
Lecture 14: Eigenvalues / Eigenvectors

June 23, 2025

0 / 30



Outline

1 Eigenvalue Problem Definitions

2 Traditional Eigenvalue Problem Review

3 Solving Eigenvalue Problems (Näıve Approach)
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Introduction

So far we have discussed solving linear systems and
least-squares problems of the form Ax = b.

We now consider eigenvalue problems, which have the form

Ax = λx .

In this lecture, we begin with some definitions and theory
about eigenvalue problems.

Much of the beginning of this lecture should be review from
previous courses.
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Eigenvalue Problem Definitions

Definition 1.1
Let A ∈ Rn×n. A non-zero vector x ∈ Rn is a (right) eigenvector
with corresponding eigenvalue λ ∈ R if

Ax = λx .

Note that if x is an eigenvector then so is ax , for a ̸= 0.

That is, eigenvectors are unique only up to a multiplicative
constant.

Definition 1.2
The set of A’s eigenvalues is called its spectrum, denoted Λ(A).
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Eigenvalue Problem Definitions

Definition 1.3
The eigendecomposition of a diagonalizable matrix, A, is

A = XΛX−1

where

X =

 | | |
x1 x2 · · · xn
| | |

 , Λ =


λ1

λ2

. . .

λn

 ,

and Axi = λixi for i = 1, 2, . . . , n.

4 / 30



Eigenvalue Problem Definitions

The columns of X in the eigendecomposition are eigenvectors
of A.

The diagonal matrix Λ has entries that are the eigenvalues
corresponding to each eigenvector.

Fact: Real symmetric matrices are diagonalizable by
orthogonal matrices.
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Eigenvalue Problem Definitions

Equivalently, the eigendecomposition can be written as AX = XΛ

 A

 | | |
x1 x2 · · · xn
| | |

 =

 | | |
x1 x2 · · · xn
| | |



λ1

λ2

. . .

λn

 .

This form corresponds to the form of the eigenvalue problem
Ax = λx , but stacks all eigenvalue/eigenvector pairs (xi , λi )
in one matrix equation (for i = 1, . . . , n).

See the Lecture Notes for a proof that AX = XΛ.
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Traditional Eigenvalue Problem Review

In introductory linear algebra courses you would normally compute
(by hand) eigenvalues and eigenvectors using the characteristic
polynomial.

Definition 2.1
The characteristic polynomial of A, denoted pA(z), is the degree
n (monic) polynomial given by

pA(z) = det(zI − A).

Theorem 1
λ is an eigenvalue of A iff pA(λ) = 0.

Proof.
See Lecture Notes.
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Traditional Eigenvalue Problem Review

The fundamental theorem of algebra tells us that the
degree n polynomial pA(z) has n (possibly complex) roots.

So A has n (possibly complex) eigenvalues, given by the roots.

Therefore, we can write

pA(z) = (z − λ1)(z − λ2) · · · (z − λn).

Given an eigenvalue λ, the corresponding eigenvector(s) are
given by solving (λI − A)x = 0 for x (i.e., the nullspace of
λI − A.)

We will see later why the choice of A will yield real
eigenvalues.
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Traditional Eigenvalue Problem Review

Conversely, for every monic polynomial of degree n,

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0,

there always exists a matrix whose eigenvalues are roots of
p(z).

This matrix is called the companion matrix

C =


0 −a0
1 0 −a1

1 0 −a2
. . .

. . .
...

1 −an−1

 .
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Eigenvalue Problem Definitions

The following definitions are concerned with the multiplicity of
eigenvalues.

Definition 2.2
The algebraic multiplicity of λ is the number of times it appears
as a root of pA(z).

Definition 2.3
The geometric multiplicity of λ is the dimension of the nullspace
of the matrix λI − A.

10 / 30



Eigenvalue Problem Definitions

Remarks:

1 Why geometric multiplicity cannot exceed algebraic
multiplicity: The geometric multiplicity is the number of
linearly independent vectors, and each vector is the solution to
one algebraic eigenvector equation, so there must be at least
as much algebraic multiplicity.

2 If algebraic multiplicity exceeds the geometric multiplicity then
λ is a defective eigenvalue (See Lecture Notes examples).

3 The matrix A is then called a defective matrix.

4 This is important because only non-defective matrices have
eigenvalue decompositions.
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Eigenvalue Problem Definitions

Multiplicity Example The following example with

A =

2 2
2

 and B =

2 1
2 1

2

 .

is worked out in the Lecture Notes.
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Solving Eigenvalue Problems (Näıve Approach)

Sadly, no closed form solutions exist for degree 5 or higher
polynomials as the roots cannot be found exactly using a
finite number of rational operations.

Therefore we must use approximations to find their
eigenvalues.

This suggests the application of iterative methods.
1 Form the characteristic polynomial, pA(z).
2 Use the numerical root-finding method to extract the

approximate roots/eigenvalues. (e.g bisection, Newton, etc.)

The problem with this approach, is that root-finding tends to
be ill-conditioned, i.e. a small change or error in the input
drastically changes the roots.

More effective strategies based on finding
eigendecompositions exist.

We will explore some of these methods in the following
lectures.
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Solving Eigenvalue Problems (Näıve Approach)

Some results about bounding eigenvalues based on the Gershgorin
circle theorem will be useful later.

Theorem 2
(Gershgorin circle theorem) Let A be any square matrix. The
eigenvalues λ of A are located in the union of the n disks (on the
complex plane) given by

|λ− aii | ≤
∑
j ̸=i

|aij |.

Disks are denoted by D(aii ,Ri ), where Ri =
∑

j ̸=i |aij |.

Proof.
See Lecture Notes.
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Solving Eigenvalue Problems (Näıve Approach)
The Gershgorin circle theorem essentially says the following. If
off-diagonal entries in a row are small, then the corresponding
eigenvalue must be close to the diagonal entry. For example, with

A =

[
1 2
1 −1

]
, which has Λ(A) =

{√
3,−

√
3
}
.

The figure below shows the Gershgorin disks D(aii ,
∑

j ̸=i |aij |) for
this example.

For this example we have Disk 1 centered at (1,0) with radius 2 or
D(1,2). There is also disk 2 centered at (-1,0) with radius 1 or
D(-1,1). Note that complex eigenvalues will give circles centred off
the real axis.
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Solving Eigenvalue Problems (Näıve Approach)

As an exercise, find the Gershgorin disks for

A =

5 2 1
2 4 −1
1 −1 2

 .

Can we determine any of the eigenvalues exactly for A? What if A
was a diagonal matrix, could the eigenvalues be determined
exactly?
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Eigenvalue/Eigenvector Review Example

We present an example that reviews computing the eigenvalues
and eigenvectors using the characteristic polynomial. In this
example we find the eigenvalues and eigenvectors for the matrix

A =

1 0 0
2 −1 2
4 −4 5

 .

Solution: See Lecture Notes.
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Eigenvalue/Eigenvector Review Example

We will generally consider matrices A ∈ Rn×n that are
symmetric (AT = A).

Such matrices have useful properties such as real eigenvalues,
and a complete set of orthogonal eigenvectors.

{λ1, λ2, . . . , λn}, {q1, q2, . . . , qn},with ∥qi∥ = 1.

Therefore,
A = QΛQT ,

where Q is orthogonal.
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Rayleigh quotient
There are two quantities that must be solved for in eigenvalue
problems: the eigenvalues and the eigenvectors.
Consider first computing eigenvalues, when given an
approximation to an eigenvector.
An important quantity in this case is the Rayleigh quotient
defined next.

Definition 5.1
The Rayleigh quotient of a nonzero vector x with respect to A is

r(x) =
xTAx

xT x
.

Note that if x is an eigenvector of A then r(x) = λ since

xTAx

xT x
=

xT (λx)

xT x
= λ

xT x

xT x
= λ.

Otherwise, r(x) gives a scalar α that behaves “most like” an
eigenvalue for a given vector x .
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Rayleigh quotient
We can justify the definition of the Rayliegh quotient in
another way.

Consider the following single-variable, n × 1 least squares
problem for an unknown α ∈ R:

min
α

∥∥∥∥∥∥∥∥∥


x1
x2
...
xn

α− Ax

∥∥∥∥∥∥∥∥∥
2

2

,

for given A and x .

Constructing the normal equations for this problem, we have

(xT x)α = xT (Ax),

⇒ α =
xTAx

xT x
= r(x).
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Rayleigh quotient

Consider this Rayleigh quotient example for the following
matrix

A =

3 2 5
2 7 5
0 2 8

 ,

which has an eigenvector near v ≈ [0.7,−0.7, 0.3]T .
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Rayleigh quotient

The Rayleigh quotient gives

α =
vTAv

vT v

=


1

[
7
10 − 7

10
3
10

]  7
10
− 7

10
3
10




[
7
10 − 7

10
3
10

] 3 2 5
2 7 5
0 2 8

 7
10
− 7

10
3
10



=
324

107
≈ 3.028,

which is close to the true value of λ = 3 (See Lecture Notes for
compuation of eigenvalues and eigenvectors).
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Rayleigh quotient

From this example we see that if we had a reasonable guess at
an eigenvector, the Rayleigh quotient would be a useful
approximation of the eigenvalue.

In fact, the following theorem (see Trefethen & Bau, Lecture
27) states that the approximation converges quadratically.

Theorem 3
Let qj be an eigenvector, and x ≈ qj . Then

r(x)− r(qj) = O(∥x − qj∥2) as x → qj .

That is, as x → qj , the error in the estimate of the eigenvalue
λ decreases quadratically.
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Rayleigh quotient

To summarize, eigenvalues are approximated using the
Rayliegh quotient, given an approximation of an eigenvector.

We will now look at how to get an approximation of the
eigenvectors.

We will again use iterative approaches.
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Power Iteration
The idea of the power iteration is simple.
Start with an initial vector v (0), then repeatedly multiply by A
and normalize:

v (1) =
Av (0)∥∥Av (0)∥∥ ,

v (2) =
Av (1)∥∥Av (1)∥∥ ,

...

v (k) =
Av (k−1)∥∥Av (k−1)

∥∥ .
In the limit, the approximation v (k) approaches q1, where q1
is the eigenvector associated with the largest magnitude
eigenvalue, i.e.,

lim
k→∞

v (k) = q1.
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Power Iteration
Remarks:

1 Recall that A must be symmetric, so that there exists an
orthogonal basis of eigenvectors of A.

2 If we are lucky, and start with v (1) an eigenvector for
eigenvalue λ, depending on sign(λ), we will get back the same
vector in 1 or possibly 2 steps.

Let’s prove that Power Iteration converges.
Proof:

Let v (0) be an initial guess at the eigenvector q1.

Also let {qi} denote the set of orthonormal eigenvectors.

Then we can write

v (0) = c1q1 + c2q2 + · · ·+ cnqn,

for some coefficients ci , because the eigenvectors span the
space.
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Power Iteration

Now since Aqi = λiqi we can write

Av (0) = c1λ1q1 + c2λ2q2 + · · ·+ cnλnqn.

Further multiplication by A gives

Akv (0) = c1λ
k
1q1 + c2λ

k
2q2 + · · ·+ cnλ

k
nqn,

= λk
1

(
c1q1 + c2

(
λ2

λ1

)k

q2 + · · ·+ cn

(
λn

λ1

)k

qn

)
.

Now if we have |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| and
c1 = qT1 v

(0) ̸= 0, then we observe the following:(
λi

λ1

)k

→ 0 as k → ∞, for i > 1.
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Power Iteration

Therefore Akv (0) ≈ c1λ
k
1q1, for large k .

Since the eigenvectors are orthonormal, the scale factor
doesn’t matter.

We can normalize to find q1 as

q1 →
Akv (0)

∥Akv (0)∥
as k → ∞.

This is the eigenvector for the the largest magnitude
eigenvalue. □

The next theorem summarizes this result.
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Power Iteration

Theorem 4 (Power iteration convergence)

Suppose |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|, and qT1 v
(0) ̸= 0, where q1

is the eigenvector for λ1. Then∥∥∥v (k) − (±q1)
∥∥∥ = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
, and |λ(k) − λ1| = O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
,

as k → ∞.

This is linear convergence for the eigenvector with

convergence factor is
∣∣∣λ2
λ1

∣∣∣ .
Convergence is therefore slow if |λ2| ≈ |λ1|, i.e., if the first
two eigenvalues are close in magnitude.

There will be no convergence at all if |λ2| = |λ1|.
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Power Iteration

Algorithm 1 gives pseudocode for the power iteration.

Algorithm 1 Power Iteration Algorithm

v (0) = initial guess, s.t.
∥∥v (0)∥∥ = 1

for k = 1, 2, . . .
w = Av (k−1) ▷ Apply A
v (k) = w

∥w∥ ▷ Normalize

λ(k) =
(
v (k)

)T
Av (k) ▷ Rayleigh Quotient

end for

Remark: We have not said at all yet how to know which k we
might need to make our approximation close enough.
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