Lecture 18: Introduction to Singular Value
Decompositions

July 14, 2025
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Introduction

@ This lecture introduces the final decomposition called the
singular value decomposition.

@ Lecture 4 of Trefethen & Bau provides more detail, see
https://people.maths.ox.ac.uk/trefethen/text.html.
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https://people.maths.ox.ac.uk/trefethen/text.html

Geometric Motivation: AV = UX

@ The image of the unit hypersphere S in R” under any m x n
matrix transformation A is a hyperellipse in R™.

@ Figure 1 shows the geometric interpretation of this
transformation in R2.

@ Both the hypersphere and hyperellipse are in R? in this

example.
@ However, the dimensions can be any n and m, not necessarily
n=m.
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Geometric Motivation: AV = UX

@ The factors by which the hypersphere is scaled in each of the
principal semi-axes of the hyperellipse are called the singular
values of A.

@ The n singular values are denoted ;.

@ By convention we will order them such that

@ Notice that all the singular values are non-negative.

4/44



Geometric Motivation: AV = UX

@ The n left singular vectors, u;, of A are the unit vectors in
the directions of the principal semi-axes of the ellipse.

@ The n right singular vectors, v;, are the unit vectors in S
such that
AV,' = oju;.

@ In other words, v;'s are the pre-image of u;'s under the
transformation A.
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Geometric Motivation: AV = UX - Matrix Form

@ We can write the above equation
Av,=oju;, fori=1,...,n,

in matrix form to define the reduced SVD.

o Pictorially, we have

A Vi W Vi
L
A, mxn V, nxn
- o1
= up U up
L On
0, mxn )”:7 nxn
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Geometric Motivation: AV = UX - Matrix Form

e The matrix 3 is a diagonal matrix, with the singular values of
A on its diagonal.

o The matrices U and V have orthonormal columns (each is the
matrix of a rotation, hence it is orthogonal).

@ Note that the hat notation indicates reduced or
economy-sized SVD

AV = 03

e Since V is orthogonal, if we multiply by VT on the right, we
can equivalently write it as

A=0xvT.
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Geometric Motivation: AV = UX - Matrix Form

Remarks:

@ We call the v;s right singular vectors, and the u;s left
singular vectors, because of their positions in the defining

equation
A= U s VvT.
~— =~
left right
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Geometric Motivation: AV = UX - Matrix Form

The figure below shows this reduced SVD of A pictorially.
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Geometric Motivation: AV = UX - Matrix Form

@ The full SVD is constructed in a similar way to how the full
QR factorization was created from the reduced QR
factorization.

@ We can define a full SVD by adding m — n more orthonormal
columns to U to give a square, orthogonal U.

@ Then we must also add extra empty rows to 3 to construct .

e That is, replace U — U and ¥ — ¥ as shown in the figure
below.
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Geometric Motivation: AV = UX - Matrix Form

@ Every matrix A € R™*" has a singular value decomposition.

o We will prove this in the next lecture.
e Furthermore, the singular values are uniquely determined.

@ Also, if Ais square and o; are distinct, then the left and right
singular vectors are unique (up to signs).
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Geometric Motivation: AV = UX - Comparison with
Eigendecomposition

@ The SVD is similar to the eigendecomposition we have seen
previously.

o Consider the SVD vs the eigendecomposition

A=UZV"T vs A=XAX"1L
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Geometric Motivation: AV = UX - Comparison with
Eigendecomposition

@ Both decompositions act to diagonalize a matrix.

@ The SVD uses two bases: U and V/, the left and right singular
vectors.

@ The eigendecomposition uses only one basis, the set of
eigenvectors.

@ The SVD always uses orthonormal vectors.

@ The eigenvectors are not orthonormal in general (though for
the real symmetric matrices we considered, they are).

@ Finally, not all matrices have an eigendecomposition, but all
matrices have an SVD, even rectangular matrices.
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Properties of the SVD

@ Next we will discuss some properties of the SVD.

@ For the following theorems let A € R™*" and r = # of
non-zero singular values.

Theorem 1

rank(A) = r.

Proof.

Rank of a diagonal matrix is the number of non-zero diagonal
entries. U and V are both of full rank, by definition. Hence
rank(A) = rank(X) = r. O
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Properties of the SVD

Theorem 2

range(A)
null(A)

span{u, up, . .

span{vy41,...

T

aVn}-
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Properties of the SVD

Proof.
@ We will not give a full proof of this theorem.

@ Instead for the second property, we show that a vector in

span{Vy41,..., Vp} is in null(A) (in other words,
span{v,i1,...,Vs} C null(A)).
o Let x € span{v,y1,...,Vv,} be arbitrary.
@ Then
n n
X = Z w;V; and so Ax = Z w;i(Av;).
i=r+1 i=r+1
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Properties of the SVD

@ Observe that

Av, = UZV'y,
= L/E:eh

with the last equality holding because V is an orthogonal
matrix.

@ But Xe; =0 for i € [r + 1, n] since the corresponding entries
of X are zero.

@ Therefore Ax =0, so x € null(A).
U
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Properties of the SVD

Lemma 3
IFA=UZVT, then ATA=VvX2VvT,

Proof.
We have
;
AT A - (UZVT) usvT
= vetuTuzv’
=/
= vy’

~—~—

Y is diagonal, thus symmetric
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Properties of the SVD

Lemma 4
Let A be a real m x n matrix, with m > n. Then ||AT|| = ||A|.

Proof.
See Lecture Notes. O
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Properties of the SVD

Theorem 5
lA|l2 = o1, the largest singular value of A.

Proof:
@ Write an SVD of A:
A=0xVvT.

o | claim that |U]o = ||V |2 = 1.

o Since V is orthogonal, therefore 1 = |[V|2 = |V |l2.
—

Lemma 4
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Properties of the SVD

@ Since U has orthonormal columns, therefore

070 = 1
107002 = |1l
10712102 = 1
H0”2H0||2 = 1, by Lemma 4
o =1
U2 = 1,since |[|[U|2 > 0.

This establishes the claim.

By the claim, for any vector x, ||Ax|l2 = ||Zx]||2 .

By the shape of ¥, the unit vector x” which maximizes || Xx||2
. T

|se1:[1 o --- O} )

@ Hence we have

1Al = [|AX"l|l2 = [[£X]l2 = [Zer]l2 = o1.
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Properties of the SVD
Theorem 6
A2 = Amax (ATA) .

Remark: Theorem 6 holds, even if A is not square.
Proof.

1Al = o
Theorem 5
A5 = ot
— )\max(z2)
S . (ATA) . (1)
~~~
See below
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Properties of the SVD

@ Recall that, by Lemma 3, we have ATA = VX2V T,

@ This is a similarity transformation, hence the eigenvalues of
AT A equal the eigenvalues of ¥2.

@ This establishes the equality on line (1).
|
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Properties of the SVD

Lemma 7
Keeping all of the above notation, AT U,,_, = 0.
Proof.
A = UfVT, so that
AT = VfUT, SO we can compute
—~—
Y is diagonal
AT Oy = (vi AT) O
== VA (UTOm_n>
0
= 0’

where UT Up—p, = 0 holds because Up,_,'s columns are orthogonal

to U's columns. O
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Properties of the SVD

Notation:
2
|AllE
2
- Z ajj
ij

= tr (ATA) :

See Lecture Notes

where ||A|| is the Frobenius norm.

Recall that .
tr(A) = Z aiis

i=1

the sum of the diagonal entries of A.
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Properties of the SVD

Theorem 8

|All, = o1 and ||A||f = \/m

Proof. We have Amax(ATA) = Anax(E2) = 02 = ||A|l, = o1.
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Properties of the SVD

Now for the Frobenius norm we have

g,
ATA=VX2VT

Al
tr(AT A)
tr (vz2vT)

tr ((VZ)(VZ)T) ,

tr (( VZ)T(VZ)) , trace identity tr(XTY) = tr(XYT),
tr (z VTVZ) ,

tr(X?), by the orthogonality of V,

2 2
oy +---+o,.
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Properties of the SVD

Theorem 9

Non-zero singular values of A are the square roots of non-zero
eigenvalues of AAT or AT A.

Proof.
AT A and AAT are similar to Y2.

@ We showed above (in Lemma 3) that ATA= V¥2V7T,
@ Similarly,

AAT = UZVT(UZVT)T
I

- UZWTUT

= UX2UT, since ¥ is diagonal.
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Properties of the SVD

Recall Notation: A(A) is the set of eigenvalues of A.
New Notation: o(A) is the set of singular values of A.
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Properties of the SVD

Theorem 10

If A= AT, then o(A) = {|\| : A € A(A)}. In particular, if A is
SPD then o(A) = A(A).

Proof.

Real symmetric matrices have orthogonal eigenvectors and real
eigenvalues, so

A= QAQT, with Q orthogonal.
Construct the SVD as
A= Q |\ sign(A)QT,
M~ N ——
U y vT

where |A| and sign(A) are diagonal matrices with entries |\;| and
sign(j), respectively. If desired one can also insert orthogonal
permutation matrices to sort the o's. O
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Properties of the SVD

Theorem 11
The condition number for A € R™" is kp(A) = 2L

Proof.
By the definition of x and by Theorem 8, we have

k2(A) = |All2|A 2 = o1 || A2

Since A= UX VT, therefore A=l = VX 1UT is the SVD of A~ 1.

Therefore
_ 1
A7 = =
On
o1
= r2(A) = —.
K2(A) -
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Computing the SVD - 1st Attempt

@ We first consider a naive approach to computing the SVD.

@ Since A= UZVT we showed above (in Lemma 3) that
ATA = VX2VT, which is an eigendecomposition of AT Al

Corollary 12
The eigenvalues of AT A are squares of the singular values of A.

Corollary 13

The eigenvectors of AT A are the right singular vectors of A.
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Computing the SVD - 1st Attempt

This suggests a (naive) method for computing the SVD:

@ Form AT A (it's symmetric and positive semi-definite, so its
eigenvalues are real and non-negative),

@ Compute eigendecomposition of ATA= VAVT,
01
© Compute ¥ = , where

On
A1
a,-:\//\>,-and/\: ,
An

@ Solve UX = AV for orthogonal U (e.g., by QR factorization,
as described on the next slide).
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Computing the SVD - 1st Attempt

@ Recovering U from the above algorithm involves (note, we
already have X, A, V):
o Multiply AV to get A’,
o QR factor A" = QR,
e Identify U =Q,X =R.

@ This ensures that U = Q is properly orthogonal.

@ Conveniently, R = ¥ will be diagonal.
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Computing the SVD - 1st Attempt

@ Unfortunately, this naive method is inaccurate; the error

satisfies ,
- ellA
be—au =0 <” ” )
Ok

which can be very bad for small singular values!

e (Conceptually, this is similar to how solving least squares by
normal equations used AT A.

o Effectively this “squares the condition number”, therefore
making it less accurate than QR factorization).

@ In the next lecture we will discuss a better alternative for
computing the SVD.
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Computing the SVD - 1st Attempt - Example

_1

2
0
0

O W o

We can find the SVD of A = [ } in a few different ways.
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Computing the SVD - 1st Attempt - Example

Method 1:
T 0 3 0
A'A = [% 00

Therefore \;1 = 9, A\ = %, vi = [é] , Vo = [(1)] since Q@ = /.
%, S0

Therefore 01 = 3,00 =

o

i:F

Ni— O

| vl
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Computing the SVD - 1st Attempt - Example
Then find U from UX = AV

Hence

[0 0
3uy = |3]| therefore uy = |1

0 0

1
1 2 -1
§U2 = 0 | therefore upo = | 0
| 0 0
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Computing the SVD - 1st Attempt - Example

Method 2: Use AAT instead, same idea.
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Computing the SVD - 1st Attempt - Example

Method 3: Let's exploit intuition about SVD and the simple
structure of this matrix.

0
By inspection, range(A) = span{uy, u2} for u; = |1| and
0

1

up = | 0], vy and wp are orthonormal. The lengths of the principal
0

axes are 3 and %
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Computing the SVD - 1st Attempt - Example
Then by the definition of SVD

AV1 = o0o1lU1

0o -1 0
3 0 Vi = 311
0 O 0
=> Vv = [1

O_

AV2 = Oo2Up
HERRE
3 0w = 5 0
0 0 0
= V) = [ 0 }

-1

The details of solving both systems are on the following two slides.
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~ 1 17
0 —31]3
3 010
0 0 |0]
_3 0 0_ R1<—R2
~ 0 _% % R2<—R1
0 0 |0]
_1 0 0 R1<—%R1
~ 0 ]. —1 R2<——2R2
0 0| 0
0
=V = 1
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Computing the SVD - 1st Attempt - Example

] [é _01] i.e. same solution, up to signs in
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