
Lecture 19: SVD Versus Eigendecomposition

July 23, 2025
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Introduction

Recall that SVD is the decomposition of any matrix A into
UΣV T , where Σ is diagonal with non-negative entries, and
U,V are orthogonal.

In the previous lecture we seen that the SVD can be found
from the eigendecomposition of ATA or AAT .

In this lecture we will see a more stable method using the
eigendecomposition of

H =

[
0 AT

A 0

]
.

We will also prove the existence of the SVD, discuss stability,
and discuss how to compute the SVD efficiently.
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Alternative Formulation

Assume A is square, i.e. A ∈ Rn×n.

Consider the 2n × 2n symmetric matrix

H =

[
0 AT

A 0

]
.

By computing the eigendecomposition of H = QΛQT we can
extract the singular values and vectors.

We have that σA = |λH |, and U,V can be recovered from the
eigenvectors.

Let us see why all of this holds.
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Alternative Formulation

Write A = UΣV T , then we have AV = UΣ because V is
orthogonal.

Likewise,

AT = (UΣV T )T

= VΣTUT

= VΣUT , because Σ is diagonal.

Thus ATU = VΣ because U is orthogonal.
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Alternative Formulation
Hence we have[

0 AT

A 0

]
︸ ︷︷ ︸

H

[
V V
U −U

]
︸ ︷︷ ︸

Q

=

[
ATU −ATU
AV AV

]

=

[
VΣ −VΣ
UΣ UΣ

]
=

[
V V
U −U

]
︸ ︷︷ ︸

Q

[
Σ 0
0 −Σ

]
︸ ︷︷ ︸

Λ

Therefore, HQ = QΛ, equivalently H = QΛQT , gives an
eigendecomposition of H.

Note, we need to normalize the columns of Q, to make Q an
orthogonal matrix.

See the next slide for the explanation of why the columns of
Q constructed as above are orthogonal.
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Alternative Formulation

Explanation Of Why Q’s Columns Are Orthogonal, Given
U,V Are Orthogonal Matrices

Let 1 ≤ i < j ≤ n be arbitrary, with j ̸= n + i .

Then we have [
vi
ui

]T [
vj
±uj

]
=

[
vTi uTi

] [ vj
±uj

]
= vTi vj ± uTi uj

=︸︷︷︸
U,V are orthogonal, j ̸=n+i

0± 0

= 0.
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Alternative Formulation
Explanation Of Why Q’s Columns Are Orthogonal, Given
U,V Are Orthogonal Matrices

The only case not covered by the above argument is
1 ≤ i ≤ n, with j = n + i .
Then we get

vTi vj ± uTi uj

= vTi vi −︸︷︷︸
2nd ui comes from −U block

uTi ui

= 1− 1

= 0.
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Alternative Formulation
To summarize, we have the following steps:

1 Form H =

[
0 AT

A 0

]
,

2 Compute eigendecomposition HQ = QΛ,

3 Set σA = |λH |,
4 Extract U,V from Q (normalizing for orthogonality).

A Few Words About The Non-Square Case

Let A be m × n, where m > n.

Then a reduced SVD for A has the form

A︸︷︷︸
m×n

= Û︸︷︷︸
m×n

Σ︸︷︷︸
n×n

V T︸︷︷︸
n×n

.

Then defining H as above makes H (m + n)× (m + n).

Since H is still square, therefore the same setup works from
this point onwards.
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Alternative Formulation

This algorithm is preferable with respect to stability (see the
more detailed section below).

The error in the singular values satisfies |σ̃k − σk | = O (ϵ∥A∥),
compared to O

(
ϵ∥A∥2/σk

)
for the algorithm using ATA.

This approach can be extended to non-square matrices too.

Practical algorithms are based on this premise, but without
explicitly forming the (large) matrix H.
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Alternative Formulation - Alternate Approach Example

A =

[
0 −1

2
3 0

]
Therefore

H =

[
0 AT

A 0

]
=


0 0 0 3
0 0 −1

2 0
0 −1

2 0 0
3 0 0 0
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Alternative Formulation - Alternate Approach Example

MATLAB eigendecomposition gives

Q =
1√
2


1 0 0 1
0 1 1 0
0 1 −1 0
−1 0 0 1

 ,Λ =


−3

−1
2

1

2

3


Order may be different (of cols) so read off desired cols, for
positive Σ entries.
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Alternative Formulation - Alternate Approach Example

One can verify that the following eigendecomposition (permuting
the columns of the previous one, to change the order of the
eigenvalues) is also correct, and perfectly fits the shape required of
our setup:

Q =
1√
2


1 0 1 0
0 1 0 1
0 −1 0 1
1 0 −1 0

 ,Λ =


3

1

2
−3

−1
2


Even better, this modified eigendecomposition fits in perfectly with
the remainder of the computation.
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Alternative Formulation - Alternate Approach Example

Therefore

σ1 = 3

v1 =

[
1
0

]
u1 =

[
0
1

]
σ2 =

1

2

v2 =

[
0
1

]
u2 =

[
−1
0

]
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Alternative Formulation - Alternate Approach Example

So

U =

[
0 −1
1 0

]
V =

[
1 0
0 1

]
Σ =

[
3 0
0 1

2

]
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Alternative Formulation - Alternate Approach Example

Check:

UΣV T =

[
0 −1
1 0

] [
3 0
0 1

2

] [
1 0
0 1

]
=

[
0 −1

2
3 0

]
= A
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Proof of Existence of SVD
We claimed in Lecture 18 that every matrix A ∈ Rm×n has a
singular value decomposition.

We will now prove this result.

Proof:

Let A be an arbitrary m × n matrix.

The proof is by induction on n ≥ 1.

Recall that the induced matrix norm is defined as

∥A∥ := max
∥x∥=1

∥Ax∥ .

Let σ1 = ∥A∥2.
Let v1 have ∥v1∥2 = 1 and a direction such that
∥Av1∥2 = ∥A∥2 = σ1.

Also, let u1 =
Av1
σ1

, so that Av1 = σ1u1.

Note, σ1 > 0, so that there is no possibility of a “dvide by
zero” problem when defining u1 this way.
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Proof of Existence of SVD

Consider any extensions of vectors u1 ∈ Rm and v1 ∈ Rn to
orthonormal bases U1 and V1:

U1 =
[
u1| · · ·

]
is m ×m,

V1 =
[
v1| · · ·

]
is n × n.

Then we have

UT
1 AV1 =︸︷︷︸

definition

S =

[
σ1 wT

0 B

]
︸ ︷︷ ︸

See below for explanation of column 1

,

where 0 is the m− 1 column vector, wT is a n− 1 row vector,
and B has dimensions (m − 1)× (n − 1).
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Proof of Existence of SVD

Note, the top-left comes from

Av1 = σ1u1

uT1 Av1 = σ1 u
T
1 u1︸ ︷︷ ︸
=1

= σ1.

The bottom-left is zero because

uTi Av1 = uTi (σ1u1),

= σ1u
T
i u1,

= 0, ∀i > 1.
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Proof of Existence of SVD
Now, we can show w = 0 as follows:

Consider ∥∥∥∥[σ1 wT

0 B

] [
σ1
w

]∥∥∥∥
2

=

∥∥∥∥[σ2
1 + wTw
Bw

]∥∥∥∥
2

=

√(
σ2
1 + wTw

)2
+ (Bw)TBw ,

=

√(
σ2
1 + wTw

)2
+ wT BTB︸ ︷︷ ︸

symm, + semi-def

w ,

≥ σ2
1 + wTw

=
√

σ2
1 + wTw

∥∥∥∥[σ1w
]∥∥∥∥

2︸ ︷︷ ︸
=
√

σ2
1+wTw

.
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Proof of Existence of SVD

By the induced matrix norm definition, this implies

∥S∥2 ≥
√
σ2
1 + wTw .

However, since U1 and V1 are orthogonal, therefore
∥S∥2 = ∥A∥2 = σ1.

Thus we must have w = 0, and so

UT
1 AV1 =

[
σ1 0
0 B

]
.
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Proof of Existence of SVD

For n = 1 (base case) this completes the proof.

For n > 1 (induction case), by the inductive hypothesis, the
SVD of B exists. Write B = U2Σ2V

T
2 .

Then if we let

A = U1

[
1 0
0 U2

]
︸ ︷︷ ︸

U

[
σ1 0
0 Σ2

]
︸ ︷︷ ︸

Σ

[
1 0
0 V T

2

]
V T
1︸ ︷︷ ︸

VT

,

it is easy to verify that this is an SVD of A. (Some
explanation is given on the next slide.)

Therefore, in either case, the SVD of A always exists.

□
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Proof of Existence of SVD - Additional Explanation

Earlier, we had

UT
1 AV1 =

[
σ1 0
0 B

]
.

Recall that U1 and V1 are orthogonal. Therefore left multiplying
by U1 and right multiplying by V1 yields

A = U1

[
σ1 0
0 B

]
V T
1 .

Thus it suffices to prove that[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V T

2

]
=

[
σ1 0
0 B

]
,

where B = U2Σ2V
T
2 .
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Stability Comparison

This section gives a more detailed comparison of the stability
of the two approaches to compute the SVD.

Assume a stable algorithm is used for finding eigenvalues
(e.g., QR iteration) such that

|λ̃k − λk | = O (ϵmachine∥A∥) ,

where λ̃k denotes the numerical approximation.

This satisfies λ̃k = λk(A+ δA), with ∥δA∥
∥A∥ = O (ϵmachine).

That is, we compute the exact eigenvalues for a slightly
perturbed matrix, A+ δA.
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Stability Comparison

Applying this to H =

[
0 AT

A 0

]
, we can get the singular values with

|σ̃k − σk | = |λ̃k − λk | = O (ϵmachine∥H∥) = O (ϵmachine∥A∥) .

Explanation for Why ∥H∥ = ∥A∥:
See Lecture Notes.
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Stability Comparison

If we instead applied our eigenvalue routine to ATA

|λ̃k − λk | = O
(
ϵmachine∥ATA∥

)
≈ O

(
ϵmachine∥A∥2

)
.

Taking the square roots (i.e., divide by
√
λk) to get σk gives

|σ̃k − σk | = O

(
|λ̃k − λk |√

λk

)
= O

(
ϵmachine∥A∥2

σk

)
.

This is quite inaccurate for σk ≪ ∥A∥.
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Golub-Kahan Bidiagonalization

This section describes a way of accelerating the SVD
computation.

We apply another two-phase process, as we did for QR
iteration.

We pre-process the matrix A to reduce the total cost of
computing the SVD.

The idea is to first convert to a bidiagonal matrix and then
extract the SVD!
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Golub-Kahan Bidiagonalization

This process is depicted below.
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

A

Phase 1−−−−→
Direct


× ×

× ×
× ×

×


︸ ︷︷ ︸

B

Phase 2−−−−−→
Iterative


×

×
×

×


︸ ︷︷ ︸

Σ
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Golub-Kahan Bidiagonalization
Why bidiagonal?
We do not have to maintain a similarity transformation for
SVD (unlike for the eigendecomposition).
Therefore, we can apply different Householder reflectors on
left and right to introduce zeros:

× × × ×
× × × ×
× × × ×
× × × ×
× × × ×

 −→


× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×

 −→


× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×

 −→

A UT
1 A UT

1 AV1
× × 0 0
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×

 −→


× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×

 −→ etc...

UT
2 UT

1 AV1 UT
2 UT

1 AV1V2
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Golub-Kahan Bidiagonalization

Bidiagonalization ultimately uses n reflectors on the left, n− 2
on the right.

Therefore, the cost of bidiagonalization is

flops(bidagonalization) ≈ 2× flops(QR) ≈ 4mn2 − 4

3
m3.

For the case of m ≫ n, there exist faster algorithms (see
Trefethen & Bau, Lecture 31 if curious).
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Golub-Kahan Bidiagonalization

For computing the SVD the cost is as follows.

In practice, the cost of bidiagonalization phase ≈ O(mn2)
dominates over the eigendecomposition phase ≈ O(n2).

This cost is typically more expensive than other factorizations
of square matrices we have seen previously:

1 LU (Lecture 02): 2
3n

3 + O(n2)
2 QR via Gram-Schmidt (Lecture 11): 2n3 + O(n2)
3 Eigendecomposition via Simultaneous Iteration (Lecture 16):

Depends on setup and choice of tolerance

However, the SVD computation is more numerically stable
(i.e., preferable for ill-conditioned/rank-deficient matrices).

Here, rank-deficient simply means not of full rank.
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