1)
.

The more efficient version of the conjugate gradient method is
given in the Lecture Notes, based on the simplifications above.

Now conjugate gradient just needs 1 matrix-vector multiply
and 2 inner-products per step:

matrix-vector multiply Apk ,
dot products (rk , rk) and (pk ,Apk).
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Conjugate Gradient Method - Error Behaviour

Note that at most n A-orthogonal vectors are needed to span
Rn.

Therefore conjugate gradient will terminate in (at most) n
steps with an exact solution (under exact arithmetic).

At each iteration, the current conjugate gradient solution’s
error has the minimum A-norm within the subspace it has
already explored,i.e.,

xk = argmin
x∈Kk

||ek ||2A = argmin
x∈Kk

||xk − x∗||2A.

This is because at each iteration, conjugate gradient
zeroes out one of the error components.

To see this let e i = x∗ − x i , where x∗ is the true solution.

We therefore have r i = Ae i .
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Conjugate Gradient Method - Error Behaviour
Now express e0 as a linear combination of search directions

e0 =
n−1∑
j=0

δjp
j , for coefficients δj .

Left multiplying by (pk)TA (to exploit A-orthogonality) gives

(pk)TAe0 =
n−1∑
j=0

δj(p
k)TApj ,

(pk , e0)A =
n−1∑
j=0

δj(p
k , pj)A,

= δk(p
k , pk)A, (by A-orthogonality)

⇒ δk =
(pk , e0)A
(pk , pk)A

.
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Conjugate Gradient Method - Error Behaviour

Continuing the calculation with the generic
ek = e0 −

∑k−1
i=0 αip

i (because the iteration is
xk+1 = xk + αkp

k) gives

δk =
(pk , e0)A
(pk , pk)A

=
(pk , ek +

∑k−1
i=0 αip

i )A
(pk , pk)A

=
(pk , ek)A
(pk , pk)A

,

by the A-orthogonality of the pi ’s.
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Conjugate Gradient Method - Error Behaviour

But recall that

αk =
(pk)T rk

(pk , pk)A

=
(pk)TAek

(pk , pk)A
, since rk = Aek

=
(pk , ek)A
(pk , pk)A

.

Hence, αk = δk , so conjugate gradient zeroes out one
component of the error at each iteration:

e i = e0 −
i−1∑
j=0

αjp
j =

n−1∑
j=0

δjp
j −

i−1∑
j=0

δjp
j

 =
n−1∑
j=i

δjp
j . (6)

After n steps, all the components of e0 will be gone.
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Conjugate Gradient Method - Error Behaviour

Consider using conjugate gradient on the following example:[
3 2
2 6

]
x =

[
2
−8

]
starting from

x0 =

[
−2
−2

]
.

Conjugate gradient converges in 2 steps since we are in R2 as
shown in Figure 5.
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Conjugate Gradient Method - Error Behaviour

If you are interested in more details, our discussion borrowed
heavily from Shewchuk’s notes on conjugate gradient.

Steepest Descent Conjugate Gradient

Figure: Comparison of steepest descent and conjugate gradient methods
in R2.
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Conjugate Gradient Method - Error Behaviour
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