
Lecture 11: Gram-Schmidt Orthogonalization

June 18, 2025

0 / 30

Outline

1 QR factorization via Gram-Schmidt
1 Orthonormalization for Q
2 Upper Triangular Matrix R

2 Modified Gram-Schmidt

3 Complexity of Gram-Schmidt

1 / 30

Gram-Schmidt Orthogonalization - Introduction

We have already seen a variation of Gram-Schmidt
orthogonalization in constructing A-orthogonal search
directions for the conjugate gradient method (see Lecture 09).

The same general idea applies here to construct the QR
factorization:

Use columns of A as proposed vectors to be orthogonalized
into Q.
Build each new vector qj by orthogonalizing aj with respect to
all previous q vectors, { q1, q2, . . . , qj−1 }, and then
normalizing it.

2 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Orthonormalization for Q

For a vector aj , we can orthogonalize it against all previous
vectors qi for i = 1, . . . , j − 1, using

vj = aj − (qT1 aj)q1 − (qT2 aj)q2 − · · · − (qTj−1aj)qj−1. (1)

This removes aj ’s components in the orthogonal directions
constructed so far.

We can then directly normalize, giving us

qj =
vj

∥vj∥2
.

Equation (1) was derived previously in Lecture 09 assuming
the form vj = aj +

∑j−1
i=1 βiqi .

3 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Orthonormalization for Q

To recap, the coefficients βj were then derived as follows.

Since we want vj to be orthogonal to all previous qi ’s, we get
the equation (for some 1 ≤ k ≤ j − 1):

0 = qTk vj ,

= qTk aj +

j−1∑
i=1

βi (q
T
k qi),

= qTk aj + βk(q
T
k qk).

Since qTk qk = 1 we have that βk = −qTk aj giving the equation
in (1)

vj = aj −
j−1∑
i=1

(qTi aj)qi .

4 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Orthonormalization for Q

Consider the following example in 2D.

We are given a2 and the (previous) unit vector q1.

We want to find q2 that is orthonormal to q1.

5 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Orthonormalization for Q

We apply the following steps:
1 Orthogonalize using v2 = a2 − (qT1 a2)q1,
2 Normalize to get q2 =

v2
∥v2∥2

.

So we have that

q2 =
a2 − (qT1 a2)q1

∥a2 − (qT1 a2)q1∥2
.

But what are the entries of R in our QR factorization?

6 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

To get the entries of R consider the general form of the QR
factorization | | |

a1 a2 . . . an
| | |

 =

 | | |
q1 q2 . . . qn
| | |

r11 . . . r1n

. . .
...
rnn

 .

7 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

Written out componentwise we have

a1 = r11q1 ⇒ q1 =
a1
r11

,

a2 = r12q1 + r22q2 ⇒ q2 =
a2−r12q1

r22
,

a3 = r13q1 + r23q2 + r33q3 ⇒ q3 =
a3−r13q1−r23q2

r33
,

...
...

an = r1nq1 + r2nq2 + . . .+ rnnqn ⇒ qn =
an−

∑n−1
i=1 rinqi
rnn

.

8 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

Now we compare the qi above with the result from our
Gram-Schmidt orthogonalization expressions.

For the 2D example above we have

Gram-Schmidt: q2 =
a2 − (qT1 a2)q1

∥a2 − (qT1 a2)q1∥2
,

Factorization: q2 =
a2 − r12q1

r22
.

So

r12 = qT1 a2, and

r22 = ∥a2 − (qT1 a2)q1∥2.

9 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

In general (higher dimensions), the entries of R can be written
as

rij = (qTi aj),

rjj =

∥∥∥∥∥aj −
j−1∑
i=1

rijqi

∥∥∥∥∥
2

.

1 The off-diagonal entries rij correspond to the lengths of
components of aj in previous directions q1, . . . , qj−1.

2 The diagonal entries rjj correspond to the length of vj , required
to normalize to qj .

10 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

The classic Gram-Schmidt (CGS) algorithm for QR
factorization is given in Algorithm 12.

Note that the classic Gram-Schmidt is numerically unstable.

That is, it is sensitive to round off error (and can even yield
non-orthogonal q’s).

11 / 30

Gram-Schmidt Orthogonalization - QR factorization via
Gram-Schmidt - Upper Triangular Matrix R

Algorithm 1 : Gram-Schmidt Algorithm (Classic)

for j = 1, 2, . . . , n
vj = aj ▷ get next column
for i = 1, 2, . . . , j − 1 ▷ Orthogonalize

rij = qTi aj
vj = vj − rijqi

end for
rj j = ∥vj∥2 ▷ Normalize
qj = vj/rjj

end for

12 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

We can alter the classic Gram-Schmidt algorithm in the inner loop
for better numerical stability.

Algorithm 2 : QR Factorization With Modified Gram-Schmidt Al-
gorithm

1: for j = 1 : n
2: vj = aj ▷ Get next column
3: end for
4: for j = 1 : n
5: rjj = ∥vj∥2
6: qj =

(
1
rjj

)
vj ▷ Normalize

7: for k = j + 1 : n ▷ Orthogonalize
8: rjk = qTj vk
9: vk = vk − rjkqj

10: end for
11: end for

13 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

The modified Gram-Schmidt algorithm (see Algorithm 13) gives an
identical result as the classic Gram-Schmidt algorithm in exact
arithmetic.
In floating point arithmetic, the modified Algorithm 13 is more
numerically stable than the classic Algorithm 12.
Think carefully about these pseudocodes.

1 In classical Gram-Schmidt, we take each vector, one at a time,
and make it orthogonal to all previous vectors.

2 In modified Gram-Schmidt, we take each vector, and modify
all forthcoming vectors to be orthogonal to it.

Once you argue this way, it is clear that both methods are
performing the same operations, and are mathematically
equivalent.

14 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

But, importantly, modified Gram-Schmidt suffers from
round-off instability to a significantly lesser degree.

This can be explained, in part, from the formulas for
Gram-Schmidt, without QR-factorization:

CGS : vk = ak −
(
qTj ak

)
qj , and

MGS : vk = vk −
(
qTj vk

)
qj .

15 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

If an error is made in computing q2 in CGS, so that qT1 q2 = δ is
small, but non-zero, this will not be corrected for in any of the
computations that follow:

v3 = a3 − (qT1 a3)q1 − (qT2 a3)q2,

qT2 v3 = qT2 a3 − qT2 (q
T
1 a3)q1 − qT2 (q

T
2 a3)q2,

= qT2 a3 − (qT1 a3) q
T
2 q1︸ ︷︷ ︸
=δ

−(qT2 a3) q
T
2 q2︸ ︷︷ ︸
=1

,

= qT2 a3 − (qT1 a3)δ − (qT2 a3)

= −(qT1 a3)δ.

16 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Similarly,

v3 = a3 − (qT1 a3)q1 − (qT2 a3)q2,

qT1 v3 = qT1 a3 − qT1 (q
T
1 a3)q1 − qT1 (q

T
2 a3)q2,

= qT1 a3 − (qT1 a3) q
T
1 q1︸ ︷︷ ︸
=1

−(qT2 a3) q
T
1 q2︸ ︷︷ ︸
=δ

,

= qT1 a3 − (qT1 a3)− (qT2 a3)δ

= −(qT2 a3)δ.

We see that v3 is not orthogonal to either of q1 or q2.

17 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

On the other hand, assume the same for MGS (n = 3): qT1 q2 = δ
is small, but non-zero. Let’s examine how the third vector v3
changes:

Initially, v
(0)
3 = a3.

j = 1, k = 3

r13 = qT1 v
(0)
3

v
(1)
3 = v

(0)
3 − r13q1

= v
(0)
3 − (qT1 v

(0)
3)q1

j = 2, k = 3

r23 = qT2 v
(1)
3

v
(2)
3 = v

(1)
3 − r23q2

= v
(1)
3 − (qT2 v

(1)
3)q2

18 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Hence we obtain

qT2 v
(2)
3 = qT2 v

(1)
3 − qT2 (q

T
2 v

(1)
3)q2

= qT2 v
(1)
3 − (qT2 v

(1)
3) qT2 q2︸ ︷︷ ︸

=1

= 0 (2)

qT1 v
(2)
3 = qT1 v

(1)
3 − qT1 (q

T
2 v

(1)
3)q2

= qT1 v
(1)
3 − (qT2 v

(1)
3) qT1 q2︸ ︷︷ ︸

=δ

= qT1 v
(1)
3 − qT2 v

(1)
3 δ (3)

19 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Computing each of the terms on line (3) gives

qT1 v
(1)
3 = qT1 [v

(0)
3 − (qT1 v

(0)
3)q1]

= qT1 v
(0)
3 − qT1 (q

T
1 v

(0)
3)q1]

= qT1 v
(0)
3 − (qT1 v

(0)
3) qT1 q1︸ ︷︷ ︸

=1

= qT1 v
(0)
3 − qT1 v

(0)
3

= 0, and

qT2 v
(1)
3 = qT2 [v

(0)
3 − (qT1 v

(0)
3)q1]

= qT2 v
(0)
3 − qT2 (q

T
1 v

(0)
3)q1

= qT2 v
(0)
3 − (qT1 v

(0)
3) qT2 q1︸ ︷︷ ︸

=δ

= qT2 v
(0)
3 − (qT1 v

(0)
3)δ

20 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Putting it all together gives

qT1 v
(2)
3 = qT1 v

(1)
3 − qT2 v

(1)
3 δ

= 0− [qT2 v
(0)
3 − (qT1 v

(0)
3)δ]δ

= −qT2 v
(0)
3 δ + (qT1 v

(0)
3)δ2 (4)

21 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Recall that v3 = v
(2)
3 is the final form of the third vector

(before normalization).

Let’s check orthogonality, assuming no more errors are made.

First for q2:

qT2 v
(2)
3 = 0, from equation (2).

So, we perserve orthogonality to q2.

Second for q1:

qT1 v
(2)
3 = −qT2 v

(0)
3 δ + (qT1 v

(0)
3)δ2, from equation (4).

22 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Summarized Comparison of CGS versus MGS

Inner Product CGS MGS

qT2 v3 −(qT1 a3)δ 0

qT1 v3 −(qT2 a3)δ −qT2 v
(0)
3 δ + (qT1 v

(0)
3)δ2

=︸︷︷︸
v
(0)
3 =a3

−qT2 a3δ + qT1 a3δ
2

Remarks:

1 Since δ is very small, therefore δ2 is much smaller.

2 Because of the opposite signs of the terms involved, it is likely,
but not guaranteed, that | − qT2 a3δ + qT1 a3δ

2| ≤ | − (qT2 a3)δ|.
3 The error in qT1 v3 is likely no worse than in CGS, but we have

eliminated the errors in qT2 v3, an improvement.

(Reference: https://www.math.uci.edu/~ttrogdon/105A/
html/Lecture23.html)

23 / 30

https://www.math.uci.edu/~ttrogdon/105A/html/Lecture23.html
https://www.math.uci.edu/~ttrogdon/105A/html/Lecture23.html

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Explanation for the Computation of rjk

Note that the Modified Gram-Schmidt algorithm uses
rjk = qTj vk , where one might instead expect rjk = qTj ak .

Here I will prove that these two choices must always yield
identical results.

Use the notation of the algorithm throughout the explanation.

24 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Let 1 ≤ j ≤ n be arbitrary.
Let j + 1 ≤ k ≤ n be arbitrary.
I claim that qTj vk = qTj ak .
Note that vk is updated once per (outer) j-loop.
Since that update takes place AFTER the computation of the
qTj vk inner product, at the time of that computation,

vk = ak −
j−1∑
ℓ=1

rℓkqℓ, so that

qTj vk = qTj

[
ak −

j−1∑
ℓ=1

rℓkqℓ

]

= qTj ak −
j−1∑
ℓ=1

rℓk qTj qℓ︸ ︷︷ ︸
=0, since ℓ<j

= qTj ak , as claimed. 25 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

The example below computes the QR factorization of a
random matrix with hugely varying magnitudes of rii
(diagonal) entries.

26 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

The blue points are the result using the classic Gram-Schmidt
algorithm.

It runs out of accuracy at around
√
Emachine.

The orange points are the result with the modified
Gram-Schmidt algorithm.

The modified algorithm runs out of accuracy at around
Emachine.

For more information see Lecture 9, Experiment 2 in
Trefethen & Bau.

27 / 30

Gram-Schmidt Orthogonalization - Modified
Gram-Schmidt

Another exercise is to find the QR factorization of

A =

1 2 0
0 1 1
1 0 1

via Gram-Schmidt orthogonalization. The solution to this problem
is

Q =

√
2
2

√
3
3 −

√
6
6

0
√
3
3

√
6
3√

2
2 −

√
3
3

√
6
6

 and R =

√
2

√
2

√
2
2

0
√
3 0

0 0
√
6
2

 .

See Lecture Notes for the details.

28 / 30

Gram-Schmidt Orthogonalization - Complexity of
Gram-Schmidt

The inner i-loop involves

rij = qTi aj (CGS) or q
T
i vj (MGS) ⇒ m (scalar) multiplications

and m − 1 additions for the inner products,
vj = vj − rijqi (CGS) or vj = vj − rjkqj (MGS) ⇒ m
multiplications, and m subtractions.

Hence, the flops per inner loop ≈ 4m.

An approximation of the total flops is therefore

n∑
j=1

j−1∑
i=1

4m = 4m
n∑

j=1

(j − 1),

≈ 4m
n∑

j=1

= 4m
n(n + 1)

2
,

≈ 2mn2.

29 / 30

Gram-Schmidt Orthogonalization - Complexity of
Gram-Schmidt

If the matrix is square (m = n),
flops(Gram-Schmidt) = 2n3 + O(n2) ≈ 3× flops(LU).

We could use QR factorization to solve linear systems also,
but at a cost 3× greater than LU factorization.

As was pointed out earlier, if A is square and A = QR, then
solving Ax = b for x is equivalent to solving Rx = QTb for x .

30 / 30

	QR factorization via Gram-Schmidt
	Orthonormalization for Q
	Upper Triangular Matrix R

	Modified Gram-Schmidt
	Complexity of Gram-Schmidt

