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Householder QR factorizations - Introduction

Recall that in this course we consider three common
algorithms for QR factorization:

1 Gram-Schmidt orthogonalization,
2 Householder reflections,
3 Givens rotations.

Gram-Schmidt orthogonalization was discussed in Lecture 11.

This lecture will introduce the idea of Householder reflections
for building the QR factorization.

A final approach of Givens rotations will be presented in the
next lecture.
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Householder QR factorizations - Introduction

Note that the QR factorization we produce here is similar, but
not identical, to the one we produced last time:

1 R is m × n and Q is square, instead of the other way around,
and

2 Negative entries can occur on R’s “diagonal”.
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Householder Triangularization
Note that Gram-Schmidt orthogonalization is a “triangular
orthogonalization” process. In matrix form, Gram-Schmidt
can be written as right-multiplication by triangular matrices
that make the columns of A orthonormal (see end of Lecture
8 of Trefethen & Bau)

AR1R2 · · ·Rn︸ ︷︷ ︸
R̂−1

= Q̂.

Householder reflections instead provide an “orthogonal
triangularization” process. The matrix A is made to be
triangular (R) by applying orthogonal matrices Qj , i.e.,

Qn · · ·Q2Q1︸ ︷︷ ︸
Q−1

A = R.

Hence, the premise of Householder reflections (aka
triangularization) is to find the orthogonal matrices
Qj ∈ Rm×m. This method is similar to LU-factorization, as
each Qj will zero the lower entries of column j .
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Householder Triangularization

× × ×
× × ×
× × ×
× × ×

 Q1−→

× × ×
0 × ×
0 × ×
0 × ×

 Q2−→

× × ×
0 × ×
0 0 ×
0 0 ×

 Q3−→

× × ×
0 × ×
0 0 ×
0 0 0


A Q1A Q2Q1A Q3Q2Q1A
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Householder Triangularization

We will build orthogonal matrices of the following form

Qj =

[ ]
I 0 } j − 1 rows, already done,
0 F } m − (j − 1) rows, still to be done.

where F is the Householder reflector matrix. F reflects a vector
x across a (specific) hyperplane H to produce a vector along the
axis.
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Householder Triangularization

See Figure 1 for a visualization of applying the Householder
reflector (note e1 = [1, 0, . . . , 0]T ).

Figure: Applying the Householder reflector F to the vector x , which
reflects x across the hyperplane H.

x + v− = −∥x∥e1 ⇔ v− = −∥x∥e1 − x .
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Householder Triangularization

After reflection, the output vector has the same magnitude as x ,
and is parallel to e1. It depends on both of x and e1.
At step j , we start with x , and reflect onto the subspace spanned
by {e1, . . . ej}.
We find the Householder reflector matrix F , to perform the
reflection, as follows.
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Householder Triangularization
Suppose

x =


×
×
...
×

 ,

Find F such that

Fx =


∥x∥
0
...
0

 = ∥x∥e1.

The F reflects x across the hyperplane H orthogonal to
v = ∥x∥e1 − x .

That is because we want to produce a new vector of the same
length as x , aligned with the axis e1 (so all but the first entry
are zeros).
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Householder Triangularization

The orthogonal projection P of x onto the hyperplane H
(orthogonal to the vector v) is

Px = x −

((
v

∥v∥

)T

x

)
v

∥v∥
= x − v

(
vT x

vT v

)
.

Note that this orthogonal projection P is similar to the steps
in Gram-Schmidt orthogonalization.

Idea: Subtract out the component of x along v .
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Householder Triangularization

To reflect x across H (instead of projecting onto H) we must
go twice as far in the same direction (see Figure 1)

Fx = x − 2v

(
vT x

vT v

)
.

Therefore, the Householder reflector F is given by

F = I − 2

(
vvT

vT v

)
where v = ∥x∥e1 − x .
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Householder Triangularization
Remark that we could instead reflect to the point along the axis
with a negative sign. That is, reflect to −∥x∥e1 instead of ∥x∥e1,
which gives

Fx =

−∥x∥
0
...
0

 = −∥x∥e1.

Either choice zeros out the desired entries of the active column.
We just get a different v as shown in Figure 2.

Figure: The two alternative Householder reflections. 12 / 36



Householder Triangularization

Reflecting to either of ∥x∥ei or −∥x∥ei will zero the remainder
of the desired column.

Which Householder reflector F should we choose?

For numerical stability, we want the F that reflects x farther
away from itself.

Thus,

if x1 > 0 we choose the negative one, −∥x∥e1,
if x1 < 0 we choose the positive one, ∥x∥e1.

This gives v = −sign(x1)∥x∥e1 − x , or more simply (because
only direction is important, and either choice gives the same
F ) sign(x1)∥x∥e1 + x .

This choice of v avoids subtracting nearby quantities, which
can introduce cancellation error.

Therefore, choosing the F that reflects x farther away is more
numerically stable.
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Householder Triangularization

Alternative Derivation

We will show an alternate derivation of Householder
triangularization.

Consider a reflection operator F = I − 2 vvT

vT v
for an arbitrary

vector v .

We want to find v such that Fx ∈ span{e1} to zero the lower
entries in column 1.

Let Fx ∈ span{e1}, in other words,

Fx = x − 2vvT x

vT v
= x −

[
2(vT x)

(vT v)

]
v ∈ span{e1}.
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Householder Triangularization

Observe v ∈ span{e1, x} by construction, since
Fx ∈ span{e1}.
Write Fx = c2e1 for some scalar c2.

Hence,

c2e1 = x − c1v

⇒ v = ĉ1x + ĉ2e1,

(for scalars ĉ1 and ĉ2) which means v ∈ span{e1, x}.
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Householder Triangularization

Now let v̂ = x + αe1 for some scalar α. (Note the length of v
does not matter; only its direction matters.)

We will write v for v̂ from now on.

Then,

vT x = (x + αe1)
T x

= xT x + αeT1 x

= xT x + α x(1)︸︷︷︸
scalar

and

vT v = (x + αe1)
T (x + αe1)

= xT x + 2αx(1) + α2.
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Householder Triangularization
Plugging into Fx to determine α, we have

Fx = x − 2

(
vT x

vT v

)
(x + αe1),

=

(
1− 2vT x

vT v

)
x −

(
2α

vT x

vT v

)
e1,

=

(
1−

2(xT x + αx(1))

xT x + 2αx(1) + α2

)
x −

(
2α

vT x

vT v

)
e1,

=

(
xT x +����2αx(1) + α2 − 2xT x −����2αx(1)

xT x + 2αx(1) + α2

)
x −

(
2α

vT x

vT v

)
e1,

=

(
α2 − xT x

xT x + 2αx(1) + α2

)
x︸ ︷︷ ︸

must be 0

−
(
2α

vT x

vT v

)
e1.

Since Fx ∈ span{e1} the first term must be zero, so
α2 − xT x = 0 ⇒ α = ±∥x∥.
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Householder Triangularization

Hence,
v = x ± ∥x∥e1 and Fx = ∓∥x∥e1,

as we saw last time.
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Householder QR Factorization Algorithm

Algorithm 1 gives the QR factorization of A via Householder
triangularization.

Algorithm 1 : Householder QR factorization algorithm

for k = 1, 2, . . . , n
x = A(k : m, k) ▷ Get current column
vk = sign(x1)∥x∥e1 + x ▷ Form the reflection vector
vk = vk

∥vk∥ ▷ Normalize
for j = k , k + 1, . . . , n ▷ Apply F to active lower-right block

A(k : m, j) = A(k : m, j)− 2vk(v
T
k A(k : m, j))

end for
end for
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Householder QR Factorization Algorithm

The notation used follows Matlab, i.e., A(k : m, j) = j th

column of A from row k to row m.

The algorithm converts A into R (upper “triangular”) using
Householder reflections F .

Note that one could further vectorize the inner loop (more
efficient in Matlab) to the matrix operation

A(k : m, k : n) = A(k : m, k : n)− 2vk(v
T
k A(k : m, k : n)).
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Householder QR Factorization Algorithm
Algorithm 1 does not construct Q, only the vectors vk . Why
is this not a problem in practice?
We often do not need Q but just the products QTb or Qx
(e.g., for least squares we solve Rx = QTb). Since

QT = QnQn−1 . . .Q2Q1,

Q = QT
1 QT

2 . . .QT
n−1Q

T
n ,

we can efficiently (in O(mn) flops) compute QTb or Qx using
just the vk ’s to apply the appropriate reflections (see
Algorithms 2 and 3). Note the parentheses, we compute
v(vTb) rather than (vvT )b to avoid forming the matrix vvT .

Algorithm 2 : Implicit QTb

for k = 1, 2, . . . , n
b(k : m) = b(k : m) −

2vk
(
vTk b(k : m)

)
end for

Algorithm 3 : Implicit Qx

for k = n, n − 1, . . . , 1
x(k : m) = x(k : m) −

2vk
(
vTk x(k : m)

)
end for
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Householder QR Factorization Algorithm

Explicitly building the matrix Q may sometimes be necessary.

So how could we use these implicit products to recover Q
itself?

We compute the product QI = Q by applying Q to the
columns of the identity matrix I (e1, e2, . . .), i.e.,
q1 = Qe1, q2 = Qe2, . . . .

For the reduced QR factorization

A = Q̂R̂ =

[ ]
m×n

[ ]
n×n

.

So Q̂ is given by just the first n columns of I

Q̂ =

 | | |
Qe1 Qe2 · · · Qen
| | |

 .
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Householder QR Factorization Algorithm
Complexity of Householder-Based QR Work is dominated by
inner loop

A(k : m, j) = A(k : m, j)− 2vk

(
vTk A(k : m, j)

)
.

Tallying the cost gives:

vTk A(k : m, j) ≈ 2(m − k + 1) flops (dot product),
2vk

(
vTk A(k : m, j)

)
≈ (m − k + 1) flops (scalar multiply),

A(k : m, j)− 2vk
(
vTk A(k : m, j)

)
≈ (m − k + 1) flops

(subtraction).

So it approximately costs 4(m − k + 1) flops per inner step, which
is done (n − k + 1) times (j-loop). This totals to
4(m − k + 1)(n − k + 1) flops per outer iteration. The outer
k-loop runs from 1 to n, which means the total flops can be
approximated by

n∑
k=1

4(m − k + 1)(n − k + 1) ≈ 2mn2 − 2

3
m3.

Note that this does not include forming Q. 23 / 36



Householder QR Factorization Algorithm

For m = n (square),
flops(Householder) ≈ 4

3n
3 = 2× flops(LU).

Recall from Lecture 11 that Gram-Schmidt orthogonalization
cost ≈ 3× flops(LU).

So Householder triangularization is faster than Gram-Schmidt
orthogonalization.
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Householder Reflector

Given x =

12
2

 find the Householder reflector F and the

product Fx .

Answer: We see that ∥x∥ =
√
12 + 22 + 22 = 3. Therefore

v = ±∥x∥e1 + x = ±3

10
0

+

12
2

 =

42
2

 or

−2
2
2

 .

We choose v = sign(x1)∥x∥e1 + x = 3

10
0

+

12
2

 =

42
2

, for
its numerical stability.
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Householder Reflector

vvT

vT v
=


1

[
4 2 2

] 42
2




42
2

 [4 2 2
]

=

(
1

24

)16 8 8
8 4 4
8 4 4


=

(
1

6

)4 2 2
2 1 1
2 1 1


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Householder Reflector

F = I − 2

(
vvT

vT v

)

=

1 0 0
0 1 0
0 0 1

− 1

3

4 2 2
2 1 1
2 1 1


=

1

3

−1 −2 −2
−2 2 −1
−2 −1 2

 , so that

Fx =
1

3

−1 −2 −2
−2 2 −1
−2 −1 2

12
2


=

−3
0
0

 .
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Householder Reflector

Since we are computing exactly, we are not forced to consider
numerical stability.

We re-compute everything with the other possible choice,

namely v =

−2
2
2

.
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Householder Reflector

vvT

vT v
=


1

[
−2 2 2

] −2
2
2




−2

2
2

 [−2 2 2
]

=

(
1

12

) 4 −4 −4
−4 4 4
−4 4 4


=

(
1

3

) 1 −1 −1
−1 1 1
−1 1 1


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Householder Reflector

F = I − 2

(
vvT

vT v

)

=

1 0 0
0 1 0
0 0 1

− 2

3

 1 −1 −1
−1 1 1
−1 1 1


=

1

3

1 2 2
2 1 −2
2 −2 1

 , so that

Fx =
1

3

1 2 2
2 1 −2
2 −2 1

12
2


=

30
0

 .
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Example: QR Factorization via Householder

Perform QR factorization using Householder reflections on the
matrix

A =

1 −4
2 3
2 2


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Example: QR Factorization via Householder

Step 1: x =

12
2

 , v− =

42
2

 , v+ =

 2
−2
−2


(sign of v is irrelevant, since we only use vvT and vT v .) Ordinarily
we would use v−, but let’s use v+ for variety.

Then F1 =

1
3

2
3

2
3

2
3

1
3

−2
3

2
3

−2
3

1
3

 = Q1 and (by multiplying)

Q1A =

3 2
0 −3
0 −4


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Example: QR Factorization via Householder

Step 2: x =

[
−3
−4

]
and so

v = x + sign(x1)∥x∥e1

=

[
−3
−4

]
+ (−1) · 5 ·

[
1
0

]
=

[
−8
−4

]
which lets us calculate

F2 = I − 2vvT

vT v

=

[
1 0
0 1

]
− 2

80

[
64 32
32 16

]
=

[
1 0
0 1

]
− 1

5

[
8 4
4 2

]
=

[−3
5

−4
5

−4
5

3
5

]
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Example: QR Factorization via Householder

Therefore Q2 =

1 0 0
0
0

F2

 =

1 0 0
0 −3

5
−4
5

0 −4
5

3
5


So Q2(Q1A) = R =

3 2
0 5
0 0

 (by multiplying)
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Example: QR Factorization via Householder

Therefore
A = Q−1

1 Q−1
2 R

= QT
1 QT

2 R By orthogonality

= Q1Q2R by symmetry

= QR
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Example: QR Factorization via Householder

Orthogonality does not imply symmetry, but those Q’s were
constructed to be symmetric, I − 2vvT

vT v
.

Q = Q1Q2 =

1
3

2
3

2
3

2
3

1
3

−2
3

2
3

−2
3

1
3

1 0 0
0 −3

5
−4
5

0 −4
5

3
5


=

1

15

 5 −14 −2
10 5 −10
10 2 11


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