
Lecture 15: Eigenvectors / Eigenvalues - Iterative
Methods

June 25, 2025

0 / 28

Outline

1 Inverse iteration
1 Shifting Eigenvalues

2 Rayleigh Quotient iteration

3 Computational Complexity

4 QR Iteration

1 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

With the power iteration we can only recover q1.

What about other eigenvectors? We can find another
eigenvector using the same idea of repeatedly multiplying a
starting vector by a matrix.

The inverse iteration can recover the eigenvector qn
associated with the smallest magnitude eigenvalue.

2 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

We are assuming throughout this lecture that A is invertible.

This is OK, because our assumption from last time, that A is
SPD, carries on throughout this lecture.

3 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

The inverse iteration instead multiplies the starting vector v (0)

by A−1.
Note that if

Ax = λx , then

x = λA−1x , and so
1

λ
x = A−1x , assuming λ ̸= 0.

Therefore, the eigenvalues of A−1 are the reciprocals of the
eigenvalues of A:

If Λ(A) = {λi}, then Λ(A−1) =

{
1

λi

}
.

We can therefore use this to find qn instead of q1.
The proof follows the same steps as the one for the power
iteration.

4 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

Proof. We have that

A−1v (0) =
c1q1
λ1

+
c2q2
λ2

+ . . .+
cnqn
λn

A−kv (0) =
c1q1
(λ1)k

+
c2q2
(λ2)k

+ . . .+
cnqn
(λn)k

=
1

(λn)k

(
c1q1

(
λn

λ1

)k

+ c2q2

(
λn

λ2

)k

+ . . .+ cnqn

)

For large k ,

A−kv (0) ≈ cn

(
1

λn

)k

qn.

5 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

Since the eigenvectors are orthonormal, the scale factor
doesn’t matter.

We can normalize to find qn as

qn → A−kv (0)

∥A−kv (0)∥
as k → ∞.

This is the eigenvector for the the smallest magnitude
eigenvalue.

□

6 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration

Note we don’t actually form A−1; we instead solve a linear
system.

The inverse iteration pseudocode is given in Algorithm 1.

Algorithm 1 (Basic) Inverse Iteration Algorithm

v (0) = initial guess, s.t.
∥∥v (0)∥∥ = 1

for k = 1, 2, . . .
w = A−1v (k−1) ▷ Actually, solve a linear system:

▷ Aw = v (k−1)

v (k) = w
∥w∥

λ(k) =
(
v (k)

)T
Av (k) ▷ Rayleigh Quotient

end for

7 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

The inverse iteration still only allows us compute one
eigenvector, qn.

“Shifting” the eigenvalues will let us find more.

The idea is to use the fact that the smallest possible
magnitude eigenvalue is zero!

We then try to modify A so the “target” eigenvector has the
smallest magnitude eigenvalue near zero.

Therefore, the inverse iteration will find this target
eigenvector.

8 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

Consider B = A− µI , with µ ̸= 0 not an eigenvalue.

If A’s eigenvalues/vectors are known, what are B’s?

Since

Ax = λx , we have

Ax − µx = λx − µx , and so

(A− µI)︸ ︷︷ ︸
B

x = (λ− µ)x .

Therefore, for the matrix B we have that the
1 eigenvectors are the same,
2 eigenvalues are shifted: λj − µ for λj ∈ Λ(A).

9 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

If we (somehow) expect λj close to µ, then λj − µ is the
smallest magnitude eigenvalue of B.

We can then apply the inverse iteration to find its eigenvector
qj .

This is an advantage of the inverse iteration over the power
iteration.

With the inverse iteration we can select the specific
eigenvector to recover, if we can choose µ close to the
corresponding λj .

10 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

The inverse iteration has linear convergence behaviour, as
stated in the next theorem.

Theorem 1 (Inverse iteration, with shifting, convergence)

Suppose λJ is the closest eigenvalue to µ and λL is the next
closest, or |µ− λJ | < |µ− λL| ≤ |µ− λj |, for j ̸= J, and
qTJ v

(0) ̸= 0.
Then∥∥∥v (k) − (±qJ)

∥∥∥ = O

(∣∣∣∣µ− λJ

µ− λL

∣∣∣∣k
)
, and |λ(k)−λJ | = O

(∣∣∣∣µ− λJ

µ− λL

∣∣∣∣2k
)
,

as k → ∞.

11 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

So convergence depends on ratios of shifted eigenvalues
rather than original eigenvalues.

If we unluckily choose v (0) orthogonal to qJ , so that
qTJ v

(0) = 0, we will not get convergence; instead we will get
to max-iterations, without any answer. In this case, we can
make a different guess for v (0), and try again.

12 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Inverse
iteration - Shifting Eigenvalues

Algorithm 2 gives pseudocode for the shifted inverse iteration.

Algorithm 2 (Shifted) Inverse Iteration Algorithm

For given µ:
v (0) = initial guess, s.t.

∥∥v (0)∥∥ = 1
for k = 1, 2, . . .

Solve (A− µI)w = v (k−1)

v (k) = w
∥w∥

λ(k) =
(
v (k)

)T
Av (k) ▷ Rayleigh Quotient

end for

13 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

The shifted inverse iteration needs an estimate of the
eigenvalue λj to use for µ.
Observe the following:

1 Rayleigh quotient, r(v), estimates an eigenvalue given its
approximate eigenvector v (with quadratic convergence).

2 Inverse iteration estimates an eigenvector given the
approximate eigenvalue µ (with linear convergence, by
Theorem [Inverse Iteration Convergence]).

The Rayleigh quotient iteration combines the two!
It is the inverse iteration that updates µ with the latest guess
for λj at each step (see figure below).

14 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

Pseudocode for the Rayleigh quotient iteration is given in
Algorithm 3.

Algorithm 3 Rayleigh Quotient Iteration Algorithm

v (0) = initial guess, s.t.
∥∥v (0)∥∥ = 1

λ(0) =
(
v (0)

)T
Av (0)

(
= r(v (0))

)
▷ Rayleigh Quotient

for k = 1, 2, . . .
Solve (A− λ(k−1)I)w = v (k−1) ▷ Using current λ estimate

▷ instead of fixed initial µ
v (k) = w

∥w∥

λ(k) =
(
v (k)

)T
Av (k) ▷ Rayleigh Quotient

end for

15 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

The convergence when combining the Rayliegh quotient and
the inverse iteration (i.e., Rayliegh quotient iteration) is cubic.

Theorem 2 (Rayleigh quotient iteration convergence)

RQI converges cubically for “almost all” starting vectors v (0). That
is, ∥∥∥v (k+1) − (±qJ)

∥∥∥ = O

(∥∥∥v (k) − (±qJ)
∥∥∥3) ,

and
|λ(k+1) − λJ | = O

(
|λ(k) − λJ |3

)
.

In practice, each iteration roughly triples the number of digits
of accuracy.

Remarks:
1 Note that “almost all” includes at least qTJ v

(0) ̸= 0.

16 / 28

Eigenvectors / Eigenvalues - Iterative Methods - Rayleigh
Quotient iteration

For example, consider this matrix:

A =

21 7 −1
5 7 7
4 −4 20

 , v (0) =

11
1

 .

The estimated eigenvalue with the Rayleigh quotient iteration
is (λ(0) as initial guess)

λ(0) = 22 v (0) =
[
1 1 1

]T
,

λ(1) = 24.0802 v (1) =
[
0.8655 0.3619 0.3462

]T
,

λ(2) = 24.0013 v (2) =
[
−0.8169 −0.4079 −0.4077

]T
,

λ(3) = 24.00000017 v (3) =
[
0.8164 0.4082 0.4082

]T
.

Remarks:

1 It is weird, but correct (verify it for yourself), that we get the
negative of the previous and future eigenvectors, as v (2).

17 / 28

Eigenvectors / Eigenvalues - Iterative Methods -
Computational Complexity

The following gives the operation counts for each of the iterative
methods discussed so far.

Power iteration: each step involved Av (k−1) → O(n2) flops.

Inverse iteration: each step requires solving
(A− µI)w = v (k−1). This would be O(n3) per step, however,
we can pre-factor into L and U at the start (Recall, at cost:
2
3n

3 + O(n2)). Then we just do forward/backward solves for
each iteration. Hence, we have O(n2) flops per step.

Rayleigh quotient iteration: Matrix A− λ(k−1)I changes at
each step so we can not pre-factor. Therefore, for RQI we
have O(n3) flops per iteration.

For all three of the methods, if A is tridiagonal the operation
counts reduce to O(n) flops.

18 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

In the previous sections we looked at the power, inverse, and
Rayleigh quotient iterations for finding a single
eigenvector/eigenvalue.

Our next goal is to find more than one
eigenvector/eigenvalue pair at a time.

First some definitions are needed.

19 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

Definition 4.1
Matrices A and B are similar if B = X−1AX for some
non-singular X .

Definition 4.2
If X ∈ Rn×n is nonsingular, then A → X−1AX is called a
similarity transformation of A.

Theorem 3
If matrices A and B are similar, then they have the same
characteristic polynomial, and hence the same eigenvalues.

Proof.
See Lecture Notes.

20 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

The idea is to apply a sequence of similarity transformations
to A that converge to a diagonal matrix, which has the
eigenvalues on its diagonal.

Recall that we are only considering real symmetric matrices.

To achieve this we will rely on the QR factorization again.

Fun Fact: In 2000, the QR Iteration was named one of the
top ten most important algorithms for science and engineering
developed in the 20th century.

21 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

Given A(k−1), we factor it:

A(k−1) = Q(k)R(k), so that(
Q(k)

)T
A(k−1) = R(k).

Defining the next matrix, A(k), as R(k)Q(k), then yields a
similarity transformation:

A(k) := R(k)Q(k)

=
(
Q(k)

)T
A(k−1)Q(k).

Therefore, A(k−1) and A(k) are similar.

22 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

The QR Iteration simply repeats this process as shown in
Algorithm 4.

Algorithm 4 Basic QR Iteration

A(0) = A
for k = 1, 2, . . .

Q(k)R(k) = A(k−1) ▷ Compute QR factors of A(k−1)

A(k) = R(k)Q(k) ▷ “Recombine” in reverse order
end for

23 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

That’s it!

We just compute the QR factorization of A(k−1) = QR and
reverse the order to construct A(k) = RQ.

Eventually A(k) becomes diagonal, with the eigenvalues of A
on the diagonal.

As A(k) converges to eigenvalues on the diagonal (we will
justify why this happens in the next lecture), the product of
the Q(k)’s gives the set of eigenvectors.

That is, denoting

Q(k) = Q(1)Q(2) . . .Q(k),

we have the relation

A(k) =
(
Q(k)

)T
AQ(k).

24 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

Consider the following QR Iteration example with

A =

2 1 1
1 3 1
1 1 4

 = A(0).

One can verify (say using Matlab) that A is SPD.
We can use this Matlab code to compute the first three QR
iterations:

A0 = [2 1 1 ; 1 3 1 ; 1 1 4] ;
[Q1 , R1] = qr (A0) ;
A1 = R1 * Q1 ;
[Q2 , R2] = qr (A1) ;
A2 = R2 * Q2 ;
[Q3 , R3] = qr (A2) ;
A3 = R3 * Q3 ;

25 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

Our results are then

A(1) =

 4.1667 1.0954 −1.2671
1.0954 2.0000 0.0000
−1.2671 0.0000 2.8333

 ,

A(2) =

5.0909 0.1574 0.6232
0.1574 1.8618 −0.5470
0.6232 −0.5470 2.0473

 ,

A(3) =

 5.1987 −0.0759 −0.2073
−0.0759 2.1818 0.4966
−0.2073 0.4966 1.6195

 .

26 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

The true solution for this matrix is
Λ(A) = {5.2143, 2.4608, 1.3249}.
At each iteration above the off-diagonals get closer to zero.

Moreover, the diagonal entires are converging to the true
eigenvalues.

27 / 28

Eigenvectors / Eigenvalues - Iterative Methods - QR
Iteration

Remarks:

1 QR Iteration is mathematically sound, but not good
computationally.

2 Do not implement this algorithm!

3 In the next lecture we will discuss an equivalent algorithm
that is computationally better.

28 / 28

	Inverse Iteration
	Shifting Eigenvalues

	Rayleigh Quotient Iteration
	Computational Complexity
	QR Iteration

