
Lecture 16: Eigenvectors / Eigenvalues -
Practical QR

June 30, 2025

0 / 31

Outline

1 Simultaneous (aka Block Power) Iteration
2 Simultaneous Iteration vs. QR Iteration

1 Convergence of QR Iteration
2 Eigenvalue Problems Recap

3 Reduction to Upper Hessenberg

4 Aside: The QR Iteration’s Inventors

1 / 31

Simultaneous (aka Block Power) Iteration

Motivating Question: How can a simple algorithm possibly
work to give us all eigenvector/eigenvalue pairs?

We first consider the simpler-to-analyze simultaneous
iteration.

Then, we argue that the simultaneous iteration is equivalent
to the QR Iteration.

2 / 31

Simultaneous (aka Block Power) Iteration

Simultaneous iteration (aka block power iteration) is when we
apply power iteration to several vectors at once, while
maintaining linear independence among them.

Start with a set of p orthonormal vectors, v
(0)
1 , v

(0)
2 , . . . , v

(0)
p .

The matrix multiplication Akv
(0)
1 converges to q1 as k → ∞,

where |λ1| is the largest (as seen in Lecture 14).

However, span
{
Akv

(0)
1 , . . . ,Akv

(0)
p

}
also converges to

span {q1, q2, . . . , qp}, where λ1, . . . , λp are the p largest
magnitude eigenvalues.

3 / 31

Simultaneous (aka Block Power) Iteration

In matrix form, denote V (0) =
[
v
(0)
1 v

(0)
2 · · · v

(0)
p

]
and

V (k) = AkV (0).

With the multiplication of AkV (0) all the vectors are
ultimately converging to (multiples of) q1.

This provides a very ill-conditioned basis for the space of
eigenvectors.

The solution is to orthonormalize the vectors at each step
using QR factorization.

Remarks:

1 Our algorithm would fall apart if we ever had

Akv
(0)
ℓ = Akv

(0)
m , where ℓ ̸= m. Why can this not happen?

This would mean that A maps different input vectors to the
same output vector. In other words, A is not of full rank.

4 / 31

Simultaneous (aka Block Power) Iteration

Algorithm 1 gives pseudocode for the simultaneous iteration.

Algorithm 1 Simultaneous Iteration Algorithm

Pick initial Q̂(0) ∈ Rn×p with orthonormal columns
for k = 1, 2, . . .

Z (k) = AQ̂(k−1) ▷ (Block) power iteration step
Z (k) = Q̂(k)R̂(k) ▷ (Reduced) QR factorization

end for

The column spaces of Q̂(k) and Z (k) are the same, and they both
are equal to the column space of AkQ̂(0) (could prove by induction
on k).

5 / 31

Simultaneous (aka Block Power) Iteration

Similar to power iteration, the simultaneous iteration relies on two
assumptions:

1 The leading p + 1 eigenvalues are distinct in absolute value,
i.e.

|λ1| > |λ2| > · · · > |λp| > |λp+1| ≥ |λp+2| ≥ · · · ≥ |λn|, and

2 all of the leading principal submatrices of (Q̂(0))TV (0) are
non-singular (i.e. none of the p-many initial guess vectors
comprising V (0) is orthogonal to the subspace generated by
the first p-many eigenvectors).

6 / 31

Simultaneous (aka Block Power) Iteration
With the above assumptions we have the following theorem that
states that the simultaneous iteration converges linearly.

Theorem 1 (Simultaneous iteration convergence)

Suppose the simultaneous iteration is applied and the preceding
two assumptions are satisfied. Then as k → ∞,∥∥∥q(k)j − (±qj)

∥∥∥ = O(ck), j = 1, 2, · · · , p,

where c = max1≤k≤p

∣∣∣λk+1

λk

∣∣∣ < 1.

Remarks:
1 Why we need ± in front of the true eigenvector, qj , here: We

might converge to the negative of the true eigenvector, which
is fine. In this case, without ±, the convergence would not
work as stated.

2 The ratio
∣∣∣λk+1

λk

∣∣∣ is present for the same reasons as in Power

Iteration.
7 / 31

Simultaneous Iteration vs. QR Iteration

In this section we show that the QR Iteration is identical to
the simultaneous iteration when Q̂(0) = I and p = n.

Since the matrices are square, we will drop the hats on Q̂ and
R̂.

We will use the following notation:

Q(k) for Q’s from QR Iteration,
Q(k) for Q’s from simultaneous iteration, i.e.

Q(k) = Q(1)Q(2) · · ·Q(k), similar to the Householder notation.

8 / 31

Simultaneous Iteration vs. QR Iteration

Consider the QR Iteration and simultaneous iteration algorithms
shown side by side below. We add steps (C) and (D) just for the
upcoming proof of Theorem 2.

Algorithm 2 Simultaneous Itera-
tion

Q(0) = I
for k = 1, 2, . . .

Z (k) = AQ(k−1) ▷ (A)

Z (k) = Q(k)R(k) ▷ (B)

A(k) =
(
Q(k)

)T

AQ(k) ▷ (C)

R(k) = R(k)R(k−1) · · ·R(1) ▷ (D)
end for

Algorithm 3 QR Iteration

A(0) = A
for k = 1, 2, . . .

A(k−1) = Q(k)R(k) ▷ (A)

A(k) = R(k)Q(k) ▷ (B)

Q(k) = Q(1)Q(2) · · ·Q(k) ▷ (C)

R(k) = R(k)R(k−1) · · ·R(1) ▷ (D)
end for

9 / 31

Simultaneous Iteration vs. QR Iteration

Q & A

1 In the Simultaneous Iteration algorithm, should line (A) be
corrected to

Z (k) = A(k−1)Q(k−1)?

A: No. Q(k) changes at ever iteration. The original A is used

to compute Z (k) from Q(k−1). The given notation is correct.

2 Then why do we need A(k) here at all?
A: We don’t need it for the computation itself. We will need
it later, for convergence purposes.

10 / 31

Simultaneous Iteration vs. QR Iteration

Theorem 2
The QR Iteration and simultaneous iteration algorithms generate
identical sequences of matrices, R(k),Q(k),A(k) satisfying

Ak = Q(k)R(k), (QR factorization of kthpower of A)

A(k) =
(
Q(k)

)T
AQ(k). (Similarity transform of A)

Remark: As a consequence, convergence for simultaneous
iteration will work the same as it does for QR iteration.
Proof. We will show

1 Ak = Q(k)R(k), and
2 A(k) = (Q(k))TAQ(k),

separately for both algorithms by induction on k. Note the
distinction that Ak is a matrix exponential (Ak = AA · · ·A︸ ︷︷ ︸

k times

),

whereas, A(k) is a matrix on the kth iteration. 11 / 31

Simultaneous Iteration vs. QR Iteration

The base case k = 0 is trivial.

1 A0 = Q(0) = R(0) = I ,

2 A(0) = A.

Now, assuming the equations hold for k − 1, we will now show
they hold for k.

12 / 31

Simultaneous Iteration vs. QR Iteration

Simultaneous Iteration:

1

Ak

= AAk−1,

= AQ(k−1)R(k−1),

by inductive hyp. (1),Ak−1 = Q(k−1)R(k−1)

= Q(k)R(k)R(k−1),

by alg. (A) and (B),AQ(k−1) = Z (k) = Q(k)R(k)

= Q(k)R(k).

by def. R(k) as in alg. (D)

2 holds directly by (C).

13 / 31

Simultaneous Iteration vs. QR Iteration

QR Iteration:

1

Ak

= AAk−1,

= AQ(k−1)R(k−1),

by inductive hyp. (1)

= Q(k−1)A(k−1)R(k−1),

by inductive hyp. (2), i.e., AQ(k−1) = Q(k−1)A(k−1)

= Q(k−1)
(
Q(k)R(k)

)
R(k−1),

by alg. (A)

= Q(k)R(k).

by def. Q,R(k) in (C), (D)

14 / 31

Simultaneous Iteration vs. QR Iteration

2

A(k)

= R(k)Q(k), by alg. (B)

=
(
Q(k)

)T
A(k−1)Q(k),

by alg. (A), i.e., A(k−1) = Q(k)R(k)

=
(
Q(k)

)T (
Q(k−1)

)T
AQ(k−1)Q(k),

by inductive hyp. (2)

=
(
Q(k)

)T
A
(
Q(k)

)
.

by def. Q(k) in (C)

Therefore the two algorithms yield the same matrix sequences for
R(k),Q(k) and A(k). □

15 / 31

Simultaneous Iteration vs. QR Iteration - Convergence of
QR Iteration

Observe that Ak = Q(k)R(k) implies the QR Iteration is
computing QR factors of Ak , i.e., an orthonormal basis of Ak .

Also, A(k) =
(
Q(k)

)T
AQ(k) implies that diagonal entries of

A(k) are the Rayleigh quotients for column vectors in Q(k).

Recall the Rayleigh quotient is r(x) = xTAx
xT x

.

As the columns of Q(k) approach eigenvectors, these Rayleigh
quotients approach the corresponding eigenvalues.

16 / 31

Simultaneous Iteration vs. QR Iteration - Convergence of
QR Iteration

What about off-diagonal entries of A(k)? That is, with i ̸= j

A
(k)
ij =

(
qi

(k)
)T

Aqj
(k),

where qi
(k), qj

(k) are columns of Q(k).

As qi
(k), qj

(k) converge to (orthonormal) eigenvectors, qi , qj ,
then

A
(k)
ij ≈ qTi Aqj = qi (λqj) ≈ 0, for i ̸= j .

Hence, A(k) converges to a diagonal matrix.

17 / 31

Simultaneous Iteration vs. QR Iteration - Convergence of
QR Iteration

Theorem 3 (QR Iteration convergence)

Assume |λ1| > |λ2| > · · · |λn| and the corresponding eigenvector
matrix Q has nonsingular leading principal submatrices. Then, as
k → ∞, A(k) converges linearly to diag(λ1, λ2, . . . , λn) with
constant

C = max
k

∣∣∣∣λk+1

λk

∣∣∣∣ .
The matrix Q(k) also converges linearly to Q with the same
constant C.

For more details about the QR Iteration see Lecture 28 of
Trefethen & Bau.

18 / 31

Simultaneous Iteration vs. QR Iteration - Eigenvalue
Problems Recap

Here we give a recap of what we have discussed so far for
eigenvalue problems.

We used the Rayleigh quotient to recover an estimated
eigenvalue, given an estimated eigenvector.

We saw the power iteration, inverse iteration, shifted inverse
iteration, and Rayleigh quotient iteration, as methods to
recover individual eigenvectors.

We introduced two schemes to find multiple
eigenvectors/eigenvalues at once:

QR Iteration,
Simultaneous (block power) iteration.

19 / 31

Simultaneous Iteration vs. QR Iteration - Eigenvalue
Problems Recap

Dense QR factorization at every single step of the QR
Iteration algorithm is costly.

This takes approximately 4
3n

3 flops.

In the next section we look at a way to make the QR Iteration
more practical (efficient).

The idea is to first pre-process A (with another similarity
transform) to increase sparsity!

If A is non-symmetric, one can reduce to upper Hessenberg
form.

Upper Hessenberg matrices only require → O(n2) flops for
QR factorization.

If A is symmetric we can reduce to a tridiagonal matrix, which
requires only → O(n) flops for QR factorization.

Exercise: derive efficient QR factorizations of UH and
tridiagonal matrices.

20 / 31

Reduction to Upper Hessenberg

In the general case A can be non-symmetric.

One might ask why would we reduce to just upper Hessenberg
form and not triangular?

Wouldn’t having a triangular matrix be even cheaper for QR
factorization?

Let’s consider this by attempting to reduce to triangular
instead.

21 / 31

Reduction to Upper Hessenberg - First attempt

Try to reduce A to triangular via usual Householder. Apply
Householder Q1 to A.

A =

× × × ×
× × × ×
× × × ×
× × × ×


 QT

1 ×
−−−→

× × × ×
0 × × ×
0 × × ×
0 × × ×


 = QT

1 A

22 / 31

Reduction to Upper Hessenberg - First attempt

But to maintain similarity, also need to multiply by Q1 on the right

× × × ×
0 × × ×
0 × × ×
0 × × ×


 ×Q1−−−→

× × × ×
× × × ×
× × × ×
× × × ×




So with Householder reflections our newly created zeros are just
destroyed again!

23 / 31

Reduction to Upper Hessenberg - Second attempt

We will be a little less ambitious and choose a different QT
1 that

leaves the whole row untouched. Then, when we multiply by Q1

on the right, it won’t destroy our progress (i.e., it will leave the 1st

column alone).

24 / 31

Reduction to Upper Hessenberg - Second attempt

To achieve this, the first Q matrix will have a form like:

This leaves the desired first row/column alone after computing
QT

1 AQ1, preserving the new zeros.

25 / 31

Reduction to Upper Hessenberg - Second attempt

We apply the same idea to subsequent columns (similar to
Householder QR).

This gives Q = Q1Q2 · · ·Qn−2 and QTAQ = an upper Hessenberg
matrix. Algorithm 4 gives the pseudocode for the reduction to
Hessenberg form.

26 / 31

Reduction to Upper Hessenberg - Second attempt

Algorithm 4 Reduction to Hessenberg

for k = 1, 2, . . . , n − 2
x = A(k + 1 : n, k)
vk = sign(x1)||x ||e1 + x ▷ Householder reflection
vk = vk

∥vk∥ ▷ Normalize

for j = k , k + 1, . . . , n ▷ Left multiply, QT
k ×

A(k + 1 : n, j) = A(k + 1 : n, j)− 2vk
(
vTk A(k + 1 : n, j)

)
end for
for j = 1, 2, . . . , n ▷ Right multiply, ×Qk

A(i , k + 1 : n) = A(i , k + 1 : n)− 2 (A(i , k + 1 : n)vk) v
T
k

end for
end for

The cost is flops(Reduction to Hessenberg) ≈ 10
3 n

3. However, this
reduction to Hessenberg is done only once, before QR Iteration.

27 / 31

Reduction to Upper Hessenberg - Symmetric Matrices:
Two-Phase Process

For the symmetric case, when A = AT , then

(QTAQ)T = QTAQ,

is also symmetric. A matrix that is both symmetric and upper
Hessenberg is necessarily tridiagonal. Reduction will produce zeros
above the diagonal as well. Sparsity and symmetry together reduce
the cost of reduction from 10

3 n
3 to 4

3n
3. The idea then to make the

QR Iteration more practical is a two-phased process:

1 Reduce A to tridiagonal via Householder operations (direct).

2 Perform QR Iteration until convergence (iterative).

28 / 31

Reduction to Upper Hessenberg - Symmetric Matrices:
Two-Phase Process


× × × ×
× × × ×
× × × ×
× × × ×

 (A)

Phase 1−−−−−−→
Reduction


× ×
× × ×

× × ×
× ×

 (T = QTAQ)

Phase 2−−−−−−−→
QR Iteration


×

×
×

×

 (D)

29 / 31

Reduction to Upper Hessenberg - Symmetric Matrices:
Two-Phase Process

QR Iteration can be additionally improved by:

Applying shifting to achieve cubic convergence rates (similar
to Rayleigh Quotient Iteration).

Breaking A(k) into sub-matrices once an eigenvalue is found
(“deflation”).

30 / 31

Aside: The QR Iteration’s Inventors
John Francis published the (implicit, shifted) QR algorithm in
1961.

It was named one of the ten “most important” algorithms of
the 20th century.

John Francis left the field of numerical analysis that same
year.

He was tracked down in 2007, and had no idea the huge
influence of his work! Concurrently, the algorithm was
invented by Vera Kublanovskaya, who continued to work in
numerical analysis until passing away in 2012.

John Francis Vera Kublanovskaya

31 / 31

	Simultaneous (aka Block Power) Iteration
	Simultaneous Iteration vs. QR Iteration
	Convergence of QR Iteration
	Eigenvalue Problems Recap

	Reduction to Upper Hessenberg
	First attempt:
	Second Attempt:
	Symmetric Matrices: Two-Phase Process

	Aside: The QR Iteration's Inventors

