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Image Compression - Introduction

The singular value decomposition (SVD) can be thought of as
representing A as the sum of rank-one matrices.

In this lecture, we discuss approximating A using a truncation
of this sum (i.e. omitting some terms at the end).
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Image Compression - Best Approximation to A

Theorem 1
Let m ≥ n. Let A be an m × n matrix, having rank r . Then A is
the sum of r rank-one matrices, i.e. for 1 ≤ j ≤ r , there exist
scalars σj and vectors uj ∈ Rm, vj ∈ Rn such that each ujv

T
j has

rank 1, and

A =
r∑

j=1

σjujv
T
j .
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Image Compression - Best Approximation to A

Proof.
From the definition of the (full, not reduced) SVD of A:

A︸︷︷︸
m×n

=
[
u1 · · · um

]︸ ︷︷ ︸
m×m


σ1

. . .

σr
0


︸ ︷︷ ︸

m×n

v
T
1
...
vTn


︸ ︷︷ ︸
n×n

=
[
u1 · · · um

]

σ1v

T
1
...

σrv
T
r

0

 ,

= σ1u1v
T
1 + · · ·+ σrurv

T
r =

r∑
j=1

σjujv
T
j .
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Image Compression - Best Approximation to A

Exercise: What is the reduced SVD of the rank-1 matrix A = xyT ?
We can construct an approximate version of A, denoted Ak , using
only the first k singular values as follows:

Ak =
[
u1 · · · um

]

σ1

. . .

σk
0


v

T
1
...
vTn



=
[
u1 · · · uk

]︸ ︷︷ ︸
Uk

σ1 . . .

σk


︸ ︷︷ ︸

Σk

v
T
1
...
vTk


︸ ︷︷ ︸

Vk

.

So, as above, we may write Ak = UkΣkV
T
k .
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Image Compression - Best Approximation to A

Theorem 2 gives the following results:

1 Among all matrices B with rank ≤ k , Ak minimizes
∥A− B∥2. In other words, Ak provides the best rank k
approximation of A.

2 The approximation error is given by the singular value σk+1.
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Image Compression - Best Approximation to A

Theorem 2
Let m ≥ n. Let A be an m × n matrix, having rank r , and SVD:

A =
[
u1 · · · um

]

σ1

. . .

σr
0


v

T
1
...
vTn

 .

For any 1 ≤ k ≤ r , define

Ak =
k∑

j=1

σjujv
T
j .

Then

∥A− Ak∥2 = inf
rank(B)≤k

∥A− B∥2
= σk+1.

Remarks:
1 If σk+1 = 0, then Ak = A, i.e. there is 0 error in our

approximation of A by Ak .
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Image Compression - Best Approximation to A
Proof. ∥A− Ak∥2 = σk+1:
We will establish ∥A− Ak∥2 = σk+1, using the definition of SVD.
We know that

A− Ak =

 r∑
j=1

σjujv
T
j

−

 k∑
j=1

σjujv
T
j


=

r∑
j=k+1

σjujv
T
j

=
[
u1 · · · um

]

0

σk+1

. . .

σr
0


v

T
1
...
vTn

 ,

gives an SVD for A− Ak (subject to reordering). We showed in an
earlier Theorem that ∥A∥2 = σ1, so we have ∥A− Ak∥2 = σk+1

(i.e. the largest remaining singular value).
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Image Compression - Best Approximation to A
Part Two: Optimality:
We will show ∥A− Ak∥2 = inf

rank(B)≤k
∥A− B∥2 using a proof by

contradiction. Towards a contradiction, suppose there exists B
such that rank(B) ≤ k and ∥A− B∥2 < σk+1. That is, B is a
strictly better approximation to A, with rank ≤ k .
Recall that B is m × n, i.e. we can view left multiplication by B as
a linear transformation from Rn to Rm. By the rank-nullity
theorem,

rank(B) + nullity(B) = n

⇒ nullity(B) = n − rank(B).

So null(B) has dimension ≥ n − k , and contains non-zero vectors
v (such that Bv = 0, by definition).
If there are non-zero vectors in null(B), then B kills them.
Further, if k = r = n, then Ak = A. (∥A− Ak∥ = 0, as small as
possible).
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Image Compression - Best Approximation to A

Observe that null(B) and span{v1, . . . , vk+1} are subspaces of Rn,
with

nullity(B) ≥ n − k, and

dim(span{v1, . . . , vk+1}) = k + 1 .

Since (n − k) + (k + 1) > n, therefore null(B) and
span{v1, . . . , vk+1} must have a non-zero intersection, i.e., ∃z ̸= 0
such that

z ∈ null(B) ∩ span{v1, . . . , vk+1}.

Without loss of generality, let ∥z∥2 = 1. We will obtain a
contradiction by showing ∥A− B∥2 ≥ σk+1.
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Image Compression - Best Approximation to A

Note ∥A− B∥22 ≥ ∥(A− B)z∥22 (Recall the definition of the matrix
2-norm, ∥A∥2 = max ∥Ax∥2 with ∥x∥2 = 1). Since z ∈ null(B),
Bz = 0, and therefore

∥(A− B)z∥22 = ∥Az − Bz∥22
= ∥Az − 0∥22
= ∥Az∥22

=

∥∥∥∥∥
(

n∑
i=1

σiuiv
T
i

)
z

∥∥∥∥∥
2

2

.

For an arbitrary 0 ≤ i ≤ n, the i th term of the sum equals σiuiv
T
i z .
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Image Compression - Best Approximation to A

We also have z ∈ span{v1, . . . , vk+1} ⊆ Rn. The above i th term
therefore equals

σiui

(
vTi z

)
︸ ︷︷ ︸
scalar

= σi

(
vTi z

)
ui ,
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Image Compression - Best Approximation to A
and therefore the above squared 2-norm expression equals(

n∑
i=1

σi

(
vTi z

)
ui

)T
 n∑

j=1

σj

(
vTj z

)
uj


=

n∑
i=1

σ2
i

(
vTi z

)2
, using orthogonality of the ui s

=
k+1∑
i=1

σ2
i

(
vTi z

)2
, since z ∈ span{v1, . . . , vk+1}

≥ σ2
k+1

k+1∑
i=1

(
vTi z

)2
, by the ordering of the σi s.

Now I claim that
∑k+1

i=1

(
vTi z

)2
= 1. We have assumed that

∥z∥2 = 1. Since z ∈ span{v1, . . . , vk+1}, we may write

z =
∑k+1

ℓ=1 cℓvℓ, for some cℓs.
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Image Compression - Best Approximation to A
Then we have

1 = ∥z∥2
=

√
zT z

=

√√√√√(k+1∑
ℓ=1

cℓvℓ

)T
k+1∑

j=1

cjvj


=

√√√√k+1∑
ℓ=1

c2ℓ
(
vTℓ vℓ

)
, by orthogonality of the vℓs

=

√√√√k+1∑
ℓ=1

c2ℓ , since each ∥vℓ∥2 = 1, and so

1 =
k+1∑
ℓ=1

c2ℓ .
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Image Compression - Best Approximation to A

Now we can compute

k+1∑
i=1

(
vTi z

)2
=

k+1∑
i=1

(
vTi

(
k+1∑
ℓ=1

cℓvℓ

))2

=
k+1∑
i=1

c2i

(
vTi vi

)2
, by orthogonality of the vi s

=
k+1∑
i=1

c2i , since each ∥vi∥2 = 1

= 1, as claimed.
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Image Compression - Best Approximation to A
Putting everything together, we finally get

∥A− B∥22 ≥ ∥(A− B)z∥22

≥ σ2
k+1

k+1∑
i=1

(
vTi z

)2
= σ2

k+1,

implying ∥A− B∥2 ≥ σk+1 and contradicting the fact that
∥A− B∥2 < σk+1.

Hence no such B can exist.

Note that the analogous statement holds true for the
Frobenius norm

∥A− Ak∥F = inf
rank(B)≤k

∥A− B∥F =
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r .

□
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Image Compression - Best Approximation to A

A geometric interpretation of the low rank approximation is as
follows.

Consider trying to determine the line segment that “best”
approximates a (hyper)ellipsoid.

The best approximation is the line segment along the longest
axis of the (hyper)ellipsoid.
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Image Compression - Best Approximation to A

This example corresponds to approximating A with k = 1.

With k = 2, we can ask what ellipse gives “best”
approximation of the (hyper)ellipsoid?

The best ellipse is the one spanning the two longest axes (as
shown with black curves in the figure below for the ellipsoid in
R3).

With larger k the same idea holds.
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Application of SVD to Image Compression

The SVD can be used to produce a cheaper approximate version of
an image (or other dataset) that captures the “most important”
parts.
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Application of SVD to Image Compression

Consider and m × n pixel (grayscale) image as an m × n matrix A
where Aij is the intensity of the pixel (i , j). If we can store fewer
than mn entries, we have a compressed representation.
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Application of SVD to Image Compression

Let Ak =
∑k

i=1 σiuiv
T
i be the best rank-k approximation of A.

Then Ak gives a compressed version of the image A using the
first k singular values.

For example, given an input image with m = 320, n = 200.

For Ak , we need to only store vectors u1, . . . , uk and
σ1v1, . . . , σkvk .

Thus, we have (m + n)k entries to store in total.

This gives a compression ratio of (m+n)k
mn .

In our specific example we have

(320 + 200)k

320 · 200
≈ k

123
.
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Application of SVD to Image Compression

The table below gives values for different k . As can be seen from
the relative error and the compression ratios, this is an effective
approach with small k .
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Image Compression Demo

An example of code for image compression using the above ideas is
given in Algorithm 24. Note that sample code for colour images is
given in SVDimageCompression.m (which just computes an
SVD for each colour channel separately).
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Image Compression Demo

Algorithm 1 : Grayscale Image Compression

A=rgb2gray(imread(’baboon.png’));
A=double(A);
[U,S,V]=svd(A);
k = 30; ▷ try different choices
Ak=U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;
colormap(’gray’);
imagesc(Ak);
axis equal;
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Image Compression Demo

Given the input figure on the left below, the code computes the
compressed grayscale output on the right.
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Image Compression Demo

We had previously shown that ∥A− Ak∥2 = σk+1 gives the
approximation error. So we can plot the relative error as σk+1

σ1

against the choice of k (see below).

As depicted in the plot, the greater the k , the closer to the original
image, thus a lower approximation error.
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