
Matlab Tutorial

CS 475 - Computational Linear Algebra

Spring 2025

1 / 52

Outline

• Matlab Overview

• Useful Commands

• Matrix Construction and Flow Control

• Script/Function Files

• Basic Graphics

2 / 52

Getting to Matlab

You can access MATLAB at
https://www.mathworks.com/academia/tah-portal/

university-of-waterloo-31483447.html

Use your @uwaterloo.ca email to access MATLAB online, or
to install on your local machine

Problems: see consultants in MC3011

3 / 52

https://www.mathworks.com/academia/tah-portal/university-of-waterloo-31483447.html
https://www.mathworks.com/academia/tah-portal/university-of-waterloo-31483447.html

What is Matlab?

According to The Mathworks:

MATLAB is an integrated technical computing environment
that combines numeric computation, advanced graphics and vi-
sualization, and a high-level programming language.

MATLAB includes hundreds of functions for:

Data analysis and visualization
Numeric and symbolic computation
Engineering and scientific graphics
Modeling, simulation, and prototyping
Programming, application development, and GUI design

4 / 52

Getting Started

Web resources

www.mathworks.com

Books

Mastering Matlab 5/6/7, D. Hanselman, B. Littlefield
Introduction to Scientific Computing, Van Loan
See also Course Web site for other sources

5 / 52

Running Matlab

Macs/PCs (running Matlab locally)

Launch MATLAB from wherever you have installed it.

If using xterm/remote from home: at the UNIX prompt:

Don’t type: matlab
- graphical desktop, slow
Instead, type: matlab -nodesktop -nosplash
-text interface, faster
(other options: matlab -h)

Reset the display permissions if you see the message
Xlib: connection to "x.uwaterloo.ca:0.0" refused by

server

Xlib: Client is not authorized to connect to Server

6 / 52

@rees[102]% matlab -nodesktop -nosplash

< M A T L A B >

Copyright 1984-2002 The MathWorks, Inc.

VR2013b (8.2.0.701) 64-bit (glnxa64)

August 13, 2013

To get started, type one of these: helpwin, helpdesk, or demo.

For product information, visit www.mathworks.com.

>>

7 / 52

How does Matlab work?

Interactive environment

Type commands at the prompt (‘>>’ typically)

Case sensitive

External programs/functions are in M-files (text files with a
.m extension)

Execute M-files by typing the filename (without the .m)

Note: Almost everything in Matlab is an external function
(use the which command to locate the source)

8 / 52

Basic Operations

‘Matrix’ (array) is the only main data type
(everything is a matrix, although entries may be numeric,
logical, char, etc.)

Vectors are 1× N or N × 1 matrices

Scalars are 1× 1 matrices

Addition and subtraction operate entry-wise, while

* ^ \ /

are matrix operations, unless preceded by a dot

Entries are accessed via (row index, column index)

Matrices and vectors are 1-offset
(rows/columns are numbered starting from 1, not 0)

9 / 52

Basic Example 1

>> A = [1 2 3 ; 4 5 6]

A =

1 2 3

4 5 6

>> test = A*A

??? Error using ==> *

Inner matrix dimensions must agree.

>> test = A*A’

test =

14 32

32 77

10 / 52

Basic Example 2

>> A = [1 2 ; 3 4]

A =

1 2

3 4

>> A^2

ans =

7 10

15 22

>> A.^2

ans =

1 4

9 16

11 / 52

Transposes

Strictly, A’ is complex conjugate transpose of A

Usual (non-conjugate) transpose is A.’

>> A = [1+i, 2+2i, 3+3i]

A =

1.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 3.0000i

>> A’

ans =

1.0000 - 1.0000i

2.0000 - 2.0000i

3.0000 - 3.0000i

>> A.’

ans =

1.0000 + 1.0000i

2.0000 + 2.0000i

3.0000 + 3.0000i

12 / 52

More dots

>> A = [1 2; 3 5]

A =

1 2

3 5

>> B = [-5 2; 3 -1]

B =

-5 2

3 -1

>> A*B

ans =

1 0

0 1

>> A.*B

ans =

-5 4

9 -5

13 / 52

Basic Example 3 - Solving Ax=b

>> A = [1,15,4; 2,15,20; 3,30,9];

>> b = [1;22;9];

>> x=A\b

x =

6.0667

-0.5867

0.9333

>> x=inv(A)*b

x =

6.0667

-0.5867

0.9333

14 / 52

Useful commands

help - Obtain help for a specific function

lookfor - Keyword search of help text

more {on/off} - Paging

clear - Remove variables

close - Close figure windows

whos - List currently defined variables

format - Set output format (e.g., number of digits)

% - comment line in an M-file

15 / 52

help

help function - Gives detailed information about ‘function’

Displays the comments at the top of the M-file

Some of the help screens read like UNIX man pages

Related items are listed at the end

Despite the help text, all commands are lower case

Useful command to use when you are stuck

help - Provides a list of topics which can then be searched

16 / 52

lookfor

First command to use when you are stuck

lookfor XYZ - Searches the first comment line for the string
XYZ

Useful if you do not know the function name, but expect that
the function exists

Can be slow

17 / 52

more

more {on/off}
Turn screen paging on or off

Works like the Unix more command

18 / 52

clear

clear X - Remove the variable X

clear X* - Remove all variables starting with string X

clear - Remove all variables

clear all - Removes everything (variables, functions, globals
and MEX links)

Often useful at the beginning of script files

To clear command window: clc

19 / 52

close

close - Close the current figure

close all - Close all figure windows

Useful at the start of script files

20 / 52

whos

who - list all variables

whos - list all variables, with size information

>> whos

Name Size Bytes Class

ans 1x17 34 char array

x 14x21 2352 double array

y 14x22 2464 double array

z 14x21 2352 double array

Grand total is 913 elements using 7202 bytes

Useful if you keep getting array size mismatches (remember that
Matlab is 1-offset)

21 / 52

format

>> 1/3

ans =

0.3333

>> format long

>> 1/3

ans =

0.33333333333333

>> format short e

>> 1/3

ans =

3.3333e-01

help format

22 / 52

Command line tricks

Up/Down arrow keys to cycle through commands

Partially typing a command and hitting up arrow will search
the command stack

Can type multi-line commands, but each line is saved
separately (ie. not very useful for re-entering loop commands)

A command can span two lines by using ... at the end of the
first line

23 / 52

Constructing Matrices

Type in all the numbers directly (semi-colons or new lines
create new rows)

Use ones or zeros

Use the colon notation

start:step:final (e.g. 3:2:7 = [3 5 7])
steps can be negative (e.g. 7:-2:3 = [7 5 3])
start:final assumes a step of 1
colon by itself means ‘all’ (eg. A(1,:) is all entries in row 1)

A variety of other methods exist (load, algebra, other
functions)

Note that vectors and arrays are dynamic

24 / 52

Example

>> m1 = zeros(1,3)

m1 =

0 0 0

>> m2 = ones(3)

m2 =

1 1 1

1 1 1

1 1 1

>> m3(2:3,:) = [m2(3,:); [1:1:3]]

m3 =

0 0 0

1 1 1

1 2 3

25 / 52

Dimensions of Matrices and Vectors

size(A) for matrices, length(x) for vectors

>> A = [1 2 3; 4 5 6]

A =

1 2 3

4 5 6

>> [m n] = size(A)

m =

2

n =

3

>> x = [1 2 3 4]

x =

1 2 3 4

>> length(x)

ans =

4

26 / 52

Control Structures

For statements:

for i = 1:n,

for j = 1:n,

A(i,j) = 1/(i+j-1);

end

end

While loops

while x > 1,

x = x - 1;

end

27 / 52

Control Structures (cont.)

IF statements

if <expression>

<statements>

elseif <expression>

<statements>

.

.

.

else

<statements>

end

28 / 52

Relational and Logical Operators

Relational operators

< <= > >= == ~= (in C: !=)

Logical operators

Matlab C

AND & &&

OR | ||

NOT ~ !

>> A = 1:9

A =

1 2 3 4 5 6 7 8 9

>> tf = (A>2)&(A<6)

tf =

0 0 1 1 1 0 0 0 0

29 / 52

Vectorizing Loops

>> cs475marks = [24 36 11 42 33 55 30];

>> for i=1:length(cs475marks)

cs475marks(i) = 10*cs475marks(i)^(1/2);

end

>> cs475marks

cs475marks =

48.9898 60.0000 33.1662 64.8074 57.4456

74.1620 54.7723

>> cs475marks = [24 36 11 42 33 55 30];

>> cs475marks = 10*cs475marks.^(1/2)

cs475marks =

48.9898 60.0000 33.1662 64.8074 57.4456

74.1620 54.7723

30 / 52

Script files

Matlab commands can be placed in text files with .m
extensions

The commands are interpreted/executed when the filename is
typed at the Matlab prompt (no .m extension)

The effect is identical to typing the commands (i.e. all new
variables remain, all old variables are accessible)

Convenient if the same set of commands need to be executed
with minor changes

Commonly used for ‘driver’ programs on assignments

31 / 52

Script Example

clear all;

close all;

% Initial data

x = [9 8 7 3 1 1 2 5 8 7 5];

y = [4 2 1 2 5 7 9 11 9 8 7];

n = length(x);

% Initialize t

t = zeros(size(x));

% Choose t to be arclength

for i = 2:n

dt = sqrt((x(i)-x(i-1))^2 + (y(i)-y(i-1))^2);

t(i) = t(i-1) +dt;

end

32 / 52

Function Files

Defined in text files with .m extensions

Called by typing the filename (no .m)

Functions do not have access to existing variables (separate
scope)

Functions can accept/return zero or more values

Control is lost when the end of the file is reached, or the
command return is encountered

33 / 52

Function Example

function [newmarks] = bell(oldmarks, method)

% Whatever appears here is displayed when the user

% types ‘help bell’

% This line will not appear in the help text

if method == 1

newmarks = 10*oldmarks.^(1/2);

elseif method == 2

newmarks = oldmarks + 10*ones(1, length(oldmarks));

else

newmarks = oldmarks;

end

return

34 / 52

Function Example

>> help bell

Whatever appears here is displayed when the user

types ‘help bell’

>> m = [23 67 43 49 75 55];

>> bell(m,1)

ans =

47.9583 81.8535 65.5744 70.0000 86.6025 74.1620

>> m_new = bell(m,2)

m_new =

33 77 53 59 85 65

35 / 52

Debugging

See help debug

Set a breakpoint with dbstop

Trace through the execution with dbstep

Show the execution stack with dbstack

Continue execution with dbcont

Quit debugging with dbquit

36 / 52

Text Strings

Use single quotes to define text: ’string’

Use disp to display text without the associated variable name
(also works for variables)

Can have an array of strings if each string has the same length

Can convert from numbers to strings using the num2str
command

>> a = 1;

>> b = 5;

>> t = [’Plot ’ num2str(a) ’ of ’ num2str(b)];

>> disp(t)

Plot 1 of 5

37 / 52

Graphics

Matlab has excellent graphics support for experimenting with
data

Since the data is ‘live’, you can quickly and easily change
plots and figures

Figure windows can easily be saved and printed (as eps or pdf
for assignments)

Figures can be edited by clicking on edit in Figure Window

38 / 52

Plots

plot(x,y) - Basic plotting command

plot(x,y,’opts’)- opts specifies characteristics of the
curve (color, style and data markers)

help plot - Details on options available

Can plot multiple curves on a single figure:
plot(x1,y1,’opt1’,x2,y2,’opt2’)

or use hold on

Can add title, axis labels and legend with appropriate
commands

39 / 52

2D plots

>> x = [1:1:10];

>> y_lin = x;

>> y_quad = x.^2;

>> subplot(2,1,1), plot(x,y_lin,’bo:’)

>> title(’Linear Function’)

>> xlabel(’X axis’)

>> ylabel(’Y axis’)

>> subplot(2,1,2), plot(x,y_quad,’r+-’)

>> print -deps fig1.eps

>> close

40 / 52

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
Linear Function

X axis

Y
 a

xi
s

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

41 / 52

2D plots (cont.)

>> x=linspace(1,10,10);

>> y_lin = x

y_lin =

1 2 3 4 5 6 7 8 9 10

>> y_log = logspace(0,1,10) % 10^[equally spaced 0..1]

y_log =

Columns 1 through 6

1.0000 1.2915 1.6681 2.1544 2.7826 3.5938

Columns 7 through 10

4.6416 5.9948 7.7426 10.0000

>> plot(x,y_lin,’*-.’)

>> hold on

>> plot(x,y_log,’x--’)

>> axis([0 15 0 11])

>> legend(’linear’, ’exponential’)

42 / 52

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

11

linear
exponential

43 / 52

3D plots

>> figure

>> x=[0:2*pi/20:2*pi];

>> y=x;

>> z=sin(x)’*cos(y);

>> surf(x,y,z)

>> colormap(’bone’)

>> view(-30,30)

>> print -deps mesh3d.eps

44 / 52

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

−1

−0.5

0

0.5

1

45 / 52

Efficiency Issues

Vectorize loops whenever possible

Pre-allocate arrays whenever possible

We will be checking for efficient code on assignments if we
mention this specifically

Otherwise, don’t worry too much about this (but your code
may take a long time (:)

46 / 52

Vectorization Example: Monte Carlo Simulation
Slow code:

...

S_new = zeros(N_sim,1);

for m=1:N_sim % simulation loop

S = S_init;

%

% one path

%

for i=1:N % timestep loop

S = S + S*(drift + sigma_sqrt_delt*randn(1,1));

S = max(0.0, S);

% check to make sure that S_new cannot be < 0

end % timestep loop

S_new(m,1) = S;

end % simulation loop

47 / 52

Vectorization Example: Monte Carlo Simulation
Fast code:

...

S_new = zeros(N_sim,1);

S_old(1:N_sim,1) = S_init;

for i=1:N % timestep loop

% now, for each timestep, generate info for

% all simulations

% now, only one explicit loop, second loop

% replaced by vector commands

S_new(:,1) = S_old(:,1) +...

S_old(:,1).*(drift + sigma_sqrt_delt*randn(N_sim,1));

S_new(:,1) = max(0.0, S_new(:,1));

% check to make sure that S_new cannot be < 0

S_old(:,1) = S_new(:,1);

end % timestep loop

48 / 52

Once Again: Matlab is Matrix Oriented

Most common source of errors

All entities in Matlab are matrices by default

A common cause of errors: size mismatch

>> a = 1;

>> size(a)

ans =

1 1

This sometimes causes unexpected results when multiplying
objects

There is a difference between a row vector and a column
vector!

Usual rules for matrix multiplication must be followed

49 / 52

Examples:

>> a = [1 2 3]; b = [4 5 6];

>> a’*b

ans =

4 5 6

8 10 12

12 15 18

>> a*b’

ans =

32

>> a*b

??? Error using ==> mtimes

Inner matrix dimensions must agree.

50 / 52

Matrix Condition Numbers

The matrix condition number, κ(A) = ∥A∥∥A−1∥ (where

∥A∥ = max ∥Ax∥
∥x∥), provides a measure for the stability of

solutions to the system Ax = b, under small changes to A.

We will use condition numbers later on.

Note that κ

depends on the choice of norm, ∥ · ∥, and
is non-negative.

MATLAB has 2 built-in functions for computing the condition
number of a matrix, A:

cond(A), which uses the 2-norm, and
cond(A,P), which uses the P-norm.

51 / 52

Summary

Use help and lookfor on a regular basis

Use more on and semi-colons to maintain an intelligible display

When interpreting error messages, remember that all variables
are matrices

Use script files and functions to automate repetitive tasks
(anything over 5 lines should probably be in an M-file)

→ On assignments, you should hand in hard copy
of all M-files used

Try to use operations on vectors/matrices, instead of loop
constructs

52 / 52

