
Lecture 22: Convergence of Iterative Methods

July 20, 2025

0 / 31

Lecture 22: Convergence of Iterative Methods - Outline

1 Conjugate Gradient Convergence
2 Preconditioning Idea

1 Symmetric Preconditioning

3 Common Preconditioners
1 SGS Implementation
2 “Incomplete” Cholesky preconditioning

4 Extensions

5 (Last) Graphics Application

1 / 31

Convergence of Iterative Methods - Introduction

In this final lecture of new material for which you will be
responsible, we will examine the convergence of the conjugate
gradient method in more detail.

We then introduce the idea of preconditioning to accelerate
convergence of the conjugate gradient method.

The conjugate gradient method was first introduced in
Lecture 09.

2 / 31

Convergence of Iterative Methods
Assumption: A is SPD.
We will need the following fact soon. For any k ,

e(k) = x − x (k), so that

e(0) = x − x (0), and

Ae(0) = A
(
x − x (0)

)
= Ax − Ax (0)

= b − Ax (0)

= r (0).

Recall, at each step, CG finds the best solution x (k) in the span of
search vectors so far, under the A-norm. That is, the CG method
minimizes ∥∥∥e(k)∥∥∥

A
=
∥∥∥x − x (k)

∥∥∥
A
= min

x ′∈Kk (A)

∥∥x − x ′
∥∥
A
,

where x is the true solution and Kk is a Krylov subspace (see
Lecture 09).

3 / 31

Convergence of Iterative Methods
We can write

∥∥∥e(k)∥∥∥
A

= min

∥∥∥∥∥∥∥∥∥∥∥
x −

(
x (0) +

k−1∑
i=0

αip
(i)

)
︸ ︷︷ ︸

x ′∈Kk (A)

∥∥∥∥∥∥∥∥∥∥∥
A

, for αi ∈ R

= min

∥∥∥∥∥x − x (0) −
k−1∑
i=0

αip
(i)

∥∥∥∥∥
A

= min

∥∥∥∥∥e(0) −
k−1∑
i=0

αip
(i)

∥∥∥∥∥
A

= min

∥∥∥∥∥e(0) +
k−1∑
i=0

γiA
(i)r (0)

∥∥∥∥∥
A

, for γi ∈ R,

since span{p(0), p(1), . . . , p(k−1)} =
span{r (0),Ar (0),A2r (0), . . . ,Ak−1r (0)}, as in Lecture 09.

4 / 31

Convergence of Iterative Methods
Now define the following polynomial function

Qk−1(x) = γ0 + γ1x + γ2x
2 + . . .+ γk−1x

k−1.

Then taking the matrix A as the argument we have

Qk−1(A) = γ0 + γ1A+ γ2A
2 + . . .+ γk−1A

k−1,

=
k−1∑
i=0

γiA
i .

Now we can rewrite the error as

e(k) = e(0) +
k−1∑
i=0

γiA
i r (0)

= e(0) + Qk−1(A)r
(0),

= e(0) + Qk−1(A)Ae
(0), since r (0) = Ae(0), as above

= (I + Qk−1(A)A︸ ︷︷ ︸
Another polynomial

)e(0).

5 / 31

Convergence of Iterative Methods
Define Pk(x) = 1 + Qk−1(x)x , then deg(Pk) ≤ k and Pk(0) = 1.
So, we have e(k) = Pk(A)e

(0) and therefore

∥e(k)∥A
= min

{∥∥∥Pk(A)e
(0)
∥∥∥
A
: Pk(x) = poly. of deg. ≤ k with Pk(0) = 1

}
.

That is, if P̃k(x) is any polynomial of degree ≤ k with P̃k(0) = 1

then
∥∥e(k)∥∥

A
≤
∥∥∥P̃k(A)e

(0)
∥∥∥
A
. So CG finds (implicitly) the optimal

polynomial to minimize the error in the A-norm. By choosing a
particular polynomial we can obtain a bound on the error, given in
the next theorem (see Shewchuk’s article for expanded derivation).

Theorem 1

∥∥∥e(k)∥∥∥
A
≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k ∥∥∥e(0)∥∥∥
A
.

[Proof still needed]
6 / 31

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Convergence of Iterative Methods

The actual CG convergence depends on all eigenvalues and is often
better. The above is a worst case upper bound. Let us consider A
with only 3 distinct eigenvalues

λ1 < λ2 < λ3 , some eigenvalue may have mulitplicity > 1.

We can show convergence in 3 iterations by choosing a “good”
polynomial!

7 / 31

Convergence of Iterative Methods

Write the initial error in terms of unit orthogonal, eigenvectors
vj , of A

e(0) =
n∑

j=1

ξjvj , for some coefficients ξi .

Also observe Pk(A)vj = Pk(λj)vj (See Lecture Notes).

Now, form a Lagrange polynomial P3(x) with degree ≤ 3
such that P3(0) = 1 and P3(λj) = 0 for j = 1, 2, 3.

8 / 31

Convergence of Iterative Methods

Note that

e(k) = Pk(A)
n∑

j=1

ξivj ,

=
n∑

j=1

ξjPk(λj)vj , since Pk(A)vj = Pk(λj)vj

⇒ Ae(k) =
n∑

j=1

ξjPk(λj)λjvj , since vj is an eigenvector of A

⇒
∥∥∥e(k)∥∥∥2

A
=

n∑
j=1

ξ2j [Pk(λj)]
2 λj , by the orthonormality of the vjs

9 / 31

Convergence of Iterative Methods

Hence,∥∥∥e(3)∥∥∥2
A

≤︸︷︷︸
earlier observation, for P3

∥∥∥P3(A)e
(0)
∥∥∥2
A

=︸︷︷︸
See Lecture Notes

n∑
j=1

ξ2j

P3(λj)︸ ︷︷ ︸
=0

2

λj

= 0,

which means the error will be zero after 3 iterations. Since CG
picks the optimal polynomial, it converges at least as fast as this,
i.e., in 3 steps regardless of κ(A).

10 / 31

Preconditioning Idea

We have seen that depending on eigenvalues of A,
convergence of CG may still be rather slow.

For the discretization of the Poisson equation, the asymptotic
convergence of SOR (with optimal ω) matches CG. (Note
that CG has the advantage of not having to find any optimal
parameter.)

How can we improve the speed of convergence for CG even
further?

We speed up convergence using the idea of preconditioning.

We want to find a modified linear system, with nicer
properties, but has the same solution.

We want a better condition number κ(A) (or more clustered
eigenvalues), to achieve faster convergence, i.e., fewer CG
iterations.

11 / 31

Preconditioning Idea

Consider the system

Ax = b versus (M−1A)x = M−1b.

The same x is a solution to both problems, but we would prefer to
solve the “easier” one. In this situation the matrix M is called a
preconditioner. Similar to splitting in stationary iterative
methods, we desire

1 M ≈ A, (exercise: why?)

2 M−1 to be easy to build, or rather, My = c to be cheap to
solve. (exercise: why?)

12 / 31

Preconditioning Idea - Symmetric Preconditioning

To use CG, we need our modified system to also be SPD.

Note that M−1A is not necessarily SPD, even if M and A are.

If we let M be SPD, then a Cholesky factorization M = LLT

exists.

We instead form a new modified system as

L−1AL−T︸ ︷︷ ︸
Ã

LT x︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

.

13 / 31

Preconditioning Idea

Notice Ã is SPD by construction. The preconditioner is effectively
split into left and right parts.
Claim: Ã is similar to M−1A.
Proof: Observe that

M−1A =
(
LLT

)−1
A

= L−TL−1A, so that

LT
(
M−1A

)
L−T = LT

(
L−TL−1A

)
L−T

= L−1AL−T

= Ã,

and hence Ã is a similarity transform of M−1A.
Moral: This could now be solved by CG and this system has the
same convergence behavior, since M−1A and L−1AL−T have the
same eigenvalues!

14 / 31

Preconditioning Idea

This leads to a näıve approach for preconditioning CG. The näıve
approach is:

form the modified system, L−1AL−T x̃ = b̃,

apply basic CG,

transform solution x̃ to recover x (solve LT x = x̃).

The downside of this näıve approach is that it requires factoring
M, which is potentially very costly. We must also run the full LLT

process on it, possibly leading to a large fill.

15 / 31

Common Preconditioners

A better approach would be to not form Ã explicitly.

Instead we modify the CG algorithm itself (via change of
variables) to include a single new “preconditioning step”

xk = M−1rk .

The theory only requires M to be SPD and we must be able
to solve Mzk = rk (hopefully cheaply).

With this better approach, there is no need for factorization of
M = LLT .

The preconditioned CG method is given in Algorithm 1.

Note that we essentially add one extra line; if M = I , we
recover basic CG.

16 / 31

Common Preconditioners

Algorithm 1 Preconditioned CG Algorithm

x0 = initial guess
r0 = b − Ax0

for k = 0, 1, 2, . . . , n − 1
zk = M−1rk (or preferably solve Mzk = rk)

βk =

{
0 if k = 0

(zk ,rk)
(zk−1,rk−1)

otherwise

pk =

{
zk if k = 0
zk + βkpk−1 otherwise

αk = (zk ,rk)
(pk ,Apk)

xk+1 = xk + αkpk

rk+1 = rk − αkApk

end for

17 / 31

Common Preconditioners

Common preconditioners for M often are related to our stationary
iterative methods:

Jacobi preconditioning:

MJ = D (easiest! but not great),

Symmetric Gauss-Seidel:

MSGS = (D − L)D−1(D − U),

Symmetric SOR:

MSSOR = (D − ωL)D−1(D − ωU).

18 / 31

Common Preconditioners - SGS Implementation

One can express

MSGS = (D − L)D−1(D − U) = LMUM ,

as an LU factorization where

LM = (D − L)D−1,

UM = (D − U).

Since LM is unit lower triangular and UM is upper triangular, SGS
preconditioning zk = M−1rk just requires two triangular solves:

(I − LD−1)y = rk ,

(D − U)zk = y .

19 / 31

Common Preconditioners - “Incomplete” Cholesky
preconditioning

The LMUM factorization above gives us the hint for using
other factorizations.

With incomplete Cholesky (IC) preconditioning we find a
partial Cholesky factorization where LLT ≈ A (only
approximately).

We construct L via a Cholesky-like process, but skip (some or
all) steps that would introduce new non-zero entries.

The IC preconditioner is not guaranteed to exist except in
special cases (e.g., Laplacian, other M-matrices, etc.).

20 / 31

Common Preconditioners - “Incomplete” Cholesky
preconditioning

The figure below shows an example of the sparsity pattern of the
Cholesky and IC factorizations of the discrete Laplacian.

Laplacian A Cholesky Factor Incomplete Cholesky Factor

The sparsity pattern of L in the IC factorization stays close to A’s
compared to the full Cholesky factorization. Therefore,
memory/speed cost remains low, but eigenvalues improve enough
to accelerate CG convergence significantly.

21 / 31

Common Preconditioners - “Incomplete” Cholesky
preconditioning

For example, with the discrete Laplacian for m = 14

κ(A) ≈ 90.5, λmax ≈ 1780, λmin ≈ 19.7, 23 CG iterations for tol = 10−7.

However, setting L = ichol(A) and Ã = L−1AL−T we have

κ(Ã) ≈ 8.9, λmax ≈ 1.2, λmin ≈ 0.135, 14 PCG iterations for tol = 10−7.

Notice, we now have a better condition number, smaller
eigenvalues, and fewer iterations for convergence.

22 / 31

Common Preconditioners - “Incomplete” Cholesky
preconditioning

MATLAB’s CG routine is pcg for preconditioned conjugate
gradient.

It accepts preconditioner(s) as extra arguments. Incomplete
Cholesky preconditioning is supported via ichol.

The demo code PCGDemo.m compares CG, PCG, and optimal
SOR for solving the Laplace equation.

It can be seen from running this code that PCG converges
much faster than the other two methods.

23 / 31

Extensions
A big limitation to the CG method is that it only applies to SPD
matrices. However, many matrices encountered “in the wild” are
not of this form. We briefly discuss how non-SPD matrices are
handled in this section.
Option #1: One could solve the linear system as a least-squares
problem. The solution to minx ∥Ax − b∥22 for square A satisfies
Ax = b. So we just need to solve the normal equations
ATAx = ATb with CG (“CGNR”). For this approach:

Simple to code and ATA is SPD!

The condition is much worse (≈ squared).

Option #2: Extensions of CG ideas (“Krylov solvers”) exist for
general systems:

Symmetric indefinite systems: MINRES, SYMMLQ, . . .,

General non-symmetric: GMRES, BiCGSTAB,

Similar to CG, these aim to satisfy certain optimality properties.
For example, MINRES seeks to minimize the norm of the residual.

24 / 31

Extensions

For preconditioning there are also many others such as:

(sparse) approximate inverse preconditioners,

multilevel/multigrid preconditioners,

parallel preconditioners,

domain decomposition and block preconditioners, etc.

Preconditioners can also be applied to Krylov methods for
indefinite and non-symmetric linear systems (MINRES, GMRES,
etc.). Finding effective preconditioners for Krylov methods can
depend heavily on the specific application problem/domain and its
matrix structure. For more, see Preconditioning Techniques for
Large Linear Systems: A Survey [Benzi 2002].

25 / 31

(Last) Graphics Application

Dr. Christopher Batty here at UWaterloo (and some of his
students) enjoy animating viscous liquids. However, the linear
systems are very large and denser than Poisson/Laplacian. In one
example, of melting the Stanford Bunny, the cost of solving the
linear system for the viscosity costs way more (≈ 95% of total)
than any other step of fluid animation!
Reducing the cost has been tackled in two ways:

Adaptive grid structures,

Specialized multigrid preconditioners.

26 / 31

(Last) Graphics Application

Adaptive grid structures reduce the cost by adding fine grids
only where fine detail is necessary.

In graphics, the interesting visual details are usual near the
boundary.

Therefore, fine grids are used near the boundary and larger
grids are used far away from the boundary.

The size of the overall linear system is therefore smaller
compared to using the fine grid throughout the whole domain.

27 / 31

(Last) Graphics Application

28 / 31

(Last) Graphics Application

The idea of using a multigrid preconditioner is as follows. One
creates a multi-level approximation of the physical domain, perform
“smoothing” at each level (using local Cholesky factorizations),
and use the whole process as part of a CG preconditioner.

29 / 31

(Last) Graphics Application

30 / 31

(Last) Graphics Application

The moral of the story is that familiarity with numerical linear
algebra can enable huge speedups by:

(a) Using existing algorithms more wisely,

(b) Developing specialized algorithms for your problem/matrix.

31 / 31

	Conjugate Gradient Convergence
	Preconditioning Idea
	Symmetric Preconditioning

	Common Preconditioners
	SGS Implementation
	``Incomplete" Cholesky preconditioning

	Extensions
	(Last) Graphics Application

