Lecture 20: SVD Application - Image Compression

July 18, 2025

Outline

- Best Approximation to A
- Application of SVD to Image Compression
 - Image Compression Demo

Image Compression - Introduction

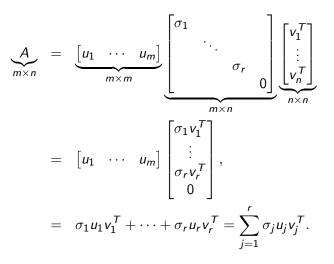
- The singular value decomposition (SVD) can be thought of as representing A as the sum of rank-one matrices.
- In this lecture, we discuss approximating A using a **truncation** of this sum (i.e. omitting some terms at the end).

Theorem 1

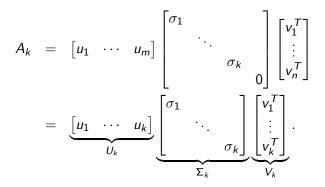
Let $m \ge n$. Let A be an $m \times n$ matrix, having rank r. Then A is the sum of r rank-one matrices, i.e. for $1 \le j \le r$, there exist scalars σ_j and vectors $u_j \in \mathbb{R}^m$, $v_j \in \mathbb{R}^n$ such that each $u_j v_j^T$ has rank 1, and

$$A = \sum_{j=1}^r \sigma_j u_j v_j^T.$$

From the definition of the (full, not reduced) SVD of A:



Exercise: What is the reduced SVD of the rank-1 matrix $A = xy^T$? We can construct an approximate version of A, denoted A_k , using only the first k singular values as follows:



So, as above, we may write $A_k = U_k \Sigma_k V_k^T$.

Theorem 2 gives the following results:

- Among all matrices B with rank ≤ k, A_k minimizes ||A − B||₂. In other words, A_k provides the best rank k approximation of A.
- **2** The approximation error is given by the singular value σ_{k+1} .

Theorem 2

Let $m \ge n$. Let A be an $m \times n$ matrix, having rank r, and SVD:

$$A = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r & \\ & & & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_n^T \end{bmatrix}$$

For any $1 \le k \le r$, define

$$A_k = \sum_{j=1}^k \sigma_j u_j v_j^T.$$

Then

$$||A - A_k||_2 = \inf_{\substack{rank(B) \le k}} ||A - B||_2 = \sigma_{k+1}.$$

٠

Proof. $\frac{||A - A_k||_2 = \sigma_{k+1}}{||A - A_k||_2} = \sigma_{k+1}$, using the definition of SVD. We know that

$$\begin{aligned} A - A_k &= \left(\sum_{j=1}^r \sigma_j u_j v_j^T\right) - \left(\sum_{j=1}^k \sigma_j u_j v_j^T\right) \\ &= \sum_{j=k+1}^r \sigma_j u_j v_j^T \\ &= \left[u_1 \quad \cdots \quad u_m\right] \begin{bmatrix} 0 & & & \\ & \sigma_{k+1} & & \\ & & \ddots & \\ & & & \sigma_r & \\ & & & & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_n^T \end{bmatrix}, \end{aligned}$$

gives an SVD for $A - A_k$ (subject to reordering). We showed in an earlier Theorem that $||A||_2 = \sigma_1$, so we have $||A - A_k||_2 = \sigma_{k+1}$ (i.e. the largest remaining singular value).

8/26

Part Two: Optimality: We will show $||A - A_k||_2 = \inf_{\substack{\text{rank}(B) \leq k}} ||A - B||_2$ using a proof by contradiction. Towards a contradiction, suppose there exists *B* such that $\text{rank}(B) \leq k$ and $||A - B||_2 < \sigma_{k+1}$. That is, *B* is a strictly better approximation to *A*, with $\text{rank} \leq k$. Recall that *B* is $m \times n$, i.e. we can view left multiplication by *B* as a linear transformation from \mathbb{R}^n to \mathbb{R}^m . By the rank-nullity theorem,

$$rank(B) + nullity(B) = n$$

 $\Rightarrow nullity(B) = n - rank(B).$

So null(B) has dimension $\ge n - k$, and contains non-zero vectors v (such that Bv = 0, by definition). If there are non-zero vectors in null(B), then B kills them. Further, if k = r = n, then $A_k = A$. ($||A - A_k|| = 0$, as small as possible).

Observe that null(B) and $span\{v_1, \ldots, v_{k+1}\}$ are subspaces of \mathbb{R}^n , with

- $nullity(B) \ge n k$, and
- $\dim(span\{v_1, ..., v_{k+1}\}) = k+1$.

Since (n - k) + (k + 1) > n, therefore null(B) and span $\{v_1, \ldots, v_{k+1}\}$ must have a non-zero intersection, i.e., $\exists z \neq 0$ such that

$$z \in null(B) \cap span\{v_1, \ldots, v_{k+1}\}.$$

Without loss of generality, let $||z||_2 = 1$. We will obtain a contradiction by showing $||A - B||_2 \ge \sigma_{k+1}$.

Note $||A - B||_2^2 \ge ||(A - B)z||_2^2$ (Recall the definition of the matrix 2-norm, $||A||_2 = \max ||Ax||_2$ with $||x||_2 = 1$). Since $z \in \operatorname{null}(B)$, Bz = 0, and therefore

$$\begin{aligned} \|(A-B)z\|_{2}^{2} &= \|Az - Bz\|_{2}^{2} \\ &= \|Az - 0\|_{2}^{2} \\ &= \|Az\|_{2}^{2} \\ &= \left\|\left(\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}\right) z\right\|_{2}^{2}. \end{aligned}$$

For an arbitrary $0 \le i \le n$, the *i*th term of the sum equals $\sigma_i u_i v_i^T z$.

We also have $z \in \text{span}\{v_1, \ldots, v_{k+1}\} \subseteq \mathbb{R}^n$. The above i^{th} term therefore equals

$$\sigma_{i} u_{i} \underbrace{\left(\mathbf{v}_{i}^{T} \mathbf{z} \right)}_{\text{scalar}}$$
$$= \sigma_{i} \left(\mathbf{v}_{i}^{T} \mathbf{z} \right) u_{i},$$

and therefore the above squared 2-norm expression equals

$$\begin{pmatrix} \sum_{i=1}^{n} \sigma_{i} \left(v_{i}^{\mathsf{T}} z \right) u_{i} \end{pmatrix}^{\mathsf{T}} \left(\sum_{j=1}^{n} \sigma_{j} \left(v_{j}^{\mathsf{T}} z \right) u_{j} \right)$$

$$= \sum_{i=1}^{n} \sigma_{i}^{2} \left(v_{i}^{\mathsf{T}} z \right)^{2}, \text{ using orthogonality of the } u_{i}s$$

$$= \sum_{i=1}^{k+1} \sigma_{i}^{2} \left(v_{i}^{\mathsf{T}} z \right)^{2}, \text{ since } z \in \operatorname{span}\{v_{1}, \ldots, v_{k+1}\}$$

$$\ge \sigma_{k+1}^{2} \sum_{i=1}^{k+1} \left(v_{i}^{\mathsf{T}} z \right)^{2}, \text{ by the ordering of the } \sigma_{i}s.$$

Now I claim that $\sum_{i=1}^{k+1} (v_i^T z)^2 = 1$. We have assumed that $||z||_2 = 1$. Since $z \in \text{span}\{v_1, \ldots, v_{k+1}\}$, we may write $z = \sum_{\ell=1}^{k+1} c_\ell v_\ell$, for some c_ℓ s.

Image Compression - Best Approximation to A Then we have

$$\begin{split} 1 &= \|z\|_{2} \\ &= \sqrt{z^{T}z} \\ &= \sqrt{\left(\sum_{\ell=1}^{k+1} c_{\ell} v_{\ell}\right)^{T} \left(\sum_{j=1}^{k+1} c_{j} v_{j}\right)} \\ &= \sqrt{\sum_{\ell=1}^{k+1} c_{\ell}^{2} \left(v_{\ell}^{T} v_{\ell}\right)}, \text{ by orthogonality of the } v_{\ell}s \\ &= \sqrt{\sum_{\ell=1}^{k+1} c_{\ell}^{2}}, \text{ since each } \|v_{\ell}\|_{2} = 1, \text{ and so} \\ 1 &= \sum_{\ell=1}^{k+1} c_{\ell}^{2}. \end{split}$$

Now we can compute

$$\begin{split} \sum_{i=1}^{k+1} \left(v_i^T z \right)^2 &= \sum_{i=1}^{k+1} \left(v_i^T \left(\sum_{\ell=1}^{k+1} c_\ell v_\ell \right) \right)^2 \\ &= \sum_{i=1}^{k+1} c_i^2 \left(v_i^T v_i \right)^2, \text{ by orthogonality of the } v_i s \\ &= \sum_{i=1}^{k+1} c_i^2, \text{ since each } \|v_i\|_2 = 1 \\ &= 1, \text{ as claimed.} \end{split}$$

Putting everything together, we finally get

$$\begin{aligned} \|A - B\|_{2}^{2} &\geq \|(A - B)z\|_{2}^{2} \\ &\geq \sigma_{k+1}^{2} \sum_{i=1}^{k+1} \left(v_{i}^{T}z\right)^{2} \\ &= \sigma_{k+1}^{2}, \end{aligned}$$

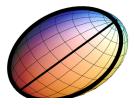
implying $\|A - B\|_2 \ge \sigma_{k+1}$ and contradicting the fact that $\|A - B\|_2 < \sigma_{k+1}$.

- Hence no such B can exist.
- Note that the analogous statement holds true for the Frobenius norm

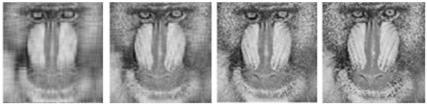
$$\|A - A_k\|_F = \inf_{\mathsf{rank}(B) \le k} \|A - B\|_F = \sqrt{\sigma_{k+1}^2 + \sigma_{k+2}^2 + \dots + \sigma_r^2}$$

- A geometric interpretation of the low rank approximation is as follows.
- Consider trying to determine the line segment that "best" approximates a (hyper)ellipsoid.
- The best approximation is the line segment along the longest axis of the (hyper)ellipsoid.

- This example corresponds to approximating A with k = 1.
- With *k* = 2, we can ask what ellipse gives "best" approximation of the (hyper)ellipsoid?
- The best ellipse is the one spanning the two longest axes (as shown with black curves in the figure below for the ellipsoid in \mathbb{R}^3).
- With larger k the same idea holds.



The SVD can be used to produce a cheaper approximate version of an image (or other dataset) that captures the "most important" parts.



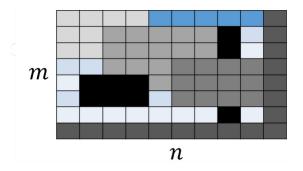
K=10

K=20

K=50

Original

Consider and $m \times n$ pixel (grayscale) image as an $m \times n$ matrix A where A_{ij} is the intensity of the pixel (i, j). If we can store fewer than mn entries, we have a compressed representation.



- Let $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ be the best rank-k approximation of A.
- Then A_k gives a compressed version of the image A using the first k singular values.
- For example, given an input image with m = 320, n = 200.
- For A_k , we need to only store vectors u_1, \ldots, u_k and $\sigma_1 v_1, \ldots, \sigma_k v_k$.
- Thus, we have (m+n)k entries to store in total.
- This gives a compression ratio of $\frac{(m+n)k}{mn}$.
- In our specific example we have

$$rac{(320+200)k}{320\cdot 200}pprox rac{k}{123}.$$

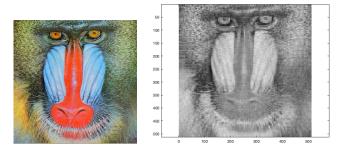
The table below gives values for different k. As can be seen from the relative error and the compression ratios, this is an effective approach with small k.

k	Rel. err. σ_{k+1}/σ_1	Comp. ratio
3	0.155	2.4%
10	0.077	8.1%
20	0.04	16.3%

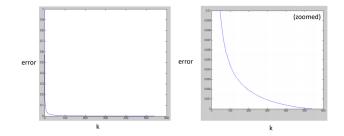
An example of code for image compression using the above ideas is given in Algorithm 24. Note that sample code for colour images is given in **SVDimageCompression.m** (which just computes an SVD for each colour channel separately).

Algorithm 1 : Grayscale Image Compression

Given the input figure on the left below, the code computes the compressed grayscale output on the right.



We had previously shown that $||A - A_k||_2 = \sigma_{k+1}$ gives the approximation error. So we can plot the relative error as $\frac{\sigma_{k+1}}{\sigma_1}$ against the choice of k (see below).



As depicted in the plot, the greater the k, the closer to the original image, thus a lower approximation error.