

# Lecture 1

Q&A  
Intro to ML  
Prediction phs by type of output

# Lecture Notes 0 – Intro to Machine Learning

Marina Meilă  
[mmp@uwaterloo.ca](mailto:mmp@uwaterloo.ca)

With Thanks to Pascal Poupart & Gautam Kamath  
Cheriton School of Computer Science  
University of Waterloo

January 6, 2026

## Course Logistics

## Intro to Machine Learning

## Resources

- ▶ Course website
- ▶ LEARN – submit homework code
- ▶ Crowdmark – submit homework written part (single pdf)
- ▶ Piazza – discussions, asking questions, announcements
- ▶ ...

## Format and grading

- ▶ Lectures – in person, not recorded
- ▶ In class participation – ask questions, answer my questions
- ▶ Homework – about weekly, about 1/2 of homeworks not graded
- ▶ Quizzes – announced, in class, about 3-4 total
- ▶ NO midterm exam
- ▶ Final exam (2h)
- ▶ TA Office hours: 2 hours / week (t.b. scheduled)
- ▶ Instructor Office Hour: Mondays 2-3pm, in person, location TBA

Grade  $\approx$  60% (homework + quizzes) + 35% final exam + 5% participation

These percentages may change by  $\pm 5\%$ .

480 vs 680

↑                    ↓ more [difficult] questions on HW & Exam

Some sections of material not required

## What will you learn in this course?

- ▶ Machine Learning (ML) problems (e.g. prediction, classification, clustering)
- ▶ ML models (learners, or predictors) (e.g. decision trees, neural networks (nn), nearest neighbors (NN))
- ▶ Training algorithms (= "learning algorithms")
- ▶ ML concepts (e.g. bias and variance, decision regions, complexity (of a model))
- ▶ Statistics (e.g. MaxLikelihood, Bayesian inference)
- ▶ Optimization (e.g. local and global minimum, gradient descent)

# Taxonomies

... all of them incomplete

- ▶ Machine Learning Problems

- ▶ Unsupervised
- ▶ Supervised
- ▶ (Semi-supervised)
- ▶ Reinforcement

- ▶ Machine learning models (statistical predictors)

- ▶ Parametric
- ▶ Non-parametric

- ▶ Statistical inference paradigms

- ▶ Bayesian
- ▶ Maximum Likelihood (ML)
- ▶ Penalized Likelihood
- ▶ Loss-based



These lists are meant to show that in this course we will not adopt a particular paradigm, but we will touch on most of them.

# Plan for 480/680

## ► Supervised Learning (Prediction)

- ▶ Predictor examples
- ▶ Basic concepts: decision region, loss function, generative vs discriminative, bias-variance tradeoff
- ▶ Training predictors: gradient descent, [Newton method]
- ▶ [Combining predictors: bagging, boosting, additive models]
- ▶ Regularized predictors: model selection, support vector machines, L1 regularization,
- ▶ Learning theory and model selection basics

## ► Unsupervised Learning

- ▶ Clustering: parametric, non-parametric
- ▶ [Graphical models intro]
- ▶ [Non-linear dimension reduction and geometric learning]
- ▶ [Semi-supervised learning]
- ▶ [Modeling graph data]

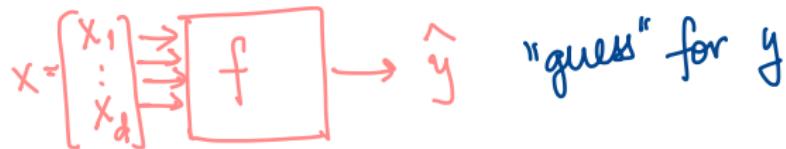
## ► [Reinforcement Learning]

480/680

# Supervised Learning (prediction)

**Problem** Given input  $x \in \mathbb{R}^d$ , output some property  $y = f(x)$

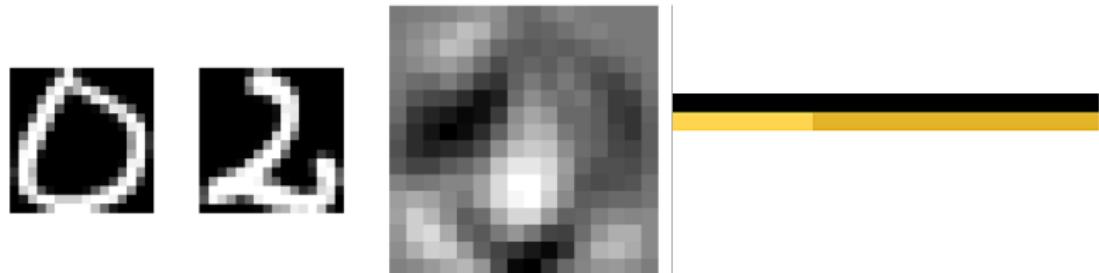
- ▶  $x$  is vector of attributes, features, inputs, covariates (if you are a statistician), ...
- ▶  $y$  is **label**
- ▶ Data  $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$  used for learning is **labeled data**
- ▶ First encounter with randomness  $\mathcal{D}$  is **sampled** from a distribution  $P_{XY}$ . Goal is to learn  $P_{Y|X}$ .



$$(x^i, y^i) \sim \text{iid } P_{XY} \quad i=1:N$$

$$P_{Y|X}$$

## Example: Digit classification



| Database (80,000 images) |   |   |   |   |   |   |   |   |  |
|--------------------------|---|---|---|---|---|---|---|---|--|
| 1                        | 1 | 1 | 1 | 2 | 2 | 2 | 2 |   |  |
| 3                        | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 |  |
| 5                        | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |  |
| 7                        | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 |  |
| 9                        | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 |  |

$y = 4 \in \{0:9\}$   
 $x \in \{0:255\}^{28 \times 28}$

## Unsupervised learning

- ▶ Learn **the structure** of a distribution  $P_X$  from **unlabeled** data  $\{x^1, x^2, \dots, x^n\} \sim P_X$ 
  - ▶ Clustering – find groups in data (if they exist)
  - ▶ Dimension reduction – PCA, non-linear dimension reduction
  - ▶ Sparse dependencies – graphical models, sparse regression
  - ▶ Causal structure

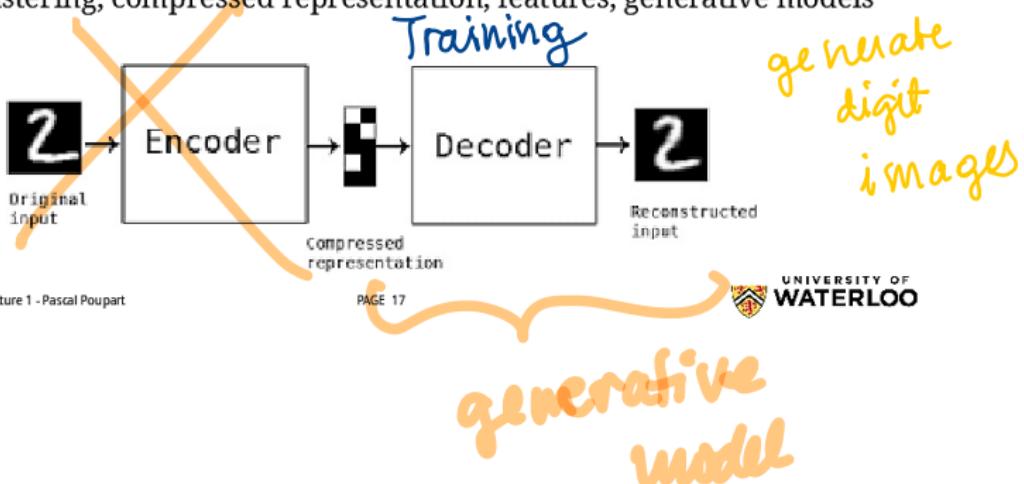
7 7  
2 2

# Unsupervised learning

- ▶ Learn the **structure** of a distribution  $P_X$  from **unlabeled** data  $\{x^1, x^2, \dots x^n\}$ 
  - ▶ Clustering – find groups in data (if they exist)
  - ▶ Dimension reduction – PCA, non-linear dimension reduction
  - ▶ Sparse dependencies – graphical models, sparse regression
  - ▶ Causal structure
- ▶ Learn a **distribution**  $P_X$  from **unlabeled** data  $\{x^1, x^2, \dots x^n\}$  – Density estimation, Autoencoders, GANs, “generative models”

# Unsupervised Learning

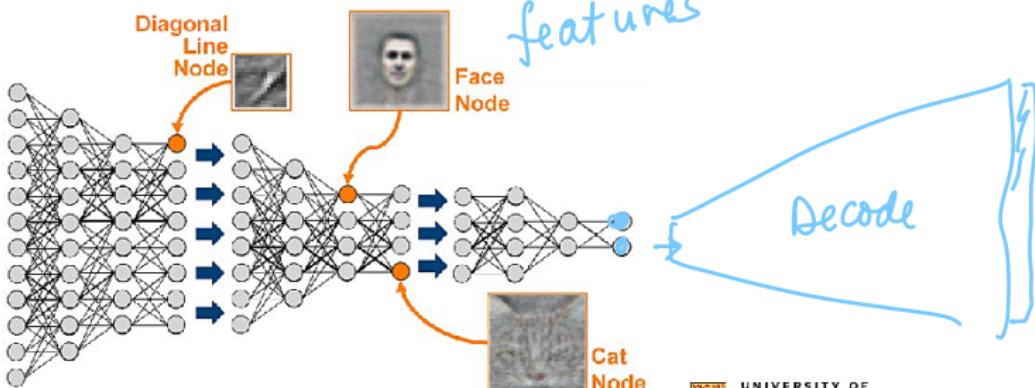
- Output is not given as part of training set
- Find model that explains the data
  - E.g. clustering, compressed representation, features, generative models



# Unsupervised Feature Generation

- Encoder trained on large number of images

high-level  
features



# Unsupervised Image Generation

- Which images are real? And which ones are fake?

Real



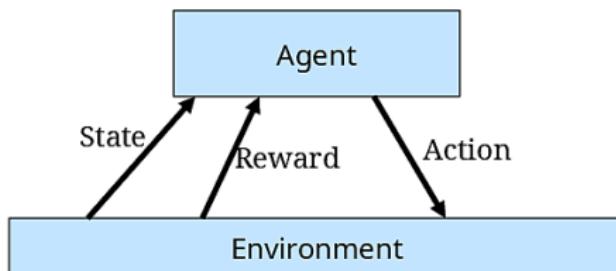
CelebA (Liu et al., 2015)



Fake!

- Image generation: variational autoencoders, generative adversarial networks, diffusion models

# Reinforcement Learning Problem



**Goal:** Learn to choose actions that maximize rewards

## Combining Unsupervised, Supervised and Reinforcement Learning

- Modern systems:
  - Phase 1: unsupervised feature extraction (no labels)
  - Phase 2: supervised training (exploit labels)
  - Phase 3: fine tune by reinforcement learning (exploit reinforcements)
- Alpha Go: supervised + reinforcement learning
- Sentiment analysis with BERT: unsupervised + supervised learning
- ChatGPT: supervised + reinforcement learning

## This course

- ▶ Supervised learning
- ▶ Unsupervised learning (some)
- ▶ But not Reinforcement Learning – see CS 486/686/885  
<https://cs.uwaterloo.ca/~ppoupart>

# Lecture Notes I – Examples of Predictors

Marina Meilă  
[mmp@uwaterloo.ca](mailto:mmp@uwaterloo.ca)

With Thanks to Pascal Poupart & Gautam Kamath  
Cheriton School of Computer Science  
University of Waterloo

January 6, 2026

## Prediction problems by the type of output

### The “learning” paradigm and vocabulary

### The Nearest-Neighbor and kernel predictors

### Some concepts in Classification

#### Linear predictors

Least squares regression

Linear Discriminant Analysis (LDA)

QDA (Quadratic Discriminant Analysis)

Logistic Regression

The PERCEPTRON algorithm

#### Classification and regression tree(s) (CART)

#### The Naive Bayes classifier

**Reading** HTF Ch.: 2.3.1 Linear regression, 2.3.2 Nearest neighbor, 4.1–4 Linear classification, 6.1–3. Kernel regression, 6.6.2 kernel classifiers, 6.6.3 Naive Bayes, 9.2 CART, 11.3 Neural networks, Murphy Ch.: 1.4.2 nearest neighbors, 1.4.4 linear regression, 1.4.5 logistic regression, 3.5 and 10.2.1 Naive Bayes, 4.2.1–3 linear and quadratic discriminant, 14.7.3– kernel regression, locally weighted regression, 16.2.1–4 CART, (16.5 neural nets), Bach Ch.:

## Prediction problems by the type of output

In supervised learning, the problem is *predicting* the value of an **output** (or **response** – typically in regression, or **label** – typically in classification) variable  $Y$  from the values of some observed variables called **inputs** (or **predictors**, **features**, **attributes**)  $(X_1, X_2, \dots, X_d) = X$ . Typically we will consider that the input  $X \in \mathbb{R}^d$ .

## Prediction problems by the type of output

In supervised learning, the problem is *predicting* the value of an **output** (or **response** – typically in regression, or **label** – typically in classification) variable  $Y$  from the values of some observed variables called **inputs** (or **predictors**, **features**, **attributes**)  $(X_1, X_2, \dots, X_d) = X$ . Typically we will consider that the input  $X \in \mathbb{R}^d$ . Prediction problems are classified by the type of response  $Y \in \mathcal{Y}$ :

- ▶ regression:  $Y \in \mathbb{R}$
- ▶ binary classification:  $Y \in \{-1, +1\}$
- ▶ multiway classification:  $Y \in \{y_1, \dots, y_m\}$  a finite set
- ▶ ranking:  $Y \in \mathbb{S}_p$  the set of permutations of  $p$  objects
- ▶ multilabel classification  $Y \subseteq \{y_1, \dots, y_m\}$  a finite set (i.e. each  $X$  can have several labels)
- ▶ structured prediction  $Y \in \Omega_V$  the state space of a graphical model over a set of [discrete] variables  $V$

## Example (Regression.)

- ▶  $Y$  is the proportion of high-school students who go to college from a given school in given year.  $X$  are school attributes like class size, amount of funding, curriculum (note that they aren't all naturally real valued), median income per family, and other inputs like the state of the economy, etc. Note also that  $Y \in [0, 1]$  here.
- ▶  $Y \geq 0$  is the income of a person, and  $X_j$  are attributes like education, age, years out of school, skills, past income, type of employment.

Economic forecasts are another example of regression. Note that in this problem as well as in the previous, the  $Y$  in the previous period, if observed, could be used as a predictor variable for the next  $Y$ . This is typical of structured prediction problems.

- ▶ Weather prediction is typically a regression problem, as winds, rainfall, temperatures are continuous-valued variables.
- ▶ Predicting the box office totals of a movie. What should the inputs be?
- ▶ Predicting **perovskite** degradation. Perovskites are a type of crystal considered promising for the fabrication of solar cells. In standard use, such a material must have a life time  $Y$  of 30 years. How can one predict which material will last that long without waiting for 30 years?

$Y$  is time to degradation,  $X_j$  are material composition, experimental conditions, and measurements of initial values of physical parameters.