
Lecture 10: Least Squares Problems
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Least Squares

This lecture discusses solving problems with more equations
(rows) than variables.

The problem is solved “as well as possible” since the system is
over-determined (more equations than necessary).

That is, least squares problems solve the equation Ax = b,
where A is taller that it is wide.

We end up with a solution that is over-determined.
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Least Squares

Least squares problems were first posed and formulated by
Gauss around 1795 (though published first by Legendre 1805).

The method of least squares is often found in applications,
e.g., finding a line or polynomial to fit a large set of
data/observations.

Mathematically, we want to minimize the magnitude of the
residual vector r = b − Ax .

min
x∈Rn

||b − Ax ||22, for A ∈ Rm×n, b ∈ Rm,m ≥ n.

In general, we can not achieve r = 0.

Notice this differs from minimizing (square, non-singular)
linear systems, for which we use:

F (x) =
1

2
xTAx − xTb.
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Least Squares

A geometric interpretation of least squares problems is as
follows.

We find the closest point to b on the y = Ax hyperplane.

In other words, find the “projection” of b onto the range of A.

Notice that residual vector r is orthogonal to y (see figure
below).
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Least Squares

Theorem 1
Let A ∈ Rm×n, b ∈ Rm,m ≥ n, and A full rank. A vector x ∈ Rn

minimizes
||r ||22 = ||b − Ax ||22

if and only if r ⊥ range(A).

Task: Collin to add the proof of Theorem 1 into the Lecture Notes.
Theorem 1 implies

rTA = 0⃗

⇔ AT r = 0⃗

⇔ AT (b − Ax) = 0⃗

⇔ ATb = ATAx .
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Least Squares

High Level View of Where We Are Going

By end of Lecture 10: existence of Q, computed from A.

By end of Lecture 11: existence of R, computed from A,Q.

Not proved in Slides / Notes yet: uniqueness of Q,R, given
A.

A Brief Note From Wikipedia: If A has full rank, then the QR
factorization is unique, provided we require the diagonal
elements of R to be positive.
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Least Squares

The equations ATAx = ATb are known as the normal
equations.

Solving the normal equations (which is a square system) gives
the least squares solution.

This motivates the definition of the pseudo-inverse.

Definition 1.1
A+ = (ATA)−1AT is called the (Moore-Penrose) pseudo-inverse
of A.

The least squares solution satisfies

x = A+b = (ATA)−1ATb.
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Least Squares

Fact: Any perturbation of x from this solution yields a higher
residual norm. To see this let x ′ = x + e, where x is the least
squares solution and e is some perturbation. Then,

∥b − Ax ′∥22
= (b − Ax ′)T (b − Ax ′),

= (b − Ax − Ae)T (b − Ax − Ae),

= (b − Ax)T (b − Ax)− 2(Ae)T (b − Ax) + (Ae)T (Ae),

= (b − Ax)T (b − Ax)− 2eTAT (b − Ax) + ∥Ae∥22,

= ∥b − Ax∥22 + ∥Ae∥22 − 2eT
��������:0
(ATb − ATAx), (x is the LS soln)

⇒ ∥b − Ax ′∥22 > ∥b − Ax∥22 for any e ̸= 0.
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Least Squares

Thus, any other point x ′ yields a larger residual, as seen
geometrically below.
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Least Squares

We will consider the following two solution strategies (for now):
1 Normal equations: Find and solve normal equations

ATAx = ATb to find x (e.g., via Cholesky).
1 It is proved in the Lecture Notes that, if A has full rank, then

ATA is SPD, so that it has a Cholesky factor.

2 QR Factorization: Construct a factorization A = QR (with
certain properties) and instead solve Rx = QTb for x .
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Method 1: Normal Equations

In this subsection we will look at the normal equations
solution.

In the next subsection will discuss QR factorizations.

We solve ATAx = ATb directly by computing the Cholesky
factorization ATA = GGT , with G lower triangular.

Then, we compute x by forward/backward solves.

The complexity of this approach has flops to form
ATA ≈ mn2 and GGT ≈ 1

3n
3.

Therefore, the total flops ≈ mn2 + 1
3n

3.
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Method 1: Normal Equations

Consider the application of polynomial fitting with least squares.
We want to find a polynomial of the form:

p(t) = a0 + a1t + a2t
2 + · · ·+ an−1t

n−1,

that best fits the set of 2D points given by (ti , yi ) for i = 1, . . . ,m,
with m > n. Each data point yields one equation. The coefficients
a0, a1, . . . , an−1 are the unknowns. The matrix problem is

1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

...
...

... · · ·
...

1 tm t2m · · · tn−1
m




a0
a1
...

an−1

 =


y1
y2
...
ym

 .
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Method 1: Normal Equations

As a concrete example we are given the set of (ti , yi ) points
{(0, 0), (0,−1), (2, 1), (2, 0), (4, 2), (4, 1)}. We want to find the
best fit line y = a0 + a1t using normal equations. We have,

A =



1 0
1 0
1 2
1 2
1 4
1 4

 , x =

[
a0
a1

]
, b =



0
−1
1
0
2
1

 .
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Method 1: Normal Equations

To obtain the solution we construct

ATA =

[
6 12
12 40

]
, and ATb =

[
3
14

]
.

Solving ATAx = ATb gives

a0 = −1

2
,

a1 =
1

2
, so

p = −1

2
+

1

2
t.
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Method 1: Normal Equations

The figure below shows the points and the line of best fit given by
p.
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Method 2: QR Factorization

The previous subsection discussed the first method for solving
least squares problems, i.e., via the normal equations.

This lecture discusses a second approach using QR
factorization.

The QR factorization decomposes a matrix A into an
orthogonal matrix Q and a triangular matrix R.
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Method 2: QR Factorization

Some properties of orthogonal matrices are discussed next.

They are needed to give a theorem for the existence of a QR
factorization at the end of this section.

Definition 3.1
A square matrix Q is orthogonal if Q−1 = QT (i.e.,
QTQ = QQT = I ).

Theorem 2
If Q is orthogonal, then ∥Qx∥2 = ∥x∥2.

Proof.
∥Qx∥2 = (Qx)T (Qx) = xTQTQx = xT x = ∥x∥2.
Remark: Permutation matrices, first seen during matrix
re-ordering, are examples of orthogonal matrices.
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Method 2: QR Factorization

Note that left multiplication by an orthogonal Q corresponds to{
rotation if det(Q) = 1,

reflection if det(Q) = −1.

Definition 3.2
A set of vectors are orthonormal if they are mutually orthogonal
and each vector has norm = 1.

For example, the columns of an orthogonal matrix are
orthonormal.

The columns of an n × n orthogonal matrix, Q, form an
orthonormal basis of Rn.

Be careful not to confuse the following:
1 orthogonal vectors need not be unit length,
2 an orthogonal matrix has columns that are orthonormal.
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Method 2: QR Factorization

The following theorem gives the existence of a QR factorization.

Theorem 3
Suppose A ∈ Rm×n has full rank. Then there exists a unique
matrix Q̂ ∈ Rm×n satisfying Q̂T Q̂ = I (i.e., with orthonormal
columns) and a unique upper triangular matrix R̂ ∈ Rn×n with
positive diagonals (ri ,i > 0) such that A = Q̂R̂.

Note that because Q̂ is non-square in general here, it is not
necessarily an orthogonal matrix.
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Method 2: QR Factorization
Example: Let

Q̂ =


1√
2

− 1√
2

1√
2

1√
2

0 0

 ,

so that

Q̂T =

[
1√
2

1√
2

0

− 1√
2

1√
2

0

]
.

Then

Q̂Q̂T =


1√
2

− 1√
2

1√
2

1√
2

0 0

[
1√
2

1√
2

0

− 1√
2

1√
2

0

]

=

1 0 0
0 1 0
0 0 0


̸= I3.
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Method 2: QR Factorization - QR for Least Squares

Consider the least squares problem:

min
x

∥Ax − b∥2.

We will try to make ∥Ax − b∥2 as small as possible by re-expressing
Ax − b in terms of the QR factorization, and adjusting x .
Only x can be adjusted because A and b are defined (given) by the
problem.
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Method 2: QR Factorization - QR for Least Squares

Consider separating Ax − b into orthogonal components using Q̂R̂.
That is, using Q̂ and R̂, split Ax − b into two orthogonal
components:

Ax − b = Q̂R̂x − b,

= Q̂R̂x − (Q̂Q̂T − Q̂Q̂T︸ ︷︷ ︸
=0

+I )b,

= Q̂(R̂x − Q̂Tb)︸ ︷︷ ︸− (I − Q̂Q̂T )b︸ ︷︷ ︸ .
We claim that these two vectors are orthogonal.
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Method 2: QR Factorization - QR for Least Squares

These vectors are orthogonal if and only if their inner product is
zero. We can verify that the inner product is zero as follows:[

Q̂(R̂x − Q̂Tb)
]T [

(I − Q̂Q̂T )b
]

= (R̂x − Q̂Tb)T Q̂T (I − Q̂Q̂T )b,

= (R̂x − Q̂Tb)T (Q̂T − Q̂T Q̂︸ ︷︷ ︸
=I

Q̂T )b, (Q̂’s columns orthonormal)

= (R̂x − Q̂Tb)T (Q̂T − Q̂T︸ ︷︷ ︸
=0

)b = 0.

Note that since Q̂ is not square, Q̂Q̂T ̸= I , but Q̂T Q̂ = I .
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Method 2: QR Factorization - QR for Least Squares

The goal of the least squares problem is to minimize the size of
r = b − Ax . We can only modify x to make the vector r = b − Ax
as short as possible. By Pythagoras we have

∥Ax − b∥2 = ∥Q̂(R̂x − Q̂Tb)∥2 + ∥(I − Q̂Q̂T )b∥2,
= ∥(R̂x − Q̂Tb)∥2︸ ︷︷ ︸

select x to minimize

+ ∥(I − Q̂Q̂T )b∥2︸ ︷︷ ︸
can’t adjust

.
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Method 2: QR Factorization - QR for Least Squares

The orthogonal components can be visualized as shown in the
figure below. The norm is minimized when the first term is 0. So
the least squares solution is

R̂x = Q̂Tb ⇒ x = R̂−1Q̂Tb.
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Method 2: QR Factorization - QR for Least Squares

We can also relate this solution to pseudoinverse and normal
equations as follows.
Pseudoinverse
The pseudoinverse written in terms of QR factors is

A+ = (ATA)−1AT

= ((Q̂R̂)T (Q̂R̂))−1(Q̂R̂)T

= (R̂T Q̂T Q̂︸ ︷︷ ︸
=I

R̂)−1(R̂T Q̂T )

= (R̂T R̂)−1R̂T Q̂T

= R̂−1 (R̂T )−1R̂T︸ ︷︷ ︸
=I

Q̂T

= R̂−1Q̂T .
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Method 2: QR Factorization - QR for Least Squares

Normal Equations
Then consider the normal equations

ATAx = ATb

⇔ (R̂T Q̂T )(Q̂R̂)x = (R̂T Q̂T )b,

R̂T R̂x = (R̂T Q̂T )b,

R̂x = Q̂Tb,

x = R̂−1Q̂Tb.
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Method 2: QR Factorization - QR for Least Squares

Two Sizes of QR Factorization

So far we have only seen the reduced (“economy size”)
version of QR factorization.

Specifically, A = Q̂R̂ where Q̂ ∈ Rm×n and R̂ ∈ Rn×n.

The “full” version of QR adds extra orthonormal columns to
make Q square (and thus makes Q a true orthogonal matrix).

Extra zero rows in R are also added to match the dimensions
(See below).
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Method 2: QR Factorization - QR for Least Squares

A full QR factorization is achieved by appending m − n additional
orthonormal columns to Q. First define

Q̂m−n ≡
[
qn+1 qn+2 · · · qm

]
.

Then we have [
A
]
m×n

=
[
Q̂|Q̂m−n

]
m×m

[
R̂
0

]
m×n

,

which is often useful for theoretical purposes.
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Method 2: QR Factorization - QR for Least Squares

Computing the (reduced) QR Factorization

To compute the reduced QR factorization we let

A =

 | | |
a1 a2 . . . an
| | |

 ,

where ai are the columns of A.

The columns span the column space of the matrix.

So we want to find a set of orthonormal column vectors, {qi}
spanning the same space.

That is, span{q1, q2, . . . , qj} = span{a1, a2, . . . , aj}, for
j = 1, . . . , n.
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Method 2: QR Factorization - QR for Least Squares

For this we can use Gram-Schmidt orthogonalization.

We already saw a variant of Gram-Schmidt earlier for
constructing A-orthogonal search directions in conjugate
gradient.

The same general idea is used here:

use columns of A as proposed vectors to be orthogonalized
into Q,
build each new vector qj by orthogonalizing aj with respect to
all previous q vectors, {q1, q2, . . . , qj−1}, and then normalize
qj .
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Method 2: QR Factorization - QR for Least Squares
The entries for R can be calculated once we know Q by
considering the general form | | |

a1 a2 . . . an
| | |

 =

 | | |
q1 q2 . . . qn
| | |


r11 . . . r1n

. . .
...
rnn

 .

Written out fully, this is

a1 = r11q1,

a2 = r12q1 + r22q2,

a3 = r13q1 + r23q2 + r33q3,

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

The next lecture will discuss this approach (using Gram-Schmidt)
of computing the QR factorization in more detail.
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