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Convergence of Iterative Methods - Introduction

We will now revisit iterative schemes to analyze aspects of their
convergence behaviour in detail. In this lecture we will study the
stationary iterative methods:

1 Richardson,

2 Jacobi,

3 Gauss-Seidel, and

4 Successive-Over-Relaxation (SOR).

These methods were first discussed in Lecture 08.

2 / 31



Convergence of Iterative Methods - Introduction

Recall that the stationary iterative methods amount to different
choices of M when splitting A = M − N. The generic iteration is

xk+1 = xk +M−1(b − Axk).

For each method we have the following splittings of the matrix A:
1 Richardson: M = 1

θ I for scalar θ > 0,

2 Jacobi: M = D,

3 Gauss-Seidel: M = D − L,
4 SOR: 1

ωD − L for scalar ω > 0.

0 < ω < 1 indicates under-relaxation;
1 < ω indicates over-relaxation.

A =


. . . −U

D

−L
. . .
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Convergence of Iterative Methods - Introduction

We can rewrite the generic iteration as

xk+1 = (I −M−1A) xk +M−1b.

Then we call G = I −M−1A the iteration matrix for the
scheme.

The method converges if and only if ρ(I −M−1A) < 1, where
ρ(·) denotes the spectral radius of a matrix (i.e., maximum
eigenvalue magnitude). See Lecture 08.

Note that a smaller ρ implies faster convergence to the
solution.

We will now consider the convergence behaviour for SPD
matrices.
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Convergence of Iterative Methods - Richardson
Convergence

The iteration matrix for the Richardson iteration is

GRich = I −M−1
RichA

= I − θA,

for scalar θ > 0. Let (λ, v) be an eigenpair of A. Then,

GRichv = (I − θA)v

= v − θλv

= (1− θλ)v .

Therefore, µ = 1− θλ is an eigenvalue for GRich.
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Convergence of Iterative Methods - Richardson
Convergence

Lemma 1
Let λmin and λmax satisfy λmin ≤ λi ≤ λmax ,∀i . Then
ρ(GRich) = max{|1− θλmin|, |1− θλmax |}.

Proof.
Let i be arbitrary. Then

λmin ≤ λi ≤ λmax ,

1− θλmin ≥ 1− θλi ≥ 1− θλmax ,

⇒ |µ| ≤ max {|1− θλmin|, |1− θλmax |} .
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Convergence of Iterative Methods - Richardson
Convergence

Note, if λmin < 0 and λmax > 0 then either

1− θλmin > 1 if θ > 0 or,

1− θλmax > 1 if θ < 0.

Hence, ρ(GRich) > 1 for this case and Richardson will diverge for
such matrices. (Recall the condition on ρ was necessary and
sufficient for convergence).
If we assume that A is SPD, then its eigenvalues cannot be
negative.
Also, we usually assume that θ > 0.
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Convergence of Iterative Methods - Richardson
Convergence

Theorem 2
Assume all eigenvalues of A are positive (i.e., A is positive
definite). Then Richardson converges iff 0 < θ < 2

λmax
.

Proof. If 0 < θ < 2
λmax

, then multiplying through by λmax (and
inserting the obvious θλmin ≤ θλmax) yields

0 < θλmin ≤ θλmax < 2,

−2 < −θλmax ≤ −θλmin < 0, (multiply by -1)

−1 < 1− θλmax ≤ 1− θλmin < 1 (add one)

Therefore, |1− θλmax | < 1 and |1− θλmin| < 1 ⇒ ρ(GRich) < 1.
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Convergence of Iterative Methods - Richardson
Convergence

For the other direction assume ρ(GRich) < 1, then

−1 < 1− θλmax ≤ µ ≤ 1− θλmin < 1. (1)

From the left inequality of (1) we have

−1 < 1− θλmax ,

−2 < −θλmax ,

⇒ θ <
2

λmax
.

The right inequality of (1) gives

1− θλmin < 1,

−θλmin < 0,

⇒ θ > 0. (since λmin > 0)

So 0 < θ < 2
λmax

. □
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal θ

Assume A is PD. Assume θ > 0. To optimize convergence speed
we must minimize ρ(GRich). Eigenvalues of A ∈ [λmin, λmax ], so
eigenvalues of Richardson iteration matrix I − θA are in
[1− θλmax , 1− θλmin]. Plotting this range gives the blue region in
Figure 1 (left). But to get the minimum spectral radius, we need
the absolute value. Reflecting negative parts over the x-axis gives
Figure 1 (right).

Figure: Finding the optimal θ for Richardson iteration.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal θ

Remark: The vertical axis is ρ.
For any choice of θ, the largest magnitude eigenvalue will sit at the
top of the blue band, shown by the black line in Figure 1 (right).
Thus ρ is minimized where the two lines |1− θλmin| and
|1− θλmax | intersect. Hence, we must find where
|1− θλmax | = |1− θλmin| since this is where the largest µ
“switches” lines. That is, the optimal θ is when

−(1− θoptλmax) = 1− θoptλmin

−1 + θoptλmax = 1− θoptλmin

θoptλmax + θoptλmin = 2

θopt(λmax + λmin) = 2

θopt =
2

λmin + λmax
.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal θ

Plugging θopt back in to find corresponding ρ gives

ρopt = 1− θoptλmin,

= 1− 2λmin

λmin + λmax
,

=

(
λmax + λmin − 2λmin

λmax + λmin

)
=

(
λmax − λmin

λmax + λmin

)( 1
λmin

1
λmin

)

=
λmax
λmin

− 1
λmax
λmin

+ 1

=
κ2(A)− 1

κ2(A) + 1
.

Recall that κ2(A) =
|λmax |
|λmin| and λ > 0 was assumed in Theorem 2.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal θ

Alternatively,

ρopt = −(1− θoptλmax)

= −1 + θoptλmax

= −1 +

(
2

λmin + λmax

)
λmax

=
−(λmin + λmax) + 2λmax

λmin + λmax

=
λmax − λmin

λmin + λmax
,

the same expression as in the middle of the previous computation!
Moral: It does not matter which line we take: θopt was computed
using their intersection.
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Convergence of Iterative Methods - Richardson
Convergence - Choosing Optimal θ

Note that

1 we need eigenvalues (or estimates) to choose optimal θ, and

2 convergence can be slow, depending on λ’s. E.g. the
convergence can be poor when λmax

λmin
≈ −1, so opposite signs.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Theorem 3
If A and 2D − A are SPD, then the Jacobi iteration converges.

Proof. Let µ be an eigenvalue of GJ = I −M−1
J A = I − D−1A,

with eigenvector v . Then

(I − D−1A)v = µv ,

D−1(D − A)v = µv ,

(D − A)v = µDv ,

vT (D − A)v = µvTDv ,

vTDv − vTAv = µvTDv ,

vTDv − µvTDv = vTAv

(1− µ)vTDv = vTAv

> 0, since A is SPD.

So (1− µ)vTDv > 0, which implies µ < 1, because vTDv > 0,
since A is SPD and hence D is also SPD (See Lecture Notes for
explanation).
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Similarly, since 2D − A is SPD,

vT (2D − A)v > 0

vTDv − vTAv > −vTDv

vT (D − A)v > −vTDv .

Also, as above:
vT (D − A) v = µvTDv ,
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

and thus we can continue the above sequence of inequalities:

µvTDv > −vTDv

(µ+ 1)vTDv > 0

⇒ µ > −1, since D is SPD.

Hence, −1 < µ < 1 ⇒ ρ
(
G J
)
< 1, i.e. a Jacobi iteration

converges. □
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Theorem 4
If A is SPD then GS and SOR (for 0 < ω < 2) both converge.

The optimal value of ω for SOR is not known in general.

It is only known for special cases, e.g., for A that are
tridiagonal, and SPD, we have

ωopt =
2

1 +
√

1− ρ(GJ)2
,

where GJ is Jacobi’s iteration matrix.

[Proof still needed]
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Gauss-Seidel and Jacobi also converge for another class of
matrices, called M-matrices.

Definition 3.1
A is an M-matrix if

1 aii > 0,

2 aij ≤ 0 for i ̸= j ,

3 A−1 exists and (A−1)ij ≥ 0,∀i , j .

Theorem 5
If A is an M-matrix then Jacobi and GS converge and

ρ(I −M−1
GSA) ≤ ρ(I −M−1

J A) < 1,

i.e., GS converges at least as rapidly as Jacobi.

[Proof still needed]
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Stationary iteration meth-
ods are often slow for
low-frequency error com-
ponents. Their modern
use is often in “multigrid”
methods, that use multiple
grid levels to find a solu-
tion more quickly.

Since low frequency data
has relatively high fre-
quency on coarser grids,
those errors can be elim-
inated more quickly, by
transferring the solution
between levels.
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Analytical expressions can be found for eigendecompositions of
certain matrices. This can give us a sense for how our iterative
schemes fare in practice. We will consider the familiar 2D finite
difference Laplacian matrix for the Poisson equation:

−∇ · ∇u = f ,

−uxx − uyy = f .

Note that the negative sign in front of the Laplacian makes the
finite difference matrix positive definite (otherwise it is negative
definite).
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Theorem 6
Let A be the negative of a 2D Laplacian matrix with cell size h and
m grid points in each axis. Then the exact eigenvalues are

λij =
4

h2

[
sin2

(
πhi

2

)
+ sin2

(
πhj

2

)]
for 1 ≤ i , j ≤ m.

[Proof still needed]
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

Note that the smallest eigenvalue is

λmin =
8

h2
sin2

(
πh

2

)
,

and the largest eigenvalue is

λmax =
8

h2
sin2

(
mπh

2

)
,

=
8

h2
sin2

(π
2
(1− h)

)
, using h =

1

m + 1
or mh = 1− h,

=
8

h2
cos2

(
πh

2

)
, using sin

(π
2
− u
)
= cos(u).
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation

The matrix A is both SPD and an M-matrix. Furthermore, the
conditioning of A gets worse with finer grids, e.g., consider two
grid resolution cases

1) h =
1

10
, m = 9,

λmin ≈ 19.6,

λmax ≈ 780,

κ2 =
λmax

λmin

≈ 40.

2) h =
1

100
, m = 99,

λmin ≈ 19.7,

λmax ≈ 80000,

κ2 =
λmax

λmin

≈ 4000.

Finer Resolution → Worse conditioning.
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Richardson

We will finish this lecture by showing convergence for the
Poisson equation with the stationary iterative methods.

For the Richardson iteration we have

ρ(I − θA) = max

{∣∣∣∣1− θ
8

h2
sin2

(
πh

2

)∣∣∣∣ , ∣∣∣∣1− θ
8

h2
cos2

(
πh

2

)∣∣∣∣} .

Hence, Richardson converges for

0 < θ <
2

λmax
=

h2

4 cos2
(
πh
2

) .
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Richardson

The optimal θ is

θopt =
2

λmax + λmin
=

2

8
h2

(
�����������: 1

cos2
(
πh
2

)
+ sin2

(
πh
2

)) =
h2

4
,

which gives optimal convergence with

ρopt =
λmax − λmin

λmax + λmin

=
8
h2

(
cos2

(
πh
2

)
− sin2

(
πh
2

))
8
h2

= cos2
(
πh

2

)
− sin2

(
πh

2

)
= 1− 2 sin2

(
πh

2

)
, since cos2 x = 1− sin2 x

= cos(πh), since 1− 2 sin2(u) = cos(2u). 26 / 31



Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Jacobi

Since

D =
4

h2
I

= θ−1
opt I ,

therefore we have that

GJ = I − D−1A

= I − θoptA.

Therefore, Jacobi iteration is equivalent to the optimal Richardson
iteration for this case, and hence

ρ = cos(πh).
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - Jacobi

The Taylor expansion of cos(x) gives

cos(x) = 1− x2

2
+

x4

4
+ . . . .

Therefore,

ρ
(
G J
)

= ρ
(
I − D−1A

)
= cos(πh)

= 1− π2h2

2
+ O

(
h4
)
.

For small h, Jacobi (and optimal Richardson) has slow
convergence, since ρ

(
G J
)
≈ 1.
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Convergence of Iterative Methods - Convergence on
Discrete Poisson Equation - GS and SOR

The spectral radius for Gauss-Seidel is the square of that for Jacobi
[Proof still needed - See 1948 Paper “On the Solution of
Linear Simultaneous Equations By Iteration”, by Stein and
Rosenberg], and so we have

ρ
(
I −M−1

GSA
)

=
[
ρ(I −M−1

J A)
]2

= cos2(πh),

= 1− sin2(πh),

= 1− π2h2 + O(h4). (Taylor expansion)

Notice there is no division by 2 compared to Jacobi, so GS
convergence is 2 times better than Jacobi.

However, this is only a constant factor, therefore GS is still
slow for small h.

This relationship is typical for SPD systems.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

For SOR we have that

ωopt =
2

1 + sin(πh)
,

and thus

ρopt = ωopt − 1

=
1− sin(πh)

1 + sin(πh)
,

= 1− 2πh + O(h2).

Therefore, optimal SOR is much faster than GS/Jacobi/Richardson
since the h factor is not squared. For example, with h = 0.1 we
have

ρ(GJ) = 0.95,

ρ(GGS) = 0.9,

ρ(GSOR) = 0.37.
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Convergence of Iterative Methods - Jacobi, Gauss-Seidel,
& SOR Convergence

Run the demo code StationaryIterativeConvergence.m to see
a comparison of Jacobi, GS, SOR, and optimal SOR iterations for
solving the Laplace equation (i.e., the Poisson equation with
f = 0). It is apparent from the demo that optimal SOR converges
much faster.
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