Lecture 15: Eigenvectors / Eigenvalues - lterative
Methods

June 25, 2025
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Outline

@ |Inverse iteration
@ Shifting Eigenvalues

@ Rayleigh Quotient iteration
© Computational Complexity
Q@ QR Ilteration
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

@ With the power iteration we can only recover g;.

@ What about other eigenvectors? We can find another
eigenvector using the same idea of repeatedly multiplying a
starting vector by a matrix.

@ The inverse iteration can recover the eigenvector g,
associated with the smallest magnitude eigenvalue.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

@ We are assuming throughout this lecture that A is invertible.

@ This is OK, because our assumption from last time, that A is
SPD, carries on throughout this lecture.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse

iteration

@ The inverse iteration instead multiplies the starting vector v(%)
by A~1L.
@ Note that if

Ax = MAx, then

x = AM71x, and so
1
= A~lx, assuming A # 0.

o Therefore, the eigenvalues of A~1 are the reciprocals of the
eigenvalues of A:
1
If A(A) = {)\;}, then A(A71) = {A} .
@ We can therefore use this to find g, instead of g;.

@ The proof follows the same steps as the one for the power

iteration.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

Proof. We have that

A-1 (0 _ C1q1 a2 Cndn

v VRV A
Ak, 0 — CGa 4 €492 N CnQn
(M)F - (M)k (An)*

1 An) ¢ )
= W 191 )\—1 + &qo )\—2 + ...+ ChQqn
n

For large k,
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

@ Since the eigenvectors are orthonormal, the scale factor
doesn’t matter.

@ We can normalize to find g, as
A ky(0) P
dn — m as — OQ.

@ This is the eigenvector for the the smallest magnitude
eigenvalue.

O
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

@ Note we don't actually form A~1: we instead solve a linear
system.

@ The inverse iteration pseudocode is given in Algorithm 1.

Algorithm 1 (Basic) Inverse lteration Algorithm

v(® = initial guess, s.t. ||V =1
for k=1,2,...
w = A-1y(k—1) > Actually, solve a linear system:
> Aw = vk—1)
vk = ﬁ\\
K = (v(k))TAv(k) > Rayleigh Quotient
end for
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

@ The inverse iteration still only allows us compute one
eigenvector, q,.

e "Shifting” the eigenvalues will let us find more.

@ The idea is to use the fact that the smallest possible
magnitude eigenvalue is zero!

@ We then try to modify A so the “target” eigenvector has the
smallest magnitude eigenvalue near zero.

@ Therefore, the inverse iteration will find this target
eigenvector.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

e Consider B = A — ul, with 1 # 0 not an eigenvalue.
o If A’s eigenvalues/vectors are known, what are B's?

@ Since
Ax = Ax, we have
Ax —ux = Ax — px, and so
(A—puh)x = (A—p)x.
——

B

@ Therefore, for the matrix B we have that the

o eigenvectors are the same,
@ eigenvalues are shifted: \; — u for \; € A(A).
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

o If we (somehow) expect A; close to j, then A\; — p is the
smallest magnitude eigenvalue of B.

@ We can then apply the inverse iteration to find its eigenvector
qj-

@ This is an advantage of the inverse iteration over the power
iteration.

@ With the inverse iteration we can select the specific
eigenvector to recover, if we can choose p close to the
corresponding ;.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

@ The inverse iteration has linear convergence behaviour, as
stated in the next theorem.

Theorem 1 (Inverse iteration, with shifting, convergence)

Suppose A\ is the closest eigenvalue to i and Ay is the next

closest, or [ — Ay| < |p— AL| < | —Nj|, for j # J, and
qJTv(O);éO.
Then
WL _ |2k
0 — (£qy)|| = 0 ’“ / d[A\P-x)| =0 '“ .
v , an ,
(£q) P | Jl P
as k — oo.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

@ So convergence depends on ratios of shifted eigenvalues
rather than original eigenvalues.

o If we unluckily choose v(%) orthogonal to g, so that
qJTv(o) = 0, we will not get convergence; instead we will get
to max-iterations, without any answer. In this case, we can
make a different guess for v(%), and try again.
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Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

Algorithm 2 gives pseudocode for the shifted inverse iteration.

Algorithm 2 (Shifted) Inverse Iteration Algorithm

For given u:
v(© = initial guess, s.t. HV(O)H =1
for k=1,2,...
Solve (A — pl)w = v{k=1)
v(k) = et
AR = (V(k))TAV(") > Rayleigh Quotient
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Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh

Quotient iteration
@ The shifted inverse iteration needs an estimate of the
eigenvalue ); to use for p.
@ Observe the following:
© Rayleigh quotient, r(v), estimates an eigenvalue given its
approximate eigenvector v (with quadratic convergence).
@ Inverse iteration estimates an eigenvector given the
approximate eigenvalue p (with linear convergence, by
Theorem [Inverse lteration Convergence]).
@ The Rayleigh quotient iteration combines the two!
@ It is the inverse iteration that updates p with the latest guess
for A at each step (see figure below).

Step of
Inverse iteration

Compute
Rayleigh quotient

14 /28



Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh

Quotient iteration

Pseudocode for the Rayleigh quotient iteration is given in
Algorithm 3.

Algorithm 3 Rayleigh Quotient Iteration Algorithm

v(® = initial guess, s.t. HV(O)H =1
A0 = (V(O))TAV(O) (= r(v(@)) > Rayleigh Quotient
for k=1,2,...

Solve (A — Ak =Dw = v(k=1) 1 Using current \ estimate
> instead of fixed initial y

v(k) = II%H
AK) — (V(k))TAv(k) > Rayleigh Quotient
end for
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Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

@ The convergence when combining the Rayliegh quotient and
the inverse iteration (i.e., Rayliegh quotient iteration) is cubic.

Theorem 2 (Rayleigh quotient iteration convergence)
RQI converges cubically for “almost all” starting vectors v(%). That

s,
vk — (qu)H3) :

59— (0,)| = o

and
AUED — = 0 (AW = %)

@ In practice, each iteration roughly triples the number of digits
of accuracy.

Remarks:
@ Note that “almost all” includes at least qJTv(O) #0.
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Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

@ For example, consider this matrix:

21 7 -1 1
A=1|5 7 7|, v@=11
4 —4 20 1

@ The estimated eigenvalue with the Rayleigh quotient iteration
is (A\(® as initial guess)

A0 = 22 v(©) 1117,

A= 24,0802 v@ = [0.8655 0.3619 0.3462]

AR = 240013 v@® = [-0.8169 —0.4079 —04077]T
A®) = 2400000017 v(3) = [0.8164 0.4082 0.4082] .
Remarks:

© It is weird, but correct (verify it for yourself), that we get the
negative of the previous and future eigenvectors, as v(2).
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Eigenvectors / Eigenvalues - Iterative Methods -
Computational Complexity

The following gives the operation counts for each of the iterative
methods discussed so far.

o Power iteration: each step involved Av(k~—1) — O(n?) flops.

@ Inverse iteration: each step requires solving
(A= puh)w = vk~ This would be O(n?) per step, however,
we can pre-factor into L and U at the start (Recall, at cost:
%n3 + 0(n?)). Then we just do forward/backward solves for
each iteration. Hence, we have O(n?) flops per step.

e Rayleigh quotient iteration: Matrix A — A\(*~1)/ changes at
each step so we can not pre-factor. Therefore, for RQI we
have O(n?) flops per iteration.

@ For all three of the methods, if A is tridiagonal the operation
counts reduce to O(n) flops.
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

@ In the previous sections we looked at the power, inverse, and
Rayleigh quotient iterations for finding a single
eigenvector/eigenvalue.

@ Our next goal is to find more than one
eigenvector/eigenvalue pair at a time.

@ First some definitions are needed.
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

Definition 4.1
Matrices A and B are similar if B = X~ 1AX for some
non-singular X.

Definition 4.2
If X € R"™" s nonsingular, then A — X 1AX is called a
similarity transformation of A.

Theorem 3
If matrices A and B are similar, then they have the same
characteristic polynomial, and hence the same eigenvalues.

Proof.
See Lecture Notes. O
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

@ The idea is to apply a sequence of similarity transformations
to A that converge to a diagonal matrix, which has the
eigenvalues on its diagonal.

@ Recall that we are only considering real symmetric matrices.
@ To achieve this we will rely on the QR factorization again.

@ Fun Fact: In 2000, the QR Iteration was named one of the
top ten most important algorithms for science and engineering
developed in the 20th century.
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

@ Given A(k_l), we factor it:

Alk=1) - — Q(k)R(k),so that
(Qm)T A-1) _ gl

o Defining the next matrix, AK) as R(K Q) then yields a
similarity transformation:

AR = R Q)
- (Q(k))TA(k—l)Qm

o Therefore, Ak=1) and A(K) are similar.
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

The QR lteration simply repeats this process as shown in
Algorithm 4.

Algorithm 4 Basic QR Iteration

A = A
for k=1,2,...
QUIR(K) — Alk—1) > Compute QR factors of Ak—1)
AK) — R(k)Q(k) > “Recombine” in reverse order
end for
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

@ That's it!

e We just compute the QR factorization of A1) = QR and
reverse the order to construct A(kK) = RQ.

e Eventually A(K) becomes diagonal, with the eigenvalues of A
on the diagonal.

o As A(K) converges to eigenvalues on the diagonal (we will
justify why this happens in the next lecture), the product of
the Q(K)'s gives the set of eigenvectors.

@ That is, denoting
QW = QA . k),

we have the relation
Ak _ (Q(k)> Yo )
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

Consider the following QR lteration example with
2 11
A= |1 3 1| = AO,
11 4

One can verify (say using Matlab) that A is SPD.

We can use this Matlab code to compute the first three QR
iterations:

AO=1[211;131; 11 4];
[Q1,R1] = qr(A0);

Al = R1 x Q1;

[Q2,R2] = qr(A1);

A2 = R2 x Q2;

[Q3,R3] = qr(A2);

A3 = R3 x Q3;

25/28



Eigenvectors / Eigenvalues - Iterative Methods - QR

Iteration

Our results are then

[ 4.1667
1.0954
| —1.2671

5.0909
0.1574
0.6232

[ 5.1987
—0.0759

| —0.2073

1.0954
2.0000
0.0000

0.1574
1.8618
—0.5470

—0.0759

2.1818
0.4966

—1.2671]
0.0000 | ,
2.8333 |

0.6232
—0.5470
2.0473 |

—0.2073
0.4966 | .
1.6195
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

@ The true solution for this matrix is
A(A) = {5.2143,2.4608, 1.3249}.

@ At each iteration above the off-diagonals get closer to zero.

@ Moreover, the diagonal entires are converging to the true
eigenvalues.
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Eigenvectors / Eigenvalues - Iterative Methods - QR
lteration

Remarks:

@ QR lteration is mathematically sound, but not good
computationally.

@ Do not implement this algorithm!

© In the next lecture we will discuss an equivalent algorithm
that is computationally better.
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