Lecture 21: Convergence of lterative Methods
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Lecture 21: Convergence of lterative Methods - Outline

@ Introduction
@ Richardson Convergence
@ Choosing Optimal 6
© Jacobi, Gauss-Seidel, & SOR Convergence
@ Convergence on Discrete Poisson Equation

©® Richardson
@ Jacobi
® GS and SOR
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Convergence of Iterative Methods - Introduction

We will now revisit iterative schemes to analyze aspects of their
convergence behaviour in detail. In this lecture we will study the
stationary iterative methods:

@ Richardson,
Q@ Jacobi,
© Gauss-Seidel, and
© Successive-Over-Relaxation (SOR).
These methods were first discussed in Lecture 08.
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Convergence of Iterative Methods - Introduction

Recall that the stationary iterative methods amount to different
choices of M when splitting A = M — N. The generic iteration is

XKL = xk 4 M71(b — AxK).

For each method we have the following splittings of the matrix A:
O Richardson: M = %l for scalar 8 > 0,

© Jacobi: M =D, —-U
© Gauss-Seidel: M =D — L, A= D
Q SOR: %D—Lfor scalar w > 0. —L

e 0 < w < 1 indicates under-relaxation;
e 1 < w indicates over-relaxation.
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Convergence of Iterative Methods - Introduction

We can rewrite the generic iteration as

XKL =1 (1 = M~1A)| x* + M~ 1b.

@ Then we call G =/ — M~1A the iteration matrix for the
scheme.

o The method converges if and only if p(/ — M~1A) < 1, where
p(+) denotes the spectral radius of a matrix (i.e., maximum
eigenvalue magnitude). See Lecture 08.

@ Note that a smaller p implies faster convergence to the
solution.

@ We will now consider the convergence behaviour for SPD
matrices.
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Convergence of Iterative Methods - Richardson
Convergence

The iteration matrix for the Richardson iteration is

Rich -1
GV = | = Mg A

-y
for scalar @ > 0. Let (A, v) be an eigenpair of A. Then,

GRSy = (1-0A)v
= v—0\v
(L—=0N)v.

Therefore, n = 1 — O\ is an eigenvalue for GRich,
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Convergence of Iterative Methods - Richardson
Convergence

Lemma 1
Let Amin and Amax satisfy Amin < A\j < Amax, Vi. Then
p(GRiEM) = max{|1 = OAmin|, |1 — OAmax|}-

Proof.
Let i be arbitrary. Then

)\min < )\i < )\maxy
1- 9)\min > 1- 9)\i >1- 9)\max’
<

= |y max {|1 — OAmin, |1 — OAmax]| } -
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Convergence of Iterative Methods - Richardson
Convergence

Note, if Amin < 0 and Apax > 0 then either

1—0Amin >1if60 >0 or,
1—0Amax >11if 0 <O.

Hence, p(GRich) > 1 for this case and Richardson will diverge for
such matrices. (Recall the condition on p was necessary and
sufficient for convergence).

If we assume that A is SPD, then its eigenvalues cannot be
negative.

Also, we usually assume that 8 > 0.

7/31



Convergence of Iterative Methods - Richardson
Convergence

Theorem 2

Assume all eigenvalues of A are positive (i.e., A is positive
definite). Then Richardson converges iff 0 < 6 <

2
>\m ax
Proof. If 0 < 6 < =, then multiplying through by Apmax (and
inserting the obV|ous 0)\,,,,,, < OAmax) yields

0< 9>\min < ‘9)\max < 27
—2< —OA\max < —0OApmin <0, (multiply by -1)
—1<1—0Amax < 1—=0Anin <1 (add one)

Therefore, |1 — OAmax| < 1 and |1 — OAmin| < 1 = p(GRM) < 1.

8/31



Convergence of Iterative Methods - Richardson

Convergence
For the other direction assume p(GFRich) < 1, then

—1<1—0pax < <1 —0Apin < L. (1)
From the left inequality of (1) we have

1< 1= O\,
-2 < _9)\maxa

=0<

)\maX
The right inequality of (1) gives
1-— 9)\,7,,',, < 1,
—9>\m,'n < 0,
=0 >0. (since Amin > 0)
So0 <0<
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal ¢

Assume A is PD. Assume 6 > 0. To optimize convergence speed
we must minimize p(GRM). Eigenvalues of A € [Amin, Amax], SO
eigenvalues of Richardson iteration matrix / — A are in

[1 — OAmax, 1 — OAnmin]. Plotting this range gives the blue region in
Figure 1 (left). But to get the minimum spectral radius, we need
the absolute value. Reflecting negative parts over the x-axis gives
Figure 1 (right).

1. 14 1= B 11 = 62,

1-62

min

1-621

max

Figure: Finding the optimal 6 for Richardson iteration.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal ¢

Remark: The vertical axis is p.

For any choice of 6, the largest magnitude eigenvalue will sit at the
top of the blue band, shown by the black line in Figure 1 (right).
Thus p is minimized where the two lines |1 — 6| and

|1 — OAmax| intersect. Hence, we must find where

|1 — OAmax| = |1 — O min| since this is where the largest
“switches” lines. That is, the optimal 8 is when

—(1 = Oopt Amax)
—1 + Oopt Amax

Oopt Amax + Oopt Amin
Oopt(Amax + Amin)

eopt

1- eopt)\min
1- Hopt)\min
2
2

2

)\min + >\max ‘
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Convergence of Iterative Methods - Richardson

Convergence - Choosing Optimal ¢
Plugging 05+ back in to find corresponding p gives

Popt =

Recall that ka(A) = Ic\maxl\

1- Hopt)\mina
2 min
)\min + )\max ’
(Amax + /\min - 2/\min)
)\max + /\min

)\max - >\min A:,,-,,
)\max + >\min 1_
M —1

min
Amax _|_ 1
min

k2(A) —1
r2(A) +1°

1—

and A\ > 0 was assumed in Theorem 2.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal ¢

Alternatively,

Popt = _(1 - eopt)\max)
= -1+ Hopt)\max

2
= 14 () A
* ()\min + Amax) 2

_()\min + /\max) + 2)\max
>\min + )\max
)\max - /\min

)\min + /\max’

the same expression as in the middle of the previous computation!
Moral: It does not matter which line we take: 0,5 was computed
using their intersection.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal ¢

Note that
@ we need eigenvalues (or estimates) to choose optimal 6, and

@ convergence can be slow, depending on \'s. E.g. the
convergence can be poor when % ~ —1, so opposite signs.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Theorem 3
If A and 2D — A are SPD, then the Jacobi iteration converges.
Proof. Let i be an eigenvalue of G; =1 — I\/Ile =1 - DA,
with eigenvector v. Then

(I-D 1AV = pv,

DYD—-Av = pv,

(D—-Ayv = puDv,
vi(D-Av = pv'Dy,

viDv—vTAv = uv'Dv,
viDv—puvTDv = vTAv
A—pv'Dv = vMAv

> 0, since A is SPD.

So (1 — u)vT Dv > 0, which implies uu < 1, because v’ Dv > 0,
since A is SPD and hence D is also SPD (See Lecture Notes for 15,3



Convergence of Iterative Methods - Jacobi, Gauss-Seidel,

& SOR Convergence

Similarly, since 2D — A is SPD,

vi@2D - Ay > 0
viDv—vTAv > —v'Dv
vi(D-Av > —v'Dv.

Also, as above:
vi(D—A)v=pv Dy,
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel
& SOR Convergence

and thus we can continue the above sequence of inequalities:

/LVTDV > —v'Dv
(w+1)viDv > 0
= u > -1, since D is SPD.

Hence, -1 <pu<l=p (GJ) < 1, i.e. a Jacobi iteration
converges. [
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel
& SOR Convergence

Theorem 4
If A is SPD then GS and SOR (for 0 < w < 2) both converge.
@ The optimal value of w for SOR is not known in general.

@ It is only known for special cases, e.g., for A that are
tridiagonal, and SPD, we have

2
Wopt = ,
P11 p(G)
where G is Jacobi's iteration matrix.
[Proof still needed]
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,

& SOR Convergence

Gauss-Seidel and Jacobi also converge for another class of
matrices, called M-matrices.

Definition 3.1
A is an M-matrix if

Q 3 >0,
Q a;; <0 fori+#}j,
@ A7l exists and (A71); > 0,Vi,j.

Theorem 5
If A is an M-matrix then Jacobi and GS converge and

p(l — Mg A) < p(I — M;TA) < 1,

i.e., GS converges at least as rapidly as Jacobi.
[Proof still needed]
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Convergence of lterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Stationary iteration meth-

ods are often slow for

low-frequency error com-

ponents.  Their modern

use is often in “multigrid”

methods, that use multiple >
grid levels to find a solu-

tion more quickly.

Since low frequency data
has relatively high fre-
quency on coarser grids,
those errors can be elim-
inated more quickly, by
transferring the solution
between levels.
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Analytical expressions can be found for eigendecompositions of
certain matrices. This can give us a sense for how our iterative
schemes fare in practice. We will consider the familiar 2D finite
difference Laplacian matrix for the Poisson equation:

-V-Vu = f,
o — Uy =

Note that the negative sign in front of the Laplacian makes the
finite difference matrix positive definite (otherwise it is negative
definite).
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Theorem 6

Let A be the negative of a 2D Laplacian matrix with cell size h and
m grid points in each axis. Then the exact eigenvalues are

4 hi hj
Nj = = [sin2 (7721) + sin? <7T2]>} for1 <i,j<m.

[Proof still needed]
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Note that the smallest eigenvalue is

8 .2 7Th
Amin = 12 sin <2> ,

and the largest eigenvalue is

8 . mmh
>\max = ﬁsm2 <2>7

8 .2 ™ . 1
= 4asin (E(l_h)> ,usmgh—m+1

8 5 (Th _ (T
= acos” (), using sin (5 - u) = cos(u).

ormh=1-—h,
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

The matrix A is both SPD and an M-matrix. Furthermore, the
conditioning of A gets worse with finer grids, e.g., consider two
grid resolution cases

1) h
)\min
)\max

K2

Finer Resolution — Worse

~
~

Tov m = 97
19.6,
780,

)\max

)\min

40.

2) h
)\min
>\max

K2

1
= 100’ m =99,
~ 197,
~ 80000,
Amax
)\min
4000.

conditioning.

Q
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Richardson

@ We will finish this lecture by showing convergence for the
Poisson equation with the stationary iterative methods.

@ For the Richardson iteration we have

8 ., (mh 8 o (mh
ot =om) =man {1 -0t ()|t eos ()

Hence, Richardson converges for
h2

2
0<b< =
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Richardson
The optimal 4 is
2 2 h?
eopt = = 1 7
>\max + )\min 4
COS2

which gives optimal convergence with

)\max - )\min

)\max + )\min

i (cos? (%) —sin® (%))
8
2

h h
= cos® <7T2) — sin? <7T2>

h
= 1—2sin? (7T2> , since cos®x =1 — sin®x

Popt =

Iy

= cos(rh), since 1 — 2sin?(u) = cos(2u). 26/31



Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Jacobi

Since

4

= 0L

opt™»

therefore we have that

G, = I-D'A
= | — OppiA.

Therefore, Jacobi iteration is equivalent to the optimal Richardson
iteration for this case, and hence

p = cos(mh).
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Convergence of Iterative Methods - Convergence on

Discrete Poisson Equation - Jacobi

The Taylor expansion of cos(x) gives

cos(x)zl—X;—F)f-i—....
Therefore,
p(6?) = o(1-D7A)
= cos(mh)
= 1—”2:2 +0(h).

For small h, Jacobi (and optimal Richardson) has slow
convergence, since p (GJ) ~ 1.
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - GS and SOR

The spectral radius for Gauss-Seidel is the square of that for Jacobi
[Proof still needed - See 1948 Paper “On the Solution of
Linear Simultaneous Equations By lteration”, by Stein and
Rosenberg], and so we have

D1 MGA) = [pli = M; A
= cos?(mh),
1 —sin(7h),
= 1—7?h* + O(h*). (Taylor expansion)

@ Notice there is no division by 2 compared to Jacobi, so GS
convergence is 2 times better than Jacobi.

@ However, this is only a constant factor, therefore GS is still
slow for small h.

@ This relationship is typical for SPD systems.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,

& SOR Convergence
For SOR we have that
2
Wort = 1 sin(mh)’
and thus

Popt = Wopt — 1
1 —sin(mh)
1+ sin(mh)’
= 1-2nh+ O(h?).
Therefore, optimal SOR is much faster than GS/Jacobi/Richardson

since the h factor is not squared. For example, with h = 0.1 we
have

p(GJ) = 0.95,
p(G*) = 009,
p(G°ORy = 0.37.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Run the demo code StationaryIterativeConvergence.m to see
a comparison of Jacobi, GS, SOR, and optimal SOR iterations for

solving the Laplace equation (i.e., the Poisson equation with

f =0). It is apparent from the demo that optimal SOR converges

much faster.
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