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Introduction

In this lecture we will take a look at the application of
eigenvalue problems in image segmentation. First we will
given some definitions and discuss the graph Laplacian. Then
we will make use of the graph Laplacian in spectral clustering.

Motivation: Divide and conquer, say for image de-noising.

Spectral clustering is a family of techniques that use the
eigendecomposition of a matrix to identify clusters/groups of
“similar” or related elements in a dataset. See for example the
figure below.
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Introduction

Segmentation tasks (i.e., identifying distinct parts of an image or
shape) can rely on clustering.

Image segmentation tries to group similar and nearby pixels.

Shape segmentation tries to identify distinct parts of an
object.
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Definitions
Consider an undirected graph G = (V ,E ), where V = {v1, . . . , vn}
is a set of vertices and E = {eij} is a set of edges. That is, the
edge between vertices vi and vj is denoted eij .

Definition 1.1
The graph G is a weighted graph if each edge eij has an
associated weight wij ≥ 0. We denote by W = wij the weighted
adjacency matrix of the graph.

Figure: Example graph G (V ,E ) (left) and the same graph with weighted
edges (right).

Figure 1 gives an example of an undirected graph and a weighted
version of the graph.
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Definitions

What is the weight matrix W for this graph in Figure 1
(right)?

The matrix W has zeros in entries (i , j) that do not have
edges joining vi to vj .

There are nonzeros equal to the weights for any (i , j) that
does have an edge, thus

W =



0 1 1 2 0 0
1 0 0 3 0 0
1 0 0 4 0 2
2 3 4 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0

 .

This W is different from our earlier adjacency matrix, where
diagonal entries could be non-zero.
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Definitions

The definition of the vertex degree must now be altered to include
the weights of edges.

Definition 1.2
The degree of a vertex vi is given by

di =
n∑

j=1

wij ,

where D = diag(di ) is the degree matrix.

This definition of degree is different from our earlier definition of
degree, from matrix re-ordering.
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Definitions

For the example in Figure 1 what is the degree of v4?

It is just the sum of the fourth column of W , so
deg(v4) = d4 = 11.

You can do this for all the vertices and construct the degree
matrix as

D =



4
4

7
11

2
2

 .
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Definitions
The indicator vector is useful when working with a subset of the
graph.

Definition 1.3
Given a subset A ⊂ V , we define the indicator vector
1A =

[
x1 · · · xn

]T
such that

xi =

{
1 if vi ∈ A,

0 if vi /∈ A.

Definition 1.4
Given two subsets A,B, we define W (A,B) to be the total weight
of all the edges starting in A and ending in B, i.e.,

W (A,B) =
∑

i∈A,j∈B
wij .
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Definitions

For example, consider the two subsets of vertices, A = {v1, v2, v6}
and B = {v3, v4, v5}, in Figure 1. What are the indicator vectors
1A and 1B? They are given by

1A =



1
1
0
0
0
1

 and 1B =



0
0
1
1
1
0

 .

What is W (A,B) =
∑

i∈A,j∈B wij for this example? We have

W (A,B) = w13+w14+w15+w23+w24+w25+w63+w64+w65 = 8.
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Definitions

We will consider two ways to measure the size of a subset A ⊂ V .

Definition 1.5
This size of a subset is can be defined in terms of the number of
vertices

|A| = number of vertices in A,

or the degrees of the vertices

vol(A) =
∑
i∈A

di = sum of (weighted) degrees of vertices in A.

For example, consider again the graph in Figure 1 and the two
subsets of vertices A = {v1, v2, v6} and B = {v3, v4, v5}. We have
that |A| = 3 and |B| = 3. Furthermore, we have that vol(A) = 10
and vol(B) = 20.
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Graph Laplacians

The graph Laplacian is a generalization of our finite difference
discrete Laplacian operator to arbitrary graphs. We will consider
two variants: the unnormalized graph Laplacian

L = D −W ,

and the normalized graph Laplacian

L̂ = I − D− 1
2WD− 1

2 .
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Graph Laplacians

For example, with the graph in Figure 1 we have

L = D −W

=



4
4

7
11

2
2

−



0 1 1 2 0 0
1 0 0 3 0 0
1 0 0 4 0 2
2 3 4 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0



=



4 −1 −1 −2 0 0
−1 4 0 −3 0 0
−1 0 7 −4 0 −2
−2 −3 −4 11 −2 0
0 0 0 −2 2 0
0 0 −2 0 0 2

 .
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Graph Laplacians

Note that the general matrix pattern is similar to the finite
difference discrete Laplacian.

The diagonal entries are all positive, while off-diagonals are
negative.

Moreover, the sum of every row in L is zero.
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Unnormalized Graph Laplacian
The following theorem gives some properties of the unnormalized
graph Laplacian.

Theorem 1
The unnormalized graph Laplacian L satisfies:

1 For any vector x ,

xTLx =
1

2

n∑
i ,j=1

wij(xi − xj)
2,

2 L is symmetric and positive semi-definite,

3 L has n non-negative eigenvalues
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn,

4 The smallest eigenvalue of L is 0, with corresponding
eigenvector being the constant one vector 1 = [1, 1, . . . , 1]T .

Proof.
See Lecture Notes.
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Normalized Graph Laplacian
The next theorem gives properties of the normalized graph
Laplacian.

Theorem 2
The normalized graph Laplacian L̂ satisfies:

1 For any vector x ,

xT L̂x =
1

2

n∑
i ,j=1

wij

(
xi√
di

−
xj√
dj

)2

,

2 L̂ is symmetric and positive semi-definite,

3 L̂ has n non-negative eigenvalues
0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn,

4 The smallest eigenvalue of L̂ is 0 and the corresponding

eigenvector is D
1
21.

Proof.
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Normalized Graph Laplacian
The multiplicity k of the eigenvalue 0 for both L and L̂
equals the number of connected components A1, . . . ,Ak in
the graph.

For example, the L and Λ for the following graph are

L =


1 −1
−1 1

2 −2
−2 2

 , and Λ = {0, 0, 2, 4}.
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Normalized Graph Laplacian

Q & A

1 What do we do if we have an isolated vertex, whose degree

will be 0, making it impossible to compute D− 1
2 later on?

A: Segmentation is not needed for an isolated vertex: an
isolated vertex is already segmented.
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Normalized Graph Laplacian

A final fact compares the graph Laplacian with the finite
difference Laplacian.

Suppose the graph is a 2D grid (e.g., representing an image)
and we use weights wij = 1.

Then, the unnormalized graph Laplacian L is (a scalar
multiple of) the usual 2D finite difference Laplacian.

We will now explore how graph Laplacians are used for
clustering data.

Consider the problem of finding minimally weighted cuts that
divide the graph into parts.

This generally leads to NP-hard problems, so we “relax” the
problem, yielding our spectral clustering algorithms.
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Normalized Graph Laplacian

The problem statement is as follows. Given a graph G with the
weight matrix W , find a partition of G such that the edges
between the partitions have very low weight. See the figure below
for an example of what we want with k = 2 subsets.
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Clustering using Graph Laplacians

One approach is called MinCut, which finds a partition A1, . . . ,Ak

that minimizes

cut(A1, . . . ,Ak) =
1

2

k∑
i=1

W (Ai ,Ai ).

The notation Ai denotes the complement of Ai (i.e., vertices not in
Ai ).
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Clustering using Graph Laplacians
The basic MinCut is fairly easy to solve, but it does not give
useful results. The minimal solution often separates out individual
vertices, rather than finding large subsets of nodes with low weight
between them. For example, we would prefer the graph cut on the
left below, but MinCut will normally compute the right cut.

Better cuts in the graph would encourage the size of partitions to
be larger, or more “balanced”. Therefore, we should divide weights
by the size of the subset (|Ai | or vol(Ai )). This motivates the
following definitions.
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Clustering using Graph Laplacians

Definition 3.1
The RatioCut and Ncut (aka normalized cut) minimize the
following, respectively:

RatioCut(A1, . . . ,Ak) =
1

2

k∑
i=1

W (Ai ,Ai )

|Ai |
=

k∑
i=1

cut(Ai ,Ai )

|Ai |
,

and

Ncut(A1, . . . ,Ak) =
1

2

k∑
i=1

W (Ai ,Ai )

vol(Ai )
=

k∑
i=1

cut(Ai ,Ai )

vol(Ai )
.

Recall that |Ai | is the number of vertices in the set and vol(Ai ) is
the sum of degrees of vertices in the set.
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Clustering using Graph Laplacians - Relaxation of RatioCut
via Graph Laplacian

Sadly, minimizing for the RatioCut and Ncut is NP-hard.

However, we can relax the minimization problem once we
rewrite it in terms of the graph Laplacian.

First, we consider the case of partitioning into 2 subsets, A
and A, subject to

min
A

RatioCut(A,A).

We can rewrite this in terms of the graph Laplacian as follows.

23 / 43



Clustering using Graph Laplacians - Relaxation of RatioCut
via Graph Laplacian

Given a subset A ⊂ V , define x =
[
x1 · · · xn

]T
, where

xi =


+

√
|A|
|A| if vi ∈ A,

−
√

|A|
|A| if vi ∈ A.

We can show the following three results to rewrite the
minimization problem:

1 xTLx = |V | · RatioCut(A,A),

2

n∑
i=1

xi = 0, i.e., xT1 = 0,

3 ∥x∥2 = n.

Proof.
See Lecture Notes.
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Clustering using Graph Laplacians - Relaxation of RatioCut
via Graph Laplacian

So the minimization problem becomes

min
A⊂V

xTLx ,

subject to x ⊥ 1 and ∥x∥ =
√
n.

But this minimization problem is still discrete and NP-hard! The
vertices are strictly only in A or A. However, we can relax the
problem by allowing x to consist of arbitrary real numbers

min
x∈Rn

xTLx ,

subject to x ⊥ 1 and ∥x∥ =
√
n.

The solution to this relaxed minimization problem turns out to be
the eigenvector, x , of L corresponding to the 2nd smallest
eigenvalue (aka “Fielder vector”).
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Clustering using Graph Laplacians - Relaxation of RatioCut
via Graph Laplacian

We can recover the separation into 2 clusters by thresholding x

vi ∈ A if xi ≥ 0,

vi ∈ A if xi < 0,

where xi are the components of the Fielder vector.
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Clustering using Graph Laplacians - Relaxation of Ncut via
Graph Laplacian

Applying the same idea for Ncut, but with a different measure of
set size, we start from

min
A

Ncut(A,A).

We can rewrite this using the normalized graph Laplacian. Given a
subset A ⊂ V , define x = {x1, . . . , xn} where

xi =


+

√
vol(A)
vol(A) if vi ∈ A,

−
√

vol(A)

vol(A)
if vi ∈ A.
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Clustering using Graph Laplacians - Relaxation of Ncut via
Graph Laplacian

We can then show that

1 xTLx = vol(V ) · Ncut(A,A),

2

n∑
i=1

dixi = 0, i.e., (Dx)T1 = 0,

3 xTDx = vol(V ).

So the minimization problem becomes

min
A⊂V

xTLx , subject to Dx ⊥ 1 and xTDx = vol(V ).
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Clustering using Graph Laplacians - Relaxation of Ncut via
Graph Laplacian

Again, this is still discrete and NP-hard to minimize. However,
when we relax the minimization problem we instead solve

min
x∈Rn

xTLx , subject to Dx ⊥ 1 and xTDx = vol(V ).

Defining y = D
1
2 x , the relaxed problem becomes

min
y∈Rn

yT L̂y , subject to y ⊥ D
1
21 and ∥y∥2 = vol(V ).

(Note: We use the same sign convention for the co-ordinates yj of
y that we used for the components xj of x earlier.)

The solution again becomes the Fielder vector, but for L̂ instead.
So we threshold yi at zero in order to determine the two clusters.
Notation:

|V | is un-normed.

vol(V ) is normed, using the weights.
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K-means Clustering

The above works for 2 clusters, but what about k > 2
clusters?

For more clusters we can not simply threshold to zero, since
we have more than 2 groups.

Instead, we will make use of k-means clustering on data
drawn from several eigenvectors.

First, let us consider the basic k-means algorithm.

Given a set of n data points/vectors { pj }, find the partition
of the points A1, . . . ,Ak such that each point is assigned to
the set whose mean µi is closest to it.

K-means aims to solve the problem

min
Ai

k∑
i=1

∑
pj∈Ai

∥pj − µi∥2.
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K-means Clustering
There are two factors at play in this minimization problem:

assignment of points to sets,

distance of each point to the mean of its set.

Consider the example in the figure below. Given blue (2D) data
points try to find k = 3 (how to choose k : later) means and an
assignment of points to the corresponding 3 clusters.

We would expect something like the red points as the means of the
3 clusters. The data points would belong to the cluster whose
mean is closest to them (as shown with blue, green, and red
encompassing circles).
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K-means Clustering

The k-means algorithm performs the following steps:

1 Start with some initial guesses for the k means {µi},
2 Assign each point p to the cluster Ai if p is closer to µi than

any of the other k means,

3 Re-compute new means {µi} for all partitions {Ai},
4 Repeat.
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K-means Clustering

There is a nice interactive demo of k-means available online. Please
visit http://alekseynp.com/viz/k-means.html to try it out!
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Spectral Clustering: Cuts and K-means Together
If k-means can do clustering why do we not just apply it to our
problem? Spectral clustering allows for:

More general weights/measures of similarity (i.e., not just
Euclidean distance),

Non-convex clusters.

We can apply k-means for the k = 2 case instead of thresholding
at zero, to assign points into the two clusters. Specifically,
considering the entries of the eigenvector {xi} as n data points in
R, then apply k-means with k = 2. The advantage of this is that it
can be extended to k > 2 clusters.
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Spectral Clustering: Cuts and K-means Together
Intuitively, spectral clustering consists of the following (also
depicted in Figure 2):

1 Interpret our input data as a graph and choose weights W to
indicate our notions of similarity,

2 Use the eigenvectors of the graph Laplacian to convert
vertices into data points in Rk ,

3 Apply k-means to cluster the points in Euclidean space (Rk).

Figure: Steps of spectral clustering.
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Spectral Clustering: Cuts and K-means Together

In more detail, the unnormalized spectral clustering algorithm
is:

1 Construct the unnormalized graph Laplacian L,

2 Compute the first k eigenvectors q1, . . . , qk of L
(corresponding to smallest magnitude eigenvalues),

3 Consider Qk = [q1, . . . , qk ]. Let pi ∈ Rk be the vector given
by row i of Qk (i.e., pi = Qk(i , :) in Matlab notation),

4 For the resulting n points {pi} in Rk , apply k-means to
cluster them into k groups {A1, . . . ,Ak}.

The normalized version of the spectral clustering algorithm
requires two changes.

1 First, we use L̂ instead of L.

2 Second, instead of pi , we use normalized rows for points,
pni = pi

∥pi∥ .
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Spectral Clustering: Cuts and K-means Together

Why We Choose the pi In Rk :

To create k clusters, we select the first k eigenvectors.

We will be working in the k-dimensional subspace of Rn

spanned by these k eigenvectors.

It turns out to be more convenient to simply work in Rk itself.

Why We Choose the Smallest Magnitude Eigenvalues, Not
the Largest:

Idea: The unnormalized graph Laplacian, L = D −W , is
already an “error”.

For segmentation purposes, we want the smallest “error”
possible.
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Spectral Clustering: Cuts and K-means Together -
Choosing Weights W

The choice of the weight matrix W is meant to measure
similarity between vertices of the graph.

This means W is problem dependent.

Usually, we want non-zero weights only between a small set of
local graph neighbours, (e.g., within graph distance 1 or 2).

The more neighbours we include creates more non-zero entries
in W .

If we include fewer neighbours we create a sparser graph
Laplacian (having a lower cost of eigendecomposition).
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Spectral Clustering: Cuts and K-means Together -
Choosing Weights W

For an image segmentation task we view pixels as graph vertices.
We connect adjacent or nearby pixels with graph edges which form
our graph. For example,

including the 4 adjacent pixels
gives W with non-zero structure
similar to usual finite difference
Laplacian,

including the 4 diagonal neighbours
also would give 8 neighbours, so W
has at most 8 non-zeros per row.
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Spectral Clustering: Cuts and K-means Together -
Choosing Weights W

We will set wij to measure similarity between pixels i and j using
two factors:

1 Euclidean distance between pixels i and j ,

2 intensity difference between pixels i and j .

For i ̸= j we will use

wij =

e
−

∥xi−xj∥
2

σ2
dist

e
−

|Ii−Ij |
2

σ2
int

 ,

where pixel i is at position xi with intensity Ii and likewise for pixel
j . We define positions as xi = (r , c) if pixel i is at row r , column
c. The parameters σ2

dist and σ2
int can be varied to adjust the

relative importance of the terms.
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Other Applications

Spectral approaches find many other applications in the field of
graphics processing.
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Other Applications - Geometric Mesh Processing

The following are visualizations of several eigenvectors associated
to Laplacians defined on 3D triangle meshes.

source: https://www.cs.sfu.ca/~haoz/pubs/zhang_
eg07star_spectral.pdf.
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Other Applications - Motion Analysis
Extracting dominant motion “modes” in solids or fluids for analysis
and efficient simulation.

−→ increasing eigenvalue magnitude

The above images show the basis of divergent-free fields that are
eigenfunctions of the vector Laplacian. Basis fields have
correspondence with spatial scales of vorticity. Their coefficients
form a discrete spectrum. Another example of motion analysis
involves vibrating membranes, see https://en.wikipedia.org/
wiki/Vibrations_of_a_circular_membrane.
To learn more, check out “A Tutorial on Spectral Clustering”, by
Ulrike von Luxburg, http://www.tml.cs.uni-tuebingen.de/
team/luxburg/publications/Luxburg07_tutorial.pdf.
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