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Introduction

This lecture introduces the final decomposition called the
singular value decomposition.

Lecture 4 of Trefethen & Bau provides more detail, see
https://people.maths.ox.ac.uk/trefethen/text.html.
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Geometric Motivation: AV = UΣ
The image of the unit hypersphere S in Rn under any m × n
matrix transformation A is a hyperellipse in Rm.
Figure 1 shows the geometric interpretation of this
transformation in R2.
Both the hypersphere and hyperellipse are in R2 in this
example.
However, the dimensions can be any n and m, not necessarily
n = m.

Figure: Transformation of unit hypersphere S (left) by matrix A into
hyperellipse AS (right).
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Geometric Motivation: AV = UΣ

The factors by which the hypersphere is scaled in each of the
principal semi-axes of the hyperellipse are called the singular
values of A.

The n singular values are denoted σi .

By convention we will order them such that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Notice that all the singular values are non-negative.
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Geometric Motivation: AV = UΣ

The n left singular vectors, ui , of A are the unit vectors in
the directions of the principal semi-axes of the ellipse.

The n right singular vectors, vi , are the unit vectors in S
such that

Avi = σiui .

In other words, vi ’s are the pre-image of ui ’s under the
transformation A.
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Geometric Motivation: AV = UΣ - Matrix Form

We can write the above equation

Avi = σiui , for i = 1, . . . , n,

in matrix form to define the reduced SVD.

Pictorially, we have A


︸ ︷︷ ︸
A, m×n

v1 v2 · · · vn


︸ ︷︷ ︸

V , n×n

=

u1 u2 · · · un


︸ ︷︷ ︸

Û, m×n

σ1 . . .

σn


︸ ︷︷ ︸

Σ̂, n×n
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Geometric Motivation: AV = UΣ - Matrix Form

The matrix Σ̂ is a diagonal matrix, with the singular values of
A on its diagonal.

The matrices Û and V have orthonormal columns (each is the
matrix of a rotation, hence it is orthogonal).

Note that the hat notation indicates reduced or
economy-sized SVD

AV = ÛΣ̂.

Since V is orthogonal, if we multiply by V T on the right, we
can equivalently write it as

A = ÛΣ̂V T .
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Geometric Motivation: AV = UΣ - Matrix Form

Remarks:

1 We call the vi s right singular vectors, and the ui s left
singular vectors, because of their positions in the defining
equation

A = Û︸︷︷︸
left

Σ̂ V T︸︷︷︸
right

.
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Geometric Motivation: AV = UΣ - Matrix Form

The figure below shows this reduced SVD of A pictorially.
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Geometric Motivation: AV = UΣ - Matrix Form

The full SVD is constructed in a similar way to how the full
QR factorization was created from the reduced QR
factorization.

We can define a full SVD by adding m − n more orthonormal
columns to Û to give a square, orthogonal U.

Then we must also add extra empty rows to Σ̂ to construct Σ.

That is, replace Û → U and Σ̂ → Σ as shown in the figure
below.
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Geometric Motivation: AV = UΣ - Matrix Form

Every matrix A ∈ Rm×n has a singular value decomposition.

We will prove this in the next lecture.
Furthermore, the singular values are uniquely determined.

Also, if A is square and σj are distinct, then the left and right
singular vectors are unique (up to signs).
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Geometric Motivation: AV = UΣ - Comparison with
Eigendecomposition

The SVD is similar to the eigendecomposition we have seen
previously.

Consider the SVD vs the eigendecomposition

A = UΣV T vs A = XΛX−1.
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Geometric Motivation: AV = UΣ - Comparison with
Eigendecomposition

Both decompositions act to diagonalize a matrix.

The SVD uses two bases: U and V , the left and right singular
vectors.

The eigendecomposition uses only one basis, the set of
eigenvectors.

The SVD always uses orthonormal vectors.

The eigenvectors are not orthonormal in general (though for
the real symmetric matrices we considered, they are).

Finally, not all matrices have an eigendecomposition, but all
matrices have an SVD, even rectangular matrices.
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Properties of the SVD

Next we will discuss some properties of the SVD.

For the following theorems let A ∈ Rm×n and r = # of
non-zero singular values.

Theorem 1

rank(A) = r .

Proof.
Rank of a diagonal matrix is the number of non-zero diagonal
entries. U and V are both of full rank, by definition. Hence
rank(A) = rank(Σ) = r .
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Properties of the SVD

Theorem 2

range(A) = span{u1, u2, . . . , ur},
null(A) = span{vr+1, . . . , vn}.

15 / 44



Properties of the SVD

Proof.

We will not give a full proof of this theorem.

Instead for the second property, we show that a vector in
span{vr+1, . . . , vn} is in null(A) (in other words,
span{vr+1, . . . , vn} ⊆ null(A)).

Let x ∈ span{vr+1, . . . , vn} be arbitrary.

Then

x =
n∑

i=r+1

wivi and so Ax =
n∑

i=r+1

wi (Avi ).
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Properties of the SVD

Observe that

Avi = UΣV T vi

= UΣei ,

with the last equality holding because V is an orthogonal
matrix.

But Σei = 0 for i ∈ [r + 1, n] since the corresponding entries
of Σ are zero.

Therefore Ax = 0, so x ∈ null(A).

□
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Properties of the SVD

Lemma 3
If A = UΣV T , then ATA = VΣ2V T .

Proof.
We have

ATA =
(
UΣV T

)T
UΣV T

= VΣT UTU︸ ︷︷ ︸
=I

ΣV T

=︸︷︷︸
Σ is diagonal, thus symmetric

VΣ2V T .
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Properties of the SVD

Lemma 4
Let A be a real m × n matrix, with m ≥ n. Then ∥AT∥ = ∥A∥.

Proof.
See Lecture Notes.
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Properties of the SVD

Theorem 5
∥A∥2 = σ1, the largest singular value of A.

Proof:

Write an SVD of A:
A = ÛΣ̂V T .

I claim that ∥Û∥2 = ∥V T∥2 = 1.

Since V is orthogonal, therefore 1 = ∥V ∥2 =︸︷︷︸
Lemma 4

∥V T∥2.
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Properties of the SVD
Since Û has orthonormal columns, therefore

ÛT Û = I

∥ÛT Û∥2 = ∥I∥2
∥ÛT∥2∥Û∥2 = 1

∥Û∥2∥Û∥2 = 1, by Lemma 4

∥Û∥22 = 1

∥Û∥2 = 1, since ∥Û∥2 ≥ 0.

This establishes the claim.

By the claim, for any vector x , ∥Ax∥2 = ∥Σx∥2 .

By the shape of Σ, the unit vector x ′ which maximizes ∥Σx∥2
is e1 =

[
1 0 · · · 0

]T
.

Hence we have

∥A∥2 = ∥Ax ′∥2 = ∥Σx ′∥2 = ∥Σe1∥2 = σ1.

□
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Properties of the SVD

Theorem 6

∥A∥22 = λmax

(
ATA

)
.

Remark: Theorem 6 holds, even if A is not square.
Proof.

∥A∥2 =︸︷︷︸
Theorem 5

σ1

∥A∥22 = σ2
1

= λmax(Σ
2)

=︸︷︷︸
See below

λmax

(
ATA

)
. (1)
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Properties of the SVD

Recall that, by Lemma 3, we have ATA = VΣ2V T .

This is a similarity transformation, hence the eigenvalues of
ATA equal the eigenvalues of Σ2.

This establishes the equality on line (1).

□
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Properties of the SVD

Lemma 7
Keeping all of the above notation, AT Ûm−n = 0.

Proof.

A = ÛΣ̂V T , so that

AT =︸︷︷︸
Σ is diagonal

V Σ̂ÛT , so we can compute

AT Ûm−n =
(
V Σ̂ÛT

)
Ûm−n

= V Σ̂
(
ÛT Ûm−n

)
︸ ︷︷ ︸

=0

= 0,

where ÛT Ûm−n = 0 holds because Ûm−n’s columns are orthogonal
to Û’s columns.
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Properties of the SVD

Notation:

∥A∥2F
=

∑
i ,j

a2ij

=︸︷︷︸
See Lecture Notes

tr
(
ATA

)
,

where ∥A∥F is the Frobenius norm.
Recall that

tr(A) =
n∑

i=1

aii ,

the sum of the diagonal entries of A.
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Properties of the SVD

Theorem 8
∥A∥2 = σ1 and ∥A∥F =

√
σ2
1 + · · ·+ σ2

r .

Proof. We have λmax(A
TA) = λmax(Σ

2) = σ2
1 ⇒ ∥A∥2 = σ1.
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Properties of the SVD

Now for the Frobenius norm we have

∥A∥2F
= tr(ATA)

=︸︷︷︸
ATA=VΣ2VT

tr
(
VΣ2V T

)
= tr

(
(VΣ)(VΣ)T

)
,

= tr
(
(VΣ)T (VΣ)

)
, trace identity tr(XTY ) = tr(XY T ),

= tr
(
ΣV TVΣ

)
,

= tr(Σ2), by the orthogonality of V ,

= σ2
1 + · · ·+ σ2

r .

□
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Properties of the SVD

Theorem 9
Non-zero singular values of A are the square roots of non-zero
eigenvalues of AAT or ATA.

Proof.
ATA and AAT are similar to Σ2.

1 We showed above (in Lemma 3) that ATA = VΣ2V T .

2 Similarly,

AAT = UΣV T
(
UΣV T

)T
= UΣ

���
��*

I(
V TV

)
ΣTUT

= UΣ2UT , since Σ is diagonal.
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Properties of the SVD

Recall Notation: Λ(A) is the set of eigenvalues of A.
New Notation: σ(A) is the set of singular values of A.
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Properties of the SVD

Theorem 10
If A = AT , then σ(A) = {|λ| : λ ∈ Λ(A)}. In particular, if A is
SPD then σ(A) = Λ(A).

Proof.
Real symmetric matrices have orthogonal eigenvectors and real
eigenvalues, so

A = QΛQT , with Q orthogonal.

Construct the SVD as

A = Q︸︷︷︸
U

|Λ|︸︷︷︸
Σ

sign(Λ)QT︸ ︷︷ ︸
VT

,

where |Λ| and sign(Λ) are diagonal matrices with entries |λj | and
sign(λj), respectively. If desired one can also insert orthogonal
permutation matrices to sort the σ’s.
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Properties of the SVD

Theorem 11
The condition number for A ∈ Rn×n is κ2(A) =

σ1
σn
.

Proof.
By the definition of κ and by Theorem 8, we have

κ2(A) = ∥A∥2∥A−1∥2 = σ1∥A−1∥2.

Since A = UΣV T , therefore A−1 = VΣ−1UT is the SVD of A−1.
Therefore

∥A−1∥2 =
1

σn

⇒ κ2(A) =
σ1
σn

.
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Computing the SVD - 1st Attempt

We first consider a näıve approach to computing the SVD.

Since A = UΣV T we showed above (in Lemma 3) that
ATA = VΣ2V T , which is an eigendecomposition of ATA!

Corollary 12

The eigenvalues of ATA are squares of the singular values of A.

Corollary 13

The eigenvectors of ATA are the right singular vectors of A.
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Computing the SVD - 1st Attempt

This suggests a (näıve) method for computing the SVD:

1 Form ATA (it’s symmetric and positive semi-definite, so its
eigenvalues are real and non-negative),

2 Compute eigendecomposition of ATA = VΛV T ,

3 Compute Σ =

σ1 . . .

σn

, where
σi =

√
λi and Λ =

λ1

. . .

λn

 ,

4 Solve UΣ = AV for orthogonal U (e.g., by QR factorization,
as described on the next slide).
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Computing the SVD - 1st Attempt

Recovering U from the above algorithm involves (note, we
already have Σ,A,V ):

Multiply AV to get A′,
QR factor A′ = QR,
Identify U = Q,Σ = R.

This ensures that U = Q is properly orthogonal.

Conveniently, R = Σ will be diagonal.
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Computing the SVD - 1st Attempt

Unfortunately, this näıve method is inaccurate; the error
satisfies

|σ̃k − σk | = O

(
ϵ ∥A∥2

σk

)
,

which can be very bad for small singular values!

(Conceptually, this is similar to how solving least squares by
normal equations used ATA.

Effectively this “squares the condition number”, therefore
making it less accurate than QR factorization).

In the next lecture we will discuss a better alternative for
computing the SVD.
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Computing the SVD - 1st Attempt - Example

We can find the SVD of A =

0 −1
2

3 0
0 0

 in a few different ways.
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Computing the SVD - 1st Attempt - Example
Method 1:

ATA =

[
0 3 0
−1

2 0 0

]0 −1
2

3 0
0 0


=

[
9 0
0 1

4

]
= VΣ2V T

= QΛQT

Therefore λ1 = 9, λ2 =
1
4 , v1 =

[
1
0

]
, v2 =

[
0
1

]
since Q = I .

Therefore σ1 = 3, σ2 =
1
2 , so

Σ̂ =

[
3 0
0 1

2

]
and V =

[
1 0
0 1

]
.
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Computing the SVD - 1st Attempt - Example
Then find U from UΣ = AV

[
u1 u2

] [3 0
0 1

2

]
=

0 −1
2

3 0
0 0

[1 0
0 1

]
=

0 −1
2

3 0
0 0


Hence

3u1 =

03
0

 therefore u1 =

01
0


1

2
u2 =

−1
2
0
0

 therefore u2 =

−1
0
0



Thus Û =

0 −1
1 0
0 0

 .
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Computing the SVD - 1st Attempt - Example

Method 2: Use AAT instead, same idea.
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Computing the SVD - 1st Attempt - Example

Method 3: Let’s exploit intuition about SVD and the simple
structure of this matrix.

By inspection, range(A) = span{u1, u2} for u1 =

01
0

 and

u2 =

10
0

, u1 and u2 are orthonormal. The lengths of the principal

axes are 3 and 1
2 .
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Computing the SVD - 1st Attempt - Example

Then by the definition of SVD

Av1 = σ1u10 −1
2

3 0
0 0

 v1 = 3

01
0


⇒ v1 =

[
1
0

]
Av2 = σ2u20 −1

2
3 0
0 0

 v2 =
1

2

10
0


⇒ v2 =

[
0
−1

]
The details of solving both systems are on the following two slides.
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0 −1
2 0

3 0 3
0 0 0


∼

3 0 3 R1←R2

0 −1
2 0 R2←R1

0 0 0


∼

1 0 1 R1← 1
3
R1

0 1 0 R2←−2R2

0 0 0


⇒ v1 =

[
1
0

]
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0 −1
2

1
2

3 0 0
0 0 0


∼

3 0 0 R1←R2

0 −1
2

1
2 R2←R1

0 0 0


∼

1 0 0 R1← 1
3
R1

0 1 −1 R2←−2R2

0 0 0


⇒ v2 =

[
0
−1

]

43 / 44



Computing the SVD - 1st Attempt - Example

So A =

0 1
1 0
0 0

[3 0
0 1

2

] [
1 0
0 −1

]
i.e. same solution, up to signs in

U and V .
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