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Prediction problems by the type of output l/

K- NN &

The Nearest-Neighbor and kewssel=seecieters N
Bias -Var Teefodffy 4—

Some concepts in Classification —s _?C{)e (Q' -
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Reading HTF Ch.: 2.3.2 Nearest neighbor, 6.1-3. Kernel regression, 6.6.2 kernel classifiers,,
Murphy Ch.: , Bach Ch.:
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The Nearest-Neighbor predictor

> 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.

Ix) =y

> K-Nearest Neighbor (with K = 3,5 or larger)

1. find the K nearest neighbors of x in D: x1'*/k
2. » for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

P for regression f(x) = % X il affe y' = mean of neighbors' labels

‘ 4 4o
L Find WK oxamplus Wanert X |
A 0 (.“)j $L‘}, I & e X
2. yoo=avghytl. g N T
> No parameters to estimate! K_“’\ V‘N%[“ or
»> No training!
> But all data must be stored (also cglled memory-based learning)
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

1-Nearest Neighbor Classifier

I
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FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Stagistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.2. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-

dicted class 1s hence chosen by majority vote amongst
the 15-nearest neighbors.



Classifiers with real-valued output

Binary classification

» Since y € {£1}, naturally f : X — {£1}

» But sometimes we prefer a classifier f : X — R (from a predictor class F of real-valued
functions)

» In this case, the prediction y is usually

y = sgn(f(x)) (™

This is sometimes known as the sign trick.

Examples of real-valued classifiers

> Logistic Regressian
») Naive Bayes

in both of the above, f(x) = P[Y = 1|X = x] € [0,1]. Hence

5 = sen (00— 2 ®)
(re0-3)

» Support Vector Machines
») Kernel classitiers
» Neural Networks

Sign trick
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The sign function sgn(y) = y/|y| if y # 0 and 0 iff y = 0 turns a real valued variable Y into a
discrete-valued one.




Why real valued 7

» for statistical models f(x) = P[Y = 1| X = x] Example: Logistic regression

» for non-statistical models, |f(x)| measures confidence in prediction y, with |f(x)| ~ 0
meaning low confidence. Example: SVM

> if f is differentiable!, the gradient Vf is used in learning algorithms Examples: Logistic
Regression, neural networks, some forms of linear regression such as Lasso

The margin (assuming y € {+1})

» The margin of a classifier f at point x € X is defined as

2

2

z = yf(x). (9)
& > Note that sgn(z) = yy. | 8

: I L] / %

: > If z >0, y =y and f(x) is correct [0)

§ > If z > 0, then f(x) is correct, and classifier has high confidence

b > If z <0, then f(x) is incorrect, and |z| measures “how wrong" is f on this x

s » Note also that z ~ 0 means that the classification y is not robust, whether correct or not
b3

;

Land V£ not 0 almost everywhere



Real valued multi-way classifiers
> We train m classifier fi.,, : X — R. Then (typically)
y = argmax fi.m(x). (10)
c=1m

¥y = y means the classifier is correct
the training can be done

» independently for each f., c = 1 : m (e.g. generative classifiers — in Lecture I1)
P or at the same time (e.g. neural networks, SVM)

vy

» The margin is defined as
z(x) = f, —maxfc(x) (11)
c#y

In other words
» if y =y (correct), then z = firue — fnextbest > O
> if § # y (mistake), then z = fiue — f; < 0 (since fy(x) is the max of f(x))
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Lecture Notes |-2 — Examples of Predictors. Nearest Neighbor and
Kernel Predictors. Bias and Variance

Marina Meild
mmpQuwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



Training and testing error
> Let D = {(x},y1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

» How “good” is fx?
» Training error = %#(errors of fx on D) = %Z,’-’:I 11 (i)l ) EO‘ Q
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Training and testing error

> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

> How “good” is fy?

» Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i

> Test error Prlfx(x) #y] 4——~ Usor
cares aloont
thie

2
2
3
2
3
8
I
m
g
]
3
=
g
s
]
]
s
2
8
g
S
8
2
3
8
2
K
H
]
5
b




z
z
8
&
B
2
a
@
8
@
3
-
S
S
&
o}
S
S
8
<
S
2
3
a
4]
=
]
3
=
8
3

Training and testing error

Let D = {(x}, y1), (x2,¥?), ... (x",y") }\be the training set and let the K-NN classifier
from D be fx
How “good” is fx?
Training error = %#(errors of fix on D) = %27:1 L1 ()il
Test error Pr[fx(x) # y] for new points (x, y) ~ Pxy
We approximate the test error by using a test set
ptest — {(£1, 1), (%2, 72),... (%", 7" )} from the same Pxy.
/
Thus, in practice, Test error= %;#:(errors of f on Dtest) = % Do L1 =1y

Ny
-}w? T e



Training and testing error for K-NN N=d00

0.12 — T ; T T i i
={ =training error
—J— test error
—&— variance
-------- Bayes error
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Ignore the “variance” and “Bayes error” for now
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Training and testing error for K-NN

0.12

0.1

0.08

0.06

0.04

0.02

Ignore the “variance” and “Bayes error” for now

T

={ =training error
—J— test error

—&— variance

==+ Bayes error

» So, what's happening? For K = 1, training error=0 but test error is large

> As K increases, test error decreases at first, then increases again



The case K = 1: Variance
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» D ~ Pxy = D is random
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The case K = 1: Variance
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» D ~ Pxy = D is random
» Hence any function fx we estimate from D is also random

» Formally, for any fixed x, fx(x) is a random variable, hence it has a variance.
> In this course, we do not explicitly calculate the variance, but we want to know what
increases or decreases it.
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The case of K large:| Bias
(K = 11)
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The case of K large: Bias
(K = 11)

» Bias means to let one's own prior beliefs override the evidence.
» In data science/ML/statistics every model/prediction is a combination of prior belief and
data

» prior = before seeing the data
» (usually) prior belief = prior knowledge, e.g’ from previous experiments

> Bias can take many forms — in this course you will encounter several

» We do not explicitly calculate bias, but we want to identify where it is coming from, and
what increases/decreases it

> One way to look for bias: if a predictor f cannot exactly/accurately predict a training
set, “whatever is causing this” is bias.
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The Bias-Variance trade-off

doka => ondto mnkd
» When bias 7, variance \
let i Y\
data

» When data set size n 7, variance \
c"
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