

Lecture 13

K-NN regression

Real-valued $f(x)$ for classification

Test error/Training error

Bias and Variance (in K-NN)

Posted

L_{I-1} NN

L_{II} Linear

Math Refresh

Fri @ NH

Prediction problems by the type of output ✓

The Nearest-Neighbor and kernel predictors

K-NN

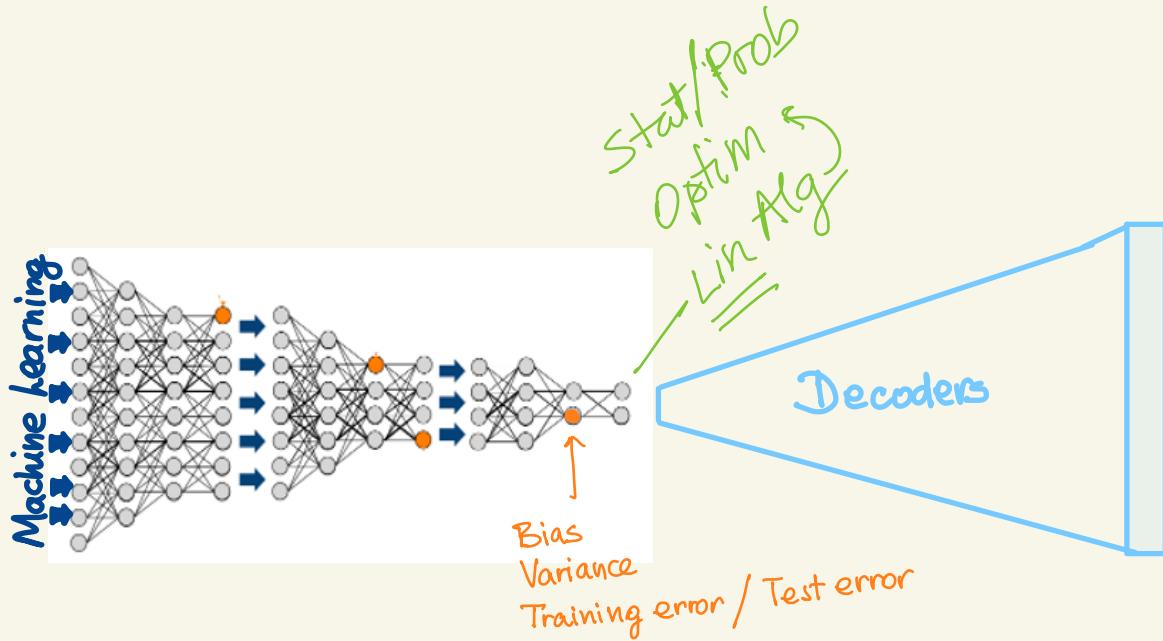
Bias-Var Tradeoff

Some concepts in Classification

$f(x) \in \mathbb{R}$

|| || Test/Train error

Reading HTF Ch.: 2.3.2 Nearest neighbor, 6.1–3. Kernel regression, 6.6.2 kernel classifiers,,
Murphy Ch.: , Bach Ch.:



Predictors

- K-Nearest-Neighbor

Algorithms

Concepts

- Decision Region, Dec. Boundary

The Nearest-Neighbor predictor

- **1-Nearest Neighbor** The label of a point x is assigned as follows:

1. find the example x^i that is **nearest to x** in \mathcal{D} (in Euclidean distance)
2. assign x the label y^i , i.e.

$$\hat{y}(x) = y^i$$

- **K-Nearest Neighbor** (with $K = 3, 5$ or larger)

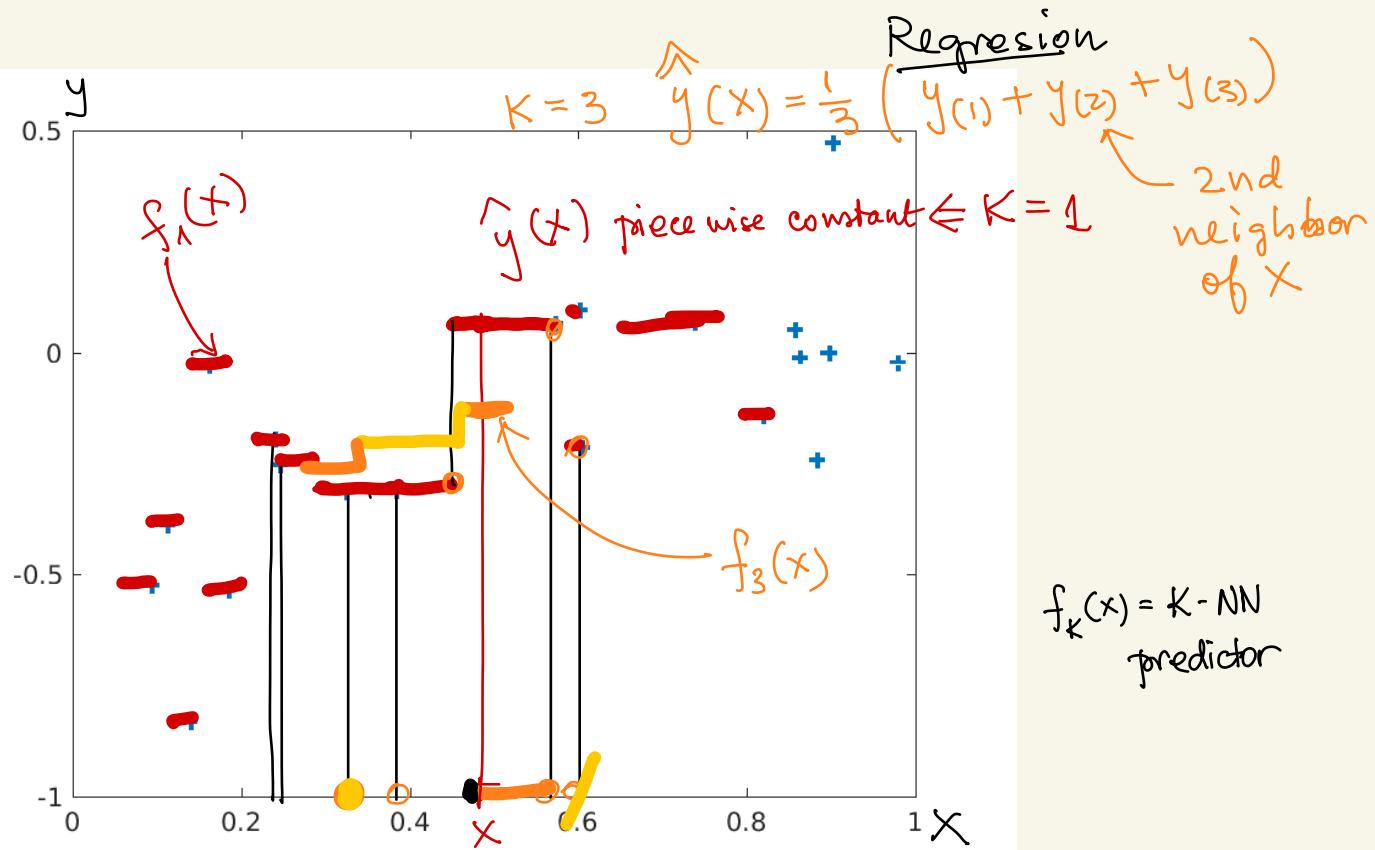
1. find the K nearest neighbors of x in \mathcal{D} : x^1, \dots, x^K
2. ► for classification $f(x) = \text{the most frequent label}$ among the K neighbors (well suited for multiclass)
 - for regression $f(x) = \frac{1}{K} \sum_{i \text{ neighbor of } x} y^i = \text{mean of neighbors' labels}$

avg of the K neighbors

1. Find K examples nearest to x
2. $\hat{y}(x) = \text{avg}\{y^{(1)}, \dots, y^{(K)}\}$ $x^{(1)}, \dots, x^{(K)} \in x^{1:n}$
 \uparrow k^{th} neighbor

- No parameters to estimate!
- No training!
- But all data must be stored (also called **memory-based learning**)

$$y^{(k)} = y^i \text{ iff } x^{(k)} = x^i$$



$$\hat{y}(x) = ?$$

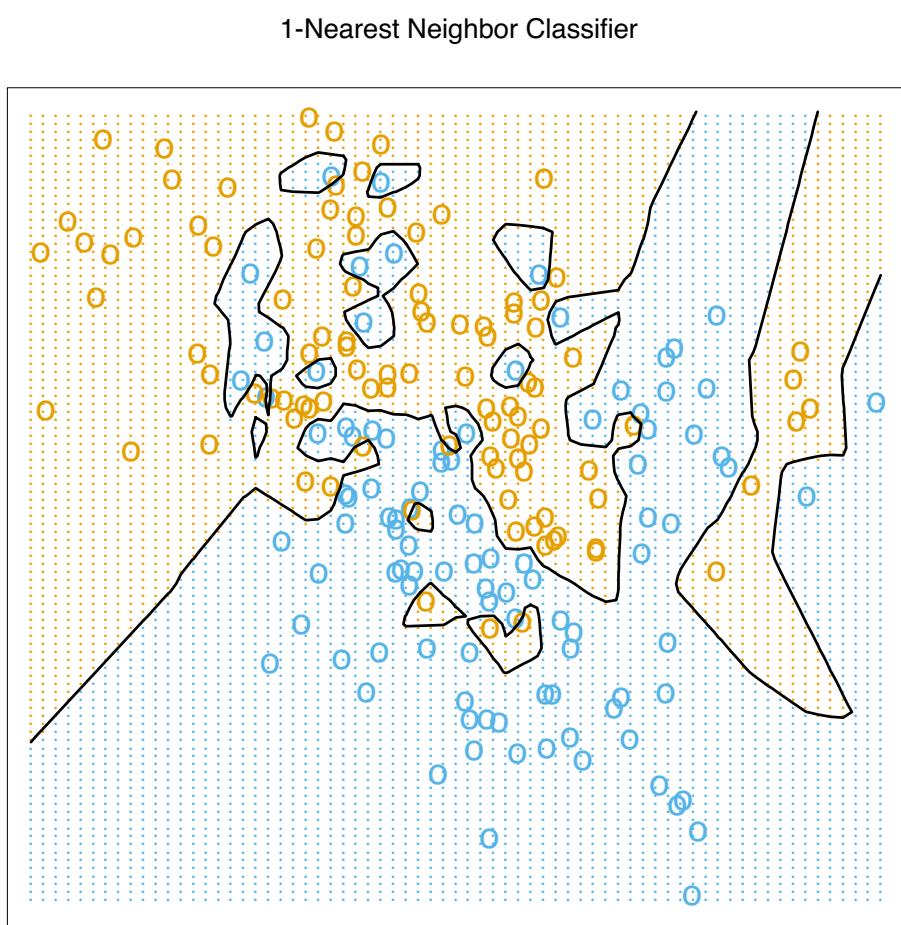


FIGURE 2.3. *The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (**BLUE** = 0, **ORANGE** = 1), and then predicted by 1-nearest-neighbor classification.*

$K = 15$

Real-valued classifier

✓

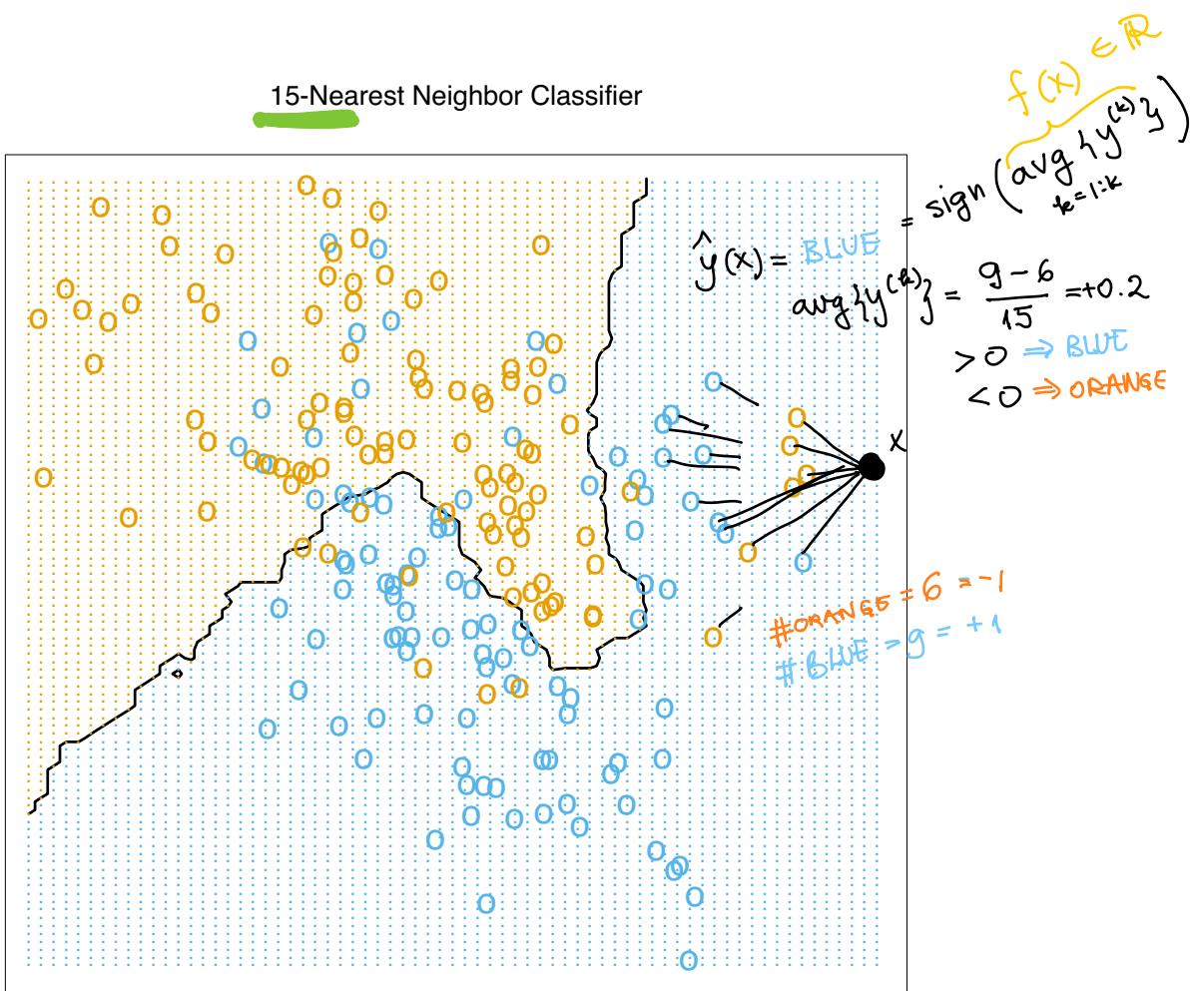


FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

Classifiers with real-valued output

Binary classification

- ▶ Since $y \in \{\pm 1\}$, naturally $f : \mathbf{X} \rightarrow \{\pm 1\}$
- ▶ But sometimes we prefer a classifier $f : \mathbf{X} \rightarrow \mathbb{R}$ (from a predictor class \mathcal{F} of real-valued functions)
- ▶ In this case, the prediction \hat{y} is usually

$$\hat{y} = \text{sgn}(f(x)) \quad (7)$$

This is sometimes known as the **sign trick**.

Examples of real-valued classifiers

- ▶ Logistic Regression

- ▶ Naive Bayes

in both of the above, $f(x) = P[Y = 1 | X = x] \in [0, 1]$. Hence

$$\hat{y} = \text{sgn}\left(f(x) - \frac{1}{2}\right) \quad (8)$$

- ▶ Support Vector Machines

- ▶ Kernel classifiers

- ▶ Neural Networks

Sign trick

The *sign* function $\text{sgn}(y) = y/|y|$ if $y \neq 0$ and 0 iff $y = 0$ turns a real valued variable Y into a discrete-valued one.

Why real valued f ?

- ▶ for statistical models $f(x) = P[Y = 1 | X = x]$ Example: Logistic regression
- ▶ for non-statistical models, $|f(x)|$ measures **confidence** in prediction \hat{y} , with $|f(x)| \approx 0$ meaning low confidence. Example: SVM
- ▶ if f is differentiable¹, the gradient ∇f is used in **learning algorithms** Examples: Logistic Regression, neural networks, some forms of linear regression such as Lasso

The margin (assuming $y \in \{\pm 1\}$)

- ▶ The **margin** of a classifier f at point $x \in \mathbf{X}$ is defined as

$$z = yf(x).$$

(9)

\uparrow $f(x)$ correct

$\begin{cases} > 0 & y > 0, f(x) > 0 \\ < 0 & y = -, f(x) < 0 \end{cases}$

Wrong High confi \rightarrow

High confi \leftarrow *High confi*

- ▶ Note that $\text{sgn}(z) = y\hat{y}$.
- ▶ If $z > 0$, $\hat{y} = y$ and $f(x)$ is correct
- ▶ If $z \gg 0$, then $f(x)$ is correct, and classifier has **high confidence**
- ▶ If $z < 0$, then $f(x)$ is incorrect, and $|z|$ measures “how wrong” is f on this x
- ▶ Note also that $z \approx 0$ means that the classification \hat{y} is **not robust**, whether correct or not

¹and ∇f not 0 almost everywhere

Real valued multi-way classifiers

- We train m classifier $f_{1:m} : \mathbf{X} \rightarrow \mathbb{R}$. Then (typically)

$$\hat{y} = \operatorname{argmax}_{c=1:m} f_{1:m}(x). \quad (10)$$

- $\hat{y} = y$ means the classifier is correct
- the training can be done
 - independently for each f_c , $c = 1 : m$ (e.g. generative classifiers – in Lecture II)
 - or at the same time (e.g. neural networks, SVM)
- The **margin** is defined as

$$z(x) = f_y - \max_{c \neq y} f_c(x) \quad (11)$$

In other words

- if $\hat{y} = y$ (correct), then $z = f_{\text{true}} - f_{\text{nextbest}} > 0$
- if $\hat{y} \neq y$ (mistake), then $z = f_{\text{true}} - f_{\hat{y}} < 0$ (since $f_{\hat{y}}(x)$ is the max of $f_c(x)$)

Lecture Notes I-2 – Examples of Predictors. Nearest Neighbor and Kernel Predictors. Bias and Variance

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Training and testing error

- Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the training set and let the K -NN classifier from \mathcal{D} be f_K
- How "good" is f_K ?
- Training error = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]} \in [0, 1]$

$$\mathbf{1}_{[\text{expression}]} = \begin{cases} 1 & \text{expression} \text{ TRUE} \\ 0 & \text{otherwise} \end{cases}$$

indicator

Training and testing error

- Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K -NN** classifier from \mathcal{D} be f_K
- How "good" is f_K ?
- Training error = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$
- Test error $\Pr[f_K(x) \neq y]$

↑
error

← User
cares about
this

Training and testing error

- Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K-NN** classifier from \mathcal{D} be f_K
- How "good" is f_K ?
- Training error** = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$
- Test error** $\Pr[f_K(x) \neq y]$ for new points $(x, y) \sim P_{XY}$
- We approximate the test error by using a **test set**
- $\mathcal{D}^{\text{test}} = \{(\tilde{x}^1, \tilde{y}^1), (\tilde{x}^2, \tilde{y}^2), \dots (\tilde{x}^{n'}, \tilde{y}^{n'})\}$ from the same P_{XY} .
- Thus, in practice, **Test error** = $\frac{1}{n'} \#(\text{errors of } f_K \text{ on } \mathcal{D}^{\text{test}}) = \frac{1}{n'} \sum_{i=1}^{n'} \mathbf{1}_{[f_K(\tilde{x}^i) \neq \tilde{y}^i]}$

THEORY

↑
ALGO

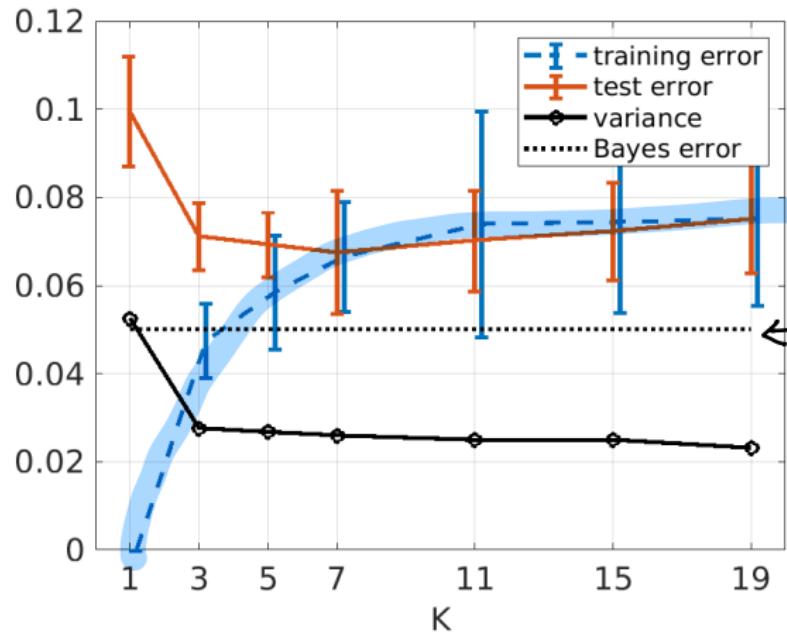
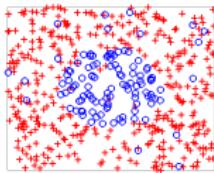
Want

$n' \neq n$
test train

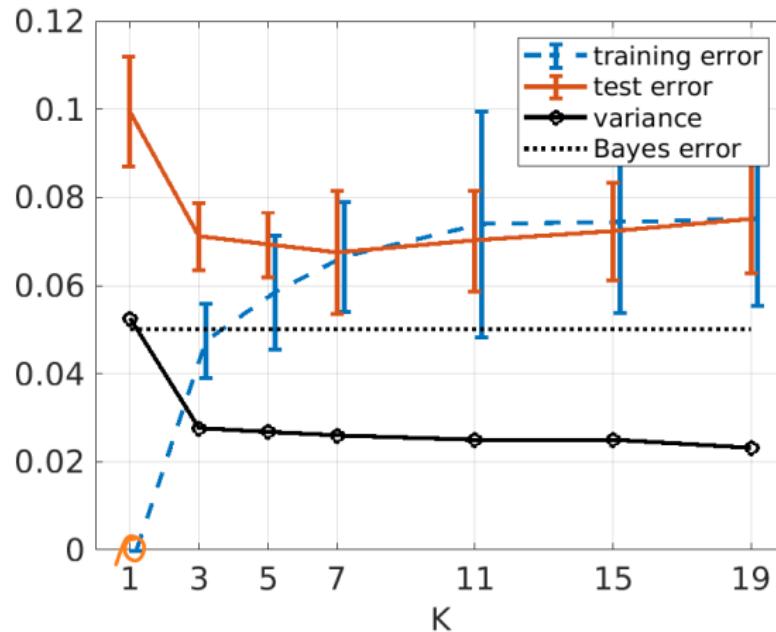
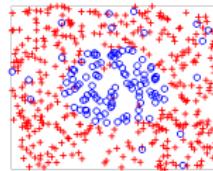
Training and testing error for K -NN

$n = 200$

$n' = 500$



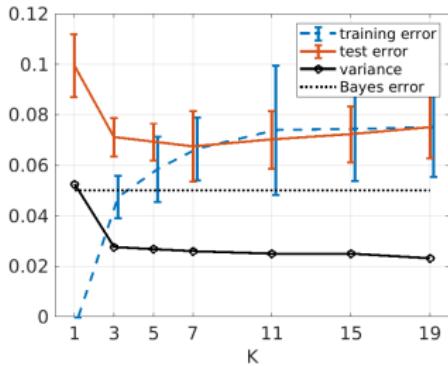
Ignore the "variance" and "Bayes error" for now

Training and testing error for K -NN $K^* = 7$ 

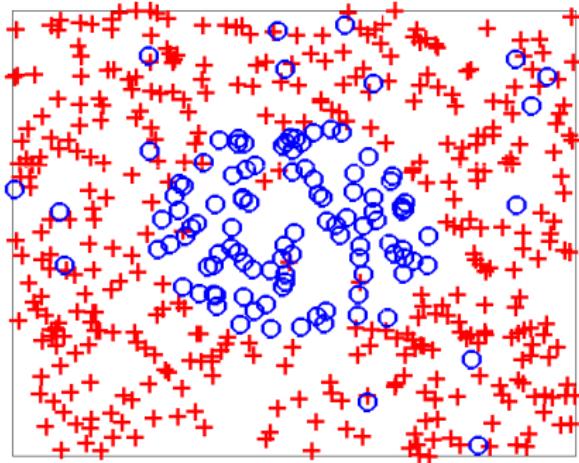
Ignore the "variance" and "Bayes error" for now

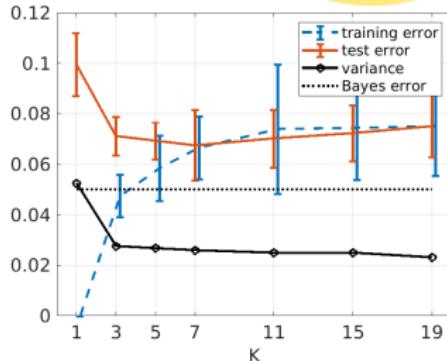
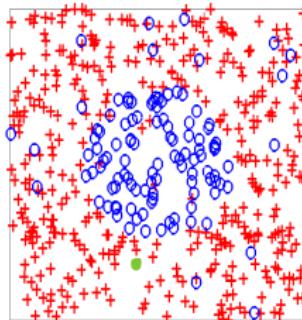
- ▶ So, what's happening? For $K = 1$, training error=0 but test error is large
- ▶ As K increases, test error decreases at first, then increases again

The case $K = 1$: Variance



► $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is **random**

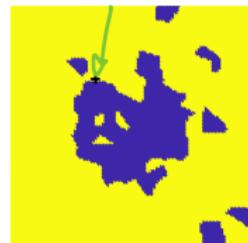


The case $K = 1$: Variance

K -NN classifier

→ for any x $f_K(x)$ is a r.v

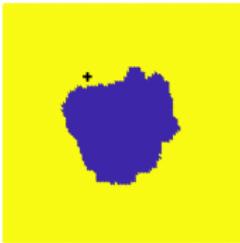
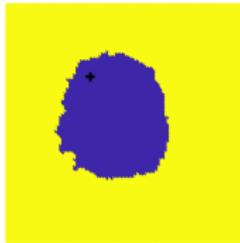
↔ $f_K(x)$ for 2 different \mathcal{D} 's
from the same distribution
($K = 1$)



- $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is random
- Hence any function f_K we estimate from \mathcal{D} is also random
- Formally, for any fixed x , $f_K(x)$ is a random variable, hence it has a variance.
- In this course, we do not explicitly calculate the variance, but we want to know what increases or decreases it.

The case of K large: Bias

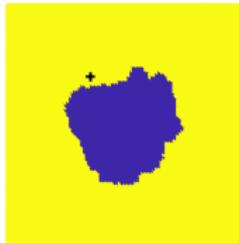
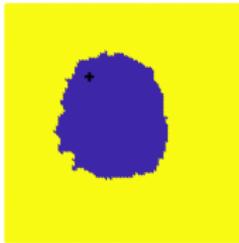
($K = 11$)



$f_{11}(x)$ for two different
 \mathcal{D} 's from same P_{xy}

The case of K large: Bias

($K = 11$)



- ▶ **Bias** means to let one's own prior beliefs override the evidence.
- ▶ In data science/ML/statistics **every model/prediction** is a combination of **prior belief** and data \Rightarrow **Bias necessary**
- 1) ▶ **prior** = before seeing the data \Rightarrow **Bias useful, Complements data**
(usually) **prior belief** = prior **knowledge**, e.g. from previous experiments
- 2) ▶ Bias can take many forms – in this course you will encounter several
- ▶ We do not explicitly calculate bias, but we want to identify where it is coming from, and what increases/decreases it
- ▶ One way to look for bias: if a predictor f cannot exactly/accurately predict a training set, “whatever is causing this” is bias.

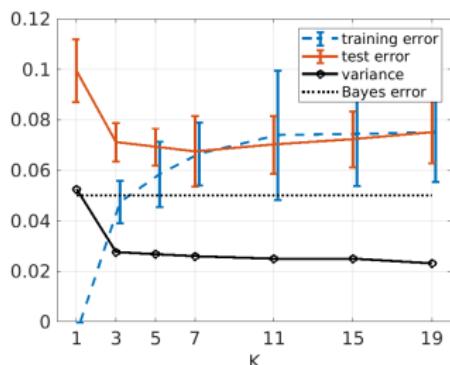
The Bias-Variance trade-off

data \Rightarrow random nets

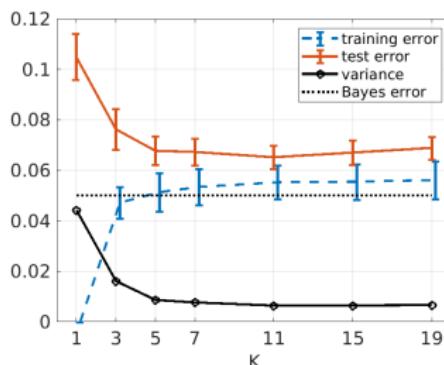
- When bias \uparrow , variance \downarrow

believe \downarrow
data

- When data set size n \uparrow , variance \downarrow



$n = 200$



$n = 2000$