Lecture 18: Introduction to Singular Value Decompositions

July 14, 2025

Outline

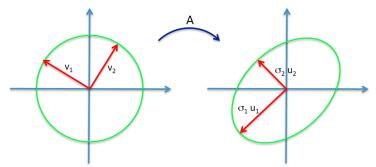
- **1** Geometric Motivation: $AV = U\Sigma$
 - Matrix Form
 - 2 Comparison with Eigendecomposition
- Properties of the SVD
- Omputing the SVD 1st Attempt
 - Example

Introduction

- This lecture introduces the final decomposition called the singular value decomposition.
- Lecture 4 of Trefethen & Bau provides more detail, see
 https://people.maths.ox.ac.uk/trefethen/text.html.

Geometric Motivation: $AV = U\Sigma$

- The **image** of the unit hypersphere S in \mathbb{R}^n under any $m \times n$ matrix transformation A is a **hyperellipse** in \mathbb{R}^m .
- Figure 1 shows the geometric interpretation of this transformation in \mathbb{R}^2 .
- Both the hypersphere and hyperellipse are in \mathbb{R}^2 in this example.
- However, the dimensions can be any n and m, not necessarily n=m.



3 / 44

Geometric Motivation: $AV = U\Sigma$

- The factors by which the hypersphere is scaled in each of the principal semi-axes of the hyperellipse are called the singular values of A.
- The *n* singular values are denoted σ_i .
- By convention we will order them such that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$
.

Notice that all the singular values are non-negative.

Geometric Motivation: $AV = U\Sigma$

- The *n* left singular vectors, u_i , of A are the unit vectors in the directions of the principal semi-axes of the ellipse.
- The n right singular vectors, v_i, are the unit vectors in S such that

$$Av_i = \sigma_i u_i$$
.

• In other words, v_i 's are the **pre-image** of u_i 's under the transformation A.

We can write the above equation

$$Av_i = \sigma_i u_i$$
, for $i = 1, \ldots, n$,

in matrix form to define the reduced SVD.

Pictorially, we have

$$\underbrace{\begin{bmatrix} A & & \\ & V_1 & V_2 & \cdots & V_n \end{bmatrix}}_{A, m \times n} \\
= \underbrace{\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}}_{\hat{U}, m \times n} \underbrace{\begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \hat{\Sigma}, n \times n \end{bmatrix}}_{\hat{\Sigma}, n \times n}$$

- The matrix $\hat{\Sigma}$ is a diagonal matrix, with the singular values of A on its diagonal.
- The matrices \hat{U} and V have orthonormal columns (each is the matrix of a rotation, hence it is orthogonal).
- Note that the hat notation indicates reduced or economy-sized SVD

$$AV = \hat{U}\hat{\Sigma}.$$

• Since V is orthogonal, if we multiply by V^T on the right, we can equivalently write it as

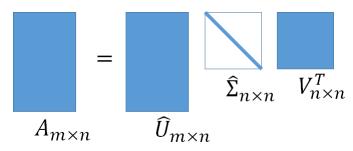
$$A = \hat{U}\hat{\Sigma}V^T.$$

Remarks:

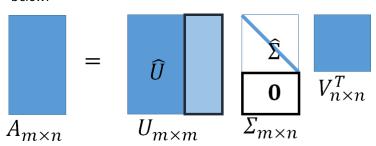
• We call the v_i s **right singular vectors**, and the u_i s **left singular vectors**, because of their positions in the defining equation

$$A = \underbrace{\hat{U}}_{left} \hat{\Sigma} \underbrace{V^T}_{right}.$$

The figure below shows this reduced SVD of A pictorially.



- The full SVD is constructed in a similar way to how the full QR factorization was created from the reduced QR factorization.
- We can define a full SVD by adding m-n more orthonormal columns to \hat{U} to give a square, **orthogonal** U.
- Then we must also add extra empty rows to $\hat{\Sigma}$ to construct Σ .
- That is, replace $\hat{U} \to U$ and $\hat{\Sigma} \to \Sigma$ as shown in the figure below.



- Every matrix $A \in \mathbb{R}^{m \times n}$ has a singular value decomposition.
 - We will prove this in the next lecture.
 - Furthermore, the singular values are uniquely determined.
- Also, if A is square and σ_j are distinct, then the left and right singular vectors are unique (up to signs).

Geometric Motivation: $AV = U\Sigma$ - Comparison with Eigendecomposition

- The SVD is similar to the eigendecomposition we have seen previously.
- Consider the SVD vs the eigendecomposition

$$A = U\Sigma V^T$$
 vs $A = X\Lambda X^{-1}$.

Geometric Motivation: $AV = U\Sigma$ - Comparison with Eigendecomposition

- Both decompositions act to diagonalize a matrix.
- The SVD uses two bases: U and V, the left and right singular vectors.
- The eigendecomposition uses only one basis, the set of eigenvectors.
- The SVD always uses orthonormal vectors.
- The eigenvectors are not orthonormal in general (though for the real symmetric matrices we considered, they are).
- Finally, not all matrices have an eigendecomposition, but all matrices have an SVD, even rectangular matrices.

- Next we will discuss some properties of the SVD.
- For the following theorems let $A \in \mathbb{R}^{m \times n}$ and r = # of non-zero singular values.

Theorem 1

$$rank(A) = r$$
.

Proof.

Rank of a diagonal matrix is the number of non-zero diagonal entries. U and V are both of full rank, by definition. Hence $rank(A) = rank(\Sigma) = r$.

Theorem 2

```
range(A) = span\{u_1, u_2, \dots, u_r\},\ null(A) = span\{v_{r+1}, \dots, v_n\}.
```

Proof.

- We will not give a full proof of this theorem.
- Instead for the second property, we show that a vector in $span\{v_{r+1}, \ldots, v_n\}$ is in null(A) (in other words, $span\{v_{r+1}, \ldots, v_n\} \subseteq null(A)$).
- Let $x \in \text{span}\{v_{r+1}, \dots, v_n\}$ be arbitrary.
- Then

$$x = \sum_{i=r+1}^{n} w_i v_i$$
 and so $Ax = \sum_{i=r+1}^{n} w_i (Av_i)$.

Observe that

$$Av_i = U\Sigma V^T v_i = U\Sigma e_i,$$

with the last equality holding because V is an orthogonal matrix.

- But $\Sigma e_i = 0$ for $i \in [r+1, n]$ since the corresponding entries of Σ are zero.
- Therefore Ax = 0, so $x \in null(A)$.

Lemma 3

If
$$A = U\Sigma V^T$$
, then $A^TA = V\Sigma^2 V^T$.

Proof.

We have

$$A^{T}A = \left(U\Sigma V^{T}\right)^{T}U\Sigma V^{T}$$

$$= V\Sigma^{T}\underbrace{U^{T}U}_{=I}\Sigma V^{T}$$

$$\underbrace{V\Sigma^{2}V^{T}}_{=I}.$$

$$\Sigma \text{ is diagonal, thus symmetric}$$

Lemma 4

Let A be a real $m \times n$ matrix, with $m \ge n$. Then $||A^T|| = ||A||$.

Proof.

See Lecture Notes.

Theorem 5

 $||A||_2 = \sigma_1$, the largest singular value of A.

Proof:

Write an SVD of A:

$$A = \hat{U}\hat{\Sigma}V^T$$
.

- I claim that $\|\hat{U}\|_2 = \|V^T\|_2 = 1$.
- Since V is orthogonal, therefore $1 = \|V\|_2 = \|V^T\|_2$.

ullet Since \hat{U} has orthonormal columns, therefore

$$\hat{U}^{T} \hat{U} = I
\|\hat{U}^{T} \hat{U}\|_{2} = \|I\|_{2}
\|\hat{U}^{T}\|_{2} \|\hat{U}\|_{2} = 1
\|\hat{U}\|_{2} \|\hat{U}\|_{2} = 1, \text{ by Lemma 4}
\|\hat{U}\|_{2}^{2} = 1
\|\hat{U}\|_{2} = 1, \text{ since } \|\hat{U}\|_{2} \ge 0.$$

- This establishes the claim.
- By the claim, for any vector x, $||Ax||_2 = ||\Sigma x||_2$.
- By the shape of Σ , the unit vector x' which maximizes $\|\Sigma x\|_2$ is $e_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$.
- Hence we have

$$||A||_2 = ||Ax'||_2 = ||\Sigma x'||_2 = ||\Sigma e_1||_2 = \sigma_1.$$

Theorem 6

$$||A||_2^2 = \lambda_{max} \left(A^T A \right).$$

Remark: Theorem 6 holds, even if *A* is not square. **Proof.**

$$||A||_{2} = \sigma_{1}$$

$$||A||_{2}^{2} = \sigma_{1}^{2}$$

$$= \lambda_{\max}(\Sigma^{2})$$

$$= \lambda_{\max}(A^{T}A). \qquad (1)$$

- Recall that, by Lemma 3, we have $A^T A = V \Sigma^2 V^T$.
- This is a similarity transformation, hence the eigenvalues of A^TA equal the eigenvalues of Σ^2 .
- This establishes the equality on line (1).

Lemma 7

Keeping all of the above notation, $A^T \hat{U}_{m-n} = 0$.

Proof.

$$A = \hat{U}\hat{\Sigma}V^{T}, \text{ so that}$$

$$A^{T} = V\hat{\Sigma}\hat{U}^{T}, \text{ so we can compute}$$

$$A^{T}\hat{U}_{m-n} = (V\hat{\Sigma}\hat{U}^{T})\hat{U}_{m-n}$$

$$= V\hat{\Sigma}\underbrace{(\hat{U}^{T}\hat{U}_{m-n})}_{=0}$$

$$= 0,$$

where $\hat{U}^T \hat{U}_{m-n} = 0$ holds because \hat{U}_{m-n} 's columns are orthogonal to \hat{U} 's columns.

Notation:

$$= \sum_{i,j} a_{ij}^{2}$$

$$= \operatorname{tr}\left(A^{T}A\right),$$
See Lecture Notes

where $||A||_F$ is the **Frobenius norm**. Recall that

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii},$$

the sum of the diagonal entries of A.

$$\|A\|_2 = \sigma_1$$
 and $\|A\|_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$.

Proof. We have $\lambda_{\max}(A^TA) = \lambda_{\max}(\Sigma^2) = \sigma_1^2 \Rightarrow ||A||_2 = \sigma_1$.

Now for the Frobenius norm we have

$$||A||_F^2$$

$$= \operatorname{tr}(A^T A)$$

$$= \operatorname{tr}\left(V\Sigma^2 V^T\right)$$

$$= \operatorname{tr}\left((V\Sigma)(V\Sigma)^T\right),$$

$$= \operatorname{tr}\left((V\Sigma)^T(V\Sigma)\right), \text{ trace identity } \operatorname{tr}(X^T Y) = \operatorname{tr}(XY^T),$$

$$= \operatorname{tr}\left(\Sigma V^T V\Sigma\right),$$

$$= \operatorname{tr}(\Sigma^2), \text{ by the orthogonality of } V,$$

$$= \sigma_1^2 + \dots + \sigma_r^2.$$

Theorem 9

Non-zero singular values of A are the square roots of non-zero eigenvalues of AA^T or A^TA .

Proof.

 A^TA and AA^T are similar to Σ^2 .

- We showed above (in Lemma 3) that $A^TA = V\Sigma^2V^T$.
- Similarly,

$$AA^{T} = U\Sigma V^{T} \left(U\Sigma V^{T}\right)^{T}$$

$$= U\Sigma \left(V^{T}V\right)^{T}\Sigma^{T}U^{T}$$

$$= U\Sigma^{2}U^{T}, \text{ since } \Sigma \text{ is diagonal.}$$

Recall Notation: $\Lambda(A)$ is the set of eigenvalues of A. **New Notation:** $\sigma(A)$ is the set of singular values of A.

Theorem 10

If $A = A^T$, then $\sigma(A) = \{|\lambda| : \lambda \in \Lambda(A)\}$. In particular, if A is SPD then $\sigma(A) = \Lambda(A)$.

Proof.

Real symmetric matrices have orthogonal eigenvectors and real eigenvalues, so

$$A = Q\Lambda Q^T$$
, with Q orthogonal.

Construct the SVD as

$$A = \underbrace{Q}_{U} \underbrace{|\Lambda|}_{\Sigma} \underbrace{\operatorname{sign}(\Lambda) Q^{T}}_{V^{T}},$$

where $|\Lambda|$ and sign(Λ) are diagonal matrices with entries $|\lambda_j|$ and sign(λ_j), respectively. If desired one can also insert orthogonal permutation matrices to sort the σ 's.

Theorem 11

The condition number for $A \in \mathbb{R}^{n \times n}$ is $\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$.

Proof.

By the definition of κ and by Theorem 8, we have

$$\kappa_2(A) = ||A||_2 ||A^{-1}||_2 = \sigma_1 ||A^{-1}||_2.$$

Since $A = U\Sigma V^T$, therefore $A^{-1} = V\Sigma^{-1}U^T$ is the SVD of A^{-1} . Therefore

$$||A^{-1}||_2 = \frac{1}{\sigma_n}$$

$$\Rightarrow \kappa_2(A) = \frac{\sigma_1}{\sigma_n}.$$

- We first consider a naïve approach to computing the SVD.
- Since $A = U\Sigma V^T$ we showed above (in Lemma 3) that $A^TA = V\Sigma^2 V^T$, which is an eigendecomposition of A^TA !

Corollary 12

The eigenvalues of A^TA are squares of the singular values of A.

Corollary 13

The eigenvectors of A^TA are the **right singular** vectors of A.

This suggests a (naïve) method for computing the SVD:

- Form A^TA (it's symmetric and positive semi-definite, so its eigenvalues are real and non-negative),
- **②** Compute eigendecomposition of $A^T A = V \Lambda V^T$,

• Compute
$$\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \end{bmatrix}$$
, where $\sigma_i = \sqrt{\lambda_i}$ and $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$,

• Solve $U\Sigma = AV$ for orthogonal U (e.g., by QR factorization, as described on the next slide).

- Recovering U from the above algorithm involves (note, we already have Σ, A, V):
 - Multiply AV to get A',
 - QR factor A' = QR,
 - Identify $U = Q, \Sigma = R$.
- This ensures that U = Q is properly orthogonal.
- Conveniently, $R = \Sigma$ will be diagonal.

Unfortunately, this naïve method is inaccurate; the error satisfies

$$|\tilde{\sigma}_k - \sigma_k| = O\left(\frac{\epsilon \|A\|^2}{\sigma_k}\right),$$

which can be very bad for small singular values!

- (**Conceptually**, this is similar to how solving least squares by normal equations used A^TA .
- Effectively this "squares the condition number", therefore making it less accurate than QR factorization).
- In the next lecture we will discuss a better alternative for computing the SVD.

We can find the SVD of
$$A = \begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix}$$
 in a few different ways.

Method 1:

$$A^{T}A = \begin{bmatrix} 0 & 3 & 0 \\ -\frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 9 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$
$$= V\Sigma^{2}V^{T}$$
$$= Q\Lambda Q^{T}$$

Therefore
$$\lambda_1=9, \lambda_2=\frac{1}{4}, v_1=\begin{bmatrix}1\\0\end{bmatrix}, v_2=\begin{bmatrix}0\\1\end{bmatrix}$$
 since $Q=I$. Therefore $\sigma_1=3, \sigma_2=\frac{1}{2}$, so

$$\hat{\Sigma} = \begin{bmatrix} 3 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$
 and $V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Then find *U* from $U\Sigma = AV$

$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence

$$3u_1 = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}$$
 therefore $u_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$\frac{1}{2}u_2 = \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$$
 therefore $u_2 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$

Thus
$$\hat{U} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$
.

Method 2: Use AA^T instead, same idea.

Method 3: Let's exploit intuition about SVD and the simple structure of this matrix.

By inspection,
$$\operatorname{range}(A) = \operatorname{span}\{u_1, u_2\}$$
 for $u_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and

$$u_2=\begin{bmatrix}1\\0\\0\end{bmatrix}$$
, u_1 and u_2 are orthonormal. The lengths of the principal axes are 3 and $\frac{1}{2}$.

Then by the definition of SVD

$$Av_{1} = \sigma_{1}u_{1}$$

$$\begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix} v_{1} = 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow v_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$Av_{2} = \sigma_{2}u_{2}$$

$$\begin{bmatrix} 0 & -\frac{1}{2} \\ 3 & 0 \\ 0 & 0 \end{bmatrix} v_{2} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow v_{2} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

The details of solving both systems are on the following two slides.

$$\begin{bmatrix}
0 & -\frac{1}{2} & 0 \\
3 & 0 & 3 \\
0 & 0 & 0
\end{bmatrix}$$

$$\sim \begin{bmatrix}
3 & 0 & 3 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$R_1 \leftarrow R_2$$

$$R_2 \leftarrow R_1$$

$$\sim \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\Rightarrow v_1 = \begin{bmatrix}
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 3 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} R_1 \leftarrow R_2$$

$$\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} R_1 \leftarrow \frac{1}{3} R_1$$

$$\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} R_2 \leftarrow -2R_2$$

$$\Rightarrow v_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

So
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 i.e. same solution, up to signs in U and V .