
Lecture 13: Givens Rotations

June 26, 2025
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Givens Rotations - Rotation Matrices in 2D

First consider rotating a vector in two dimensions.

This can be described as multiplication with a 2× 2 matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

That is, a = Rb rotates the vector b counterclockwise by θ as
shown in the figure below.
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Givens Rotations - Rotation Matrices in 2D

The columns of R(θ) are orthonormal: using trigonometric
identities we have cos2 θ + sin2 θ = 1 and
cos θ sin θ − cos θ sin θ = 0.

Hence it is easy to see that R(θ) is an orthogonal matrix.

The transpose of the matrix R(θ) gives a clockwise rotation
(i.e., the inverse operation).
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Givens Rotations - Rotation Matrices in 2D

As an example, if we want to rotate a vector by θ = π
4 (45

degrees) the rotation matrix is

R =

[
1√
2

− 1√
2

1√
2

1√
2

]
.

If b =

[
1
0

]
then, a = Rb =

[
1√
2
1√
2

]
as shown in the figure

below.
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Givens Rotations
A Givens rotation zeros individual elements “selectively” by
an orthogonal matrix operation that performs rotation in the
(i,k)-plane only.

Givens rotation matrices have the form

G (i , k , θ)T =





1
. . .

c −s row(i)
1

. . .

1
s c row(k)

. . .

1
col(i) col(k)

where c = cos θ, s = sin θ.
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Givens Rotations

The matrix mostly resembles the identity except for two
rows/columns describing a rotation.

G (i , k, θ) is always an orthogonal matrix.

We choose i , k so that left multiplication by G (i , k , θ) uses
the entry on row i , to zero out the entry on row k , in the
column in which we are working.
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Givens Rotations

Explanation of the Following Setup

Let x , y be vectors in Rm.

Both x and y will be columns of the matrix we are about to
process:

x is the input column, and
y is the output column.

It is implicit that we have already chosen a column on which
to work. This provides us with our input, x , and shows what
y we are pursuing.
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Givens Rotations

Consider y = G (i , k, θ)T x , then

yj =


cxi − sxk for j = i

sxi + cxk for j = k

xj for j ̸= i , k
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Givens Rotations

To force yk = 0 we must let

c =
xi√

x2i + x2k

, and

s = − xk√
x2i + x2k

.

Exercise: confirm yk = 0 with the above values of c and s by
substituting into the definition of yj .

Note that the value of θ itself is not needed when computing
y = G (i , k, θ)T x .

Also, note that computing the product G (i , k, θ)TA affects
only row(i) and row(k).
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Givens Rotations

Solution to Exercise: Recall that yk (i.e. yj , where j = k) is
defined by

yk = sxi + cxk .

So we compute

yk = sxi + cxk

=

− xk√
x2i + x2k

 xi +

 xi√
x2i + x2k

 xk

= − xixk√
x2i + x2k

+
xixk√
x2i + x2k

=
xixk − xixk√

x2i + x2k

= 0.
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Givens QR Factorization Process

To perform a QR factorization we zero entries one at a time
working upwards along columns.

For example, the process performed on a 4× 3 matrix is
× × ×
× × ×
× × ×
× × ×

 G(3,4)T−−−−−→


× × ×
× × ×
× × ×
0 × ×

 G(2,3)T−−−−−→


× × ×
× × ×
0 × ×
0 × ×

 G(1,2)T−−−−−→


× × ×
0 × ×
0 × ×
0 × ×

 G(3,4)T−−−−−→


× × ×
0 × ×
0 × ×
0 0 ×

 G(2,3)T−−−−−→


× × ×
0 × ×
0 0 ×
0 0 ×

 G(3,4)T−−−−−→ R

Remarks on Matrix Dimensions:

1 A is m × n, for some m ≥ n.

2 The Gi s are all m ×m.
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Givens QR Factorization Process

We are, step-by-step, turning A into R.

The output will be a reduced QR factorization: R is m× n; Q
is m ×m, orthogonal.

We can recover Q later, from the G ’s.

Each rotation is computed based on the current matrix, not
based on the original matrix.
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Givens QR Factorization Process

Explanation:

1 x is a column of our coefficient matrix.

2 y is the same column of the coefficient matrix, after we have
applied a Givens rotation to zero out the kth entry.

3 We construct G (i , k)T , to zero out the kth entry of x . This is
why we set yk = 0 to determine what c and s have to be.

4 Think of G (i , k)T as the matrix which carries out the needed
rotation in the (i , k)-plane to zero out the kth entry of x .

5 As pointed out above, G (i , k)T affects only rows i and k.

6 Also as pointed out above, to perform a QR factorization we
zero entries one at a time, working upwards along columns.
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Givens QR Factorization Process

6 This should now explain the indices in the diagrams:
1 The first line works upwards through column 1:

1 Perform the Givens rotation on rows 3 and 4 that zeroes out
the (4,1) entry of the matrix (G(3, 4)T ).

2 Perform the Givens rotation on rows 2 and 3 that zeroes out
the (3,1) entry of the matrix (G(2, 3)T ).

3 Perform the Givens rotation on rows 1 and 2 that zeroes out
the (2,1) entry of the matrix (G(1, 2)T ).

2 The second line then does the analogous steps to create the
needed zeroes in columns 2 and 3.

3 Note that G (3, 4)T on line 2 is not the same as G (3, 4)T on
line 1: they are operating on different columns. The column
number is implicit (because we always know which column we
are processing). The (i , k) indices refer to the row entries in
the current column.

14 / 29



Givens QR Factorization Process

To obtain Q we let GT
ℓ denote the ℓth Givens rotation.

We can assemble Q from

GT
ℓ GT

ℓ−1 · · ·GT
2 GT

1 A = R,

⇒ A = G1G2 · · ·Gℓ−1GℓR, (Gi orthogonal)

⇒ Q = G1G2 · · ·Gℓ−1Gℓ, (because A = QR).

Quick Reminder About Dimensions:
1 A is m × n, for some m ≥ n.
2 The Gi s are all m ×m.

Remark: We do not require R’s “diagonal” entries to be
positive. So this QR factorization might not agree with the
unique QR factorization described in Lecture 10.
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Givens QR Factorization Process

Example: Let A =

1 −1
0 2
1 1

 . We will compute a QR

factorization of A, via Givens rotations.
Column #1

There is no need to zero out the (2, 1) entry.
Compute G (1, 3)T to use the (1, 1) entry to zero out the
(3, 1) entry.

c =
x1√

x21 + x23

=
1√

12 + 12

=
1√
2

=

√
2

2
, and
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Givens QR Factorization Process

s = − x3√
x21 + x23

= − 1√
12 + 12

= − 1√
2

= −
√
2

2
.

Hence we get

G (1, 3)T =


√
2
2 0

√
2
2

0 1 0

−
√
2
2 0

√
2
2

 .
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Givens QR Factorization Process

We check that left mulitplying A by G (1, 3)T has the desired
effect. 

√
2
2 0

√
2
2

0 1 0

−
√
2
2 0

√
2
2


1 −1
0 2
1 1

 =


√
2 0
0 2

0
√
2

 .

This completes Column #1.
Column #2

Compute G (2, 3)T to use the (2, 2) entry to zero out the
(3, 2) entry.
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Givens QR Factorization Process

c =
x2√

x22 + x23

=
2√

22 +
√
2
2

=
2√
6

=
2
√
6

6

=

√
6

3
, and
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Givens QR Factorization Process

s = − x3√
x22 + x23

= −
√
2√

22 +
√
2
2

= −
√
2√
6

= − 1√
3

= −
√
3

3
.
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Givens QR Factorization Process

Hence we get

G (2, 3)T =

1 0 0

0
√
6
3

√
3
3

0 −
√
3
3

√
6
3

 .

We check that left mulitplying A by G (2, 3)T has the desired
effect. 1 0 0

0
√
6
3

√
3
3

0 −
√
3
3

√
6
3



√
2 0
0 2

0
√
2

 =


√
2 0

0
√
6

0 0

 .

This completes Column #2.
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Givens QR Factorization Process

This gives immediately that R =


√
2 0

0
√
6

0 0

.
We compute Q as the product of the G ’s in the reverse order:

Q =


√
2
2 0 −

√
2
2

0 1 0√
2
2 0

√
2
2


1 0 0

0
√
6
3 −

√
3
3

0
√
3
3

√
6
3


=


√
2
2 −

√
6
6 −

√
3
3

0
√
6
3 −

√
3
3√

2
2

√
6
6

√
3
3

 .

One can verify that

QR =


√
2
2 −

√
6
6 −

√
3
3

0
√
6
3 −

√
3
3√

2
2

√
6
6

√
3
3



√
2 0

0
√
6

0 0

 =

1 −1
0 2
1 1

 = A.
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Givens QR Factorization Process

In terms of complexity,
flops(Givens QR) ≈ 3mn2−n3 = 1.5×flops(Householder QR).

So why bother with this the Givens QR if it is slower then
Householder QR?

The reason is because it is more flexible than Householder
QR.

Givens QR factorization can be useful when only a few
elements need to be eliminated.
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Hessenberg via Givens

For example, consider an upper Hessenberg matrix, which
has nonzeros only above the first subdiagonal.

Performing QR factorization on an upper Hessenberg matrix
involves the following


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 G(1,2)T−−−−−→


× × × × ×
0 × × × ×

× × × ×
× × ×

× ×

 G(2,3)T−−−−−→


× × × × ×
0 × × × ×

0 × × ×
× × ×

× ×

 G(3,4)T−−−−−→


× × × × ×
0 × × × ×

0 × × ×
0 × ×

× ×

 G(4,5)T−−−−−→


× × × × ×
0 × × × ×

0 × × ×
0 × ×

0 ×


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Hessenberg via Givens

That is, we only need to zero out the first subdiagonal entries
at a cost of ≈ 3n2 flops.

This is less than if one used Householder QR factorization,
which operates columnwise on all the entries below the main
diagonal.
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Least Squares: Normal Equations vs QR

We have now seen three ways to compute the QR
factorization (Gram-Schmidt, Householder, Givens).

Recall that, as explained in Lecture 12, the shape of the
output of the Householder QR factorization is different from
the shapes of the other outputs.

However, the steps to solving the least square problem are the
same after the A = QR is computed.

Therefore, the two main approaches to solving least squares
problems are using:

the normal equations or
the QR factorization.

QR factorization can also be used to (exactly) solve the
system Ax = b, when A is square. In this case, we solve
Rx = QTb.
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Least Squares: Normal Equations vs QR

The drawback of using normal equations (ATAx = ATb)
when solving for the least squares problems is that is it poorly
conditioned!

Recall that the accuracy of a (square) linear system solution is
dictated by the condition number κ(A).

However, with the normal equations the accuracy depends on
κ(ATA) instead of κ(A), which is often much worse.

For example,

A =

[
1 + 10−8 −1

−1 1

]
⇒ κ(A) = 4× 108,

ATA =

[
2 + 10−8 + 10−16 −2− 10−8

−2− 10−8 2

]
⇒ κ(A) ≈ 16× 1016.
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Least Squares: Normal Equations vs QR

The QR factorization approach to least squares involves
solving the system Rx = QTb.

Therefore, the solution’s accuracy depends on κ(R) because

κ2(A) = κ2(QR) = κ2(R),

since ∥Q∥2 = 1 : Q has orthonormal columns.

Remark: For this to make sense, R must be square.
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Least Squares: Normal Equations vs QR

The main point is, we prefer the QR approach, despite its
extra cost, because of the potential to encounter
ill-conditioned problems (for which the normal equations
roughly square the condition number).

However, the normal equations approach can be used if it is
known that A is well-conditioned.
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