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Prediction problems by the type of output

The Nearest-Neighbgr and essekpreeetoTs
PR v\ ‘\Qo‘\‘o
Dewrs®©
Some concepts in Classification \ %(-7(-\ G/TP' (
=
\ Tost [ Trodn error

Reading HTF Ch.: 2.3.2 Nearest neighbor, 6.1-3. Kernel regression, 6.6.2 kernel classifiers,,
Murphy Ch.: , Bach Ch.:
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Predictors Couup\'s
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The Nearest-Neighbor predictor

» 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x' that is nearest to x in D (in Euclidean distance)
2. assign x the label y', i.e.

i

y(x) =y

> ‘K=Nearest Neighbor (with K = 3,5 or larger)

1. find the K nearest neighbors of x in D: USRS
2. » for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

» for regression f(x) = % E/’neighbor ofxy( = mean of neighbors’ labels

» No parameters to estimate!
»> No training!
» But all data must be stored (also called memory-based learning)
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Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

1-Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two
dimenstons as in Figure 2.1. The classes are coded as
a binary variable ( = 0, = 1), and then
predicted by 1-nearest-neighbor classification.



Elements of Statistical Learning (2nd Ed.) (©Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

% wWore +'s Hhan —'s
othrwise

9 % USU’ :_.fﬁ,:g: 0.L>0
7S\ K e 3

4 ... =T\
kK=\5
u):-)-l
Gy=
5 d=4\

Vi

<

= sqn Jj‘ (%)

F(X) e R

FIGURE 2.2. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as

a binary variable ( = 0,

= 1) and then fit

by 15-nearest-neighbor averaging as in (2.8). The pre-
dicted class 1s hence chosen by majority vote amongst

the 15-nearest neighbors.



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.35.
Since the generating density is known for each class,
this boundary can be calculated exactly (Fxercise 2.2).



Classifiers with real-valued output

Binary classification

» Since y € {£1}, naturally \f : X — {£1}

» But sometimes we prefer a classifier f : X — R (from a predictor class F of real-valued
functions)

» In this case, the prediction y is usually

y = sgn(f(x)) ™

This is sometimes known as the sign trick.
Examples of real-valued classifiers
> ‘Logistic Regression

» Naive Bayes
in both of the above, f(x) = P[Y = 1|X = x] € [0,1]. Hence

5 = sen (00— 2 ®)
(r0-3)

» Support Vector Machines
» Kernel classifiers
» Neural Networks

Sign trick
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The sign function sgn(y) = y/|y| if y # 0 and 0 iff y = 0 turns a real valued variable Y into a
discrete-valued one.
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Why real valued 7 l) G/O'\'G‘dQV\CQ e Lo
2) § woy e diffond
» for statistical models f(x) = P[Y = 1| X = x] Example: Logistic regression
» for non-statistical models, |f(x)| measures confidence in prediction y, with |f(x)| ~ 0
meaning low confidence. Example: SVM
> if f is differentiable!, the gradient Vf is used in learning algorithms Examples: Logistic
Regression, neural networks, some forms of linear regression such as Lasso

250 & Y=t ;107 O
oez_ , -?(7\340

The margin (assuming y € {+1}) g
» The margin of a classifier f at point x € X is defined as
z = yf(x). 9)
> Note that sgn(z) = yy. |

>

If z>0, y =y and f(x) is correct ! =
If z>> 0, then f(x) is correct, and classifier has high confidence

If z <0, then f(x) is incorrect, and |z| measures “how wrong” is f on this x

Note also that z = 0 means that the classification y is not robust, whether correct or not

vvyyvyy

Land V£ not 0 almost everywhere



Real valued multi-way classifiers
> We train m classifier fi.,, : X — R. Then (typically)
y = argmax fi.m(x). (10)
c=1m

¥y = y means the classifier is correct
the training can be done

» independently for each f., c = 1 : m (e.g. generative classifiers — in Lecture I1)
P or at the same time (e.g. neural networks, SVM)

vy

» The margin is defined as
z(x) = f, —maxfc(x) (11)
c#y

In other words
» if y =y (correct), then z = firue — fnextbest > O
> if § # y (mistake), then z = fiue — f; < 0 (since fy(x) is the max of f(x))
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Lecture Notes |-2 — Examples of Predictors. Nearest Neighbor and
Kernel Predictors. Bias and Variance
CEEE——

Marina Meild
mmpQuwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



Training and testing error
> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

» How “good” is fx?
» (Training error= %#(errors of fx on D) = %Z,’-’:l L1 ()i
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Training and testing error

> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

> How “good” is fx?

» Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i

» Test error Pr{fx(x) # y] for new points (x,y) ~ Pxy
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Training and testing error

> Let'D = {(x}, 1), (x2,¥?), ... (x",¥")}|be the training set and let the K-NN classifier
from D be fx
How “good” is fx?
Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i
Test error Pr[fx(x) # y] for new points (x, y) ~ Pxy
We. approximate.the.test-error-by-using.a test set
ptest = {(£1, 1), (%2,72),... (%", 7" )} from the same Pxy.
/
Thus, in practice, Test error= %#(errors of fx on Dest) = % >t Y iys)
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Training and testing error for K-NN
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Ignore the “variance” and “Bayes error” for now

11

15 19



z
z
2
&
B

2
a

@
8

@
3
-
S
S
&

o}
S
S
]
=
S
2
<
a
4]

Marina Meila

Training and testing error for K-NN
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Ignore the “variance” and “Bayes error” for now

» So, what's happening? For K = 1, training error=0 but test error is large

> As K increases, test error decreases at first, then increases again



The case K = 1: Variance
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» D ~ Pxy = D is random
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The case K = 1: Variance
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g > D~ Pxy = D is random
© » Hence any function fx we estimate from D is also random
g
£ » Formally, for any fixed x, fx(x) is a random variable, hence it has a variance.
2

» In this course, we do not explicitly calculate the variance, but we want to know what
increases or decreases it.




The case of K large: Bias

(K =11)
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The case of K large: Bias
(K = 11)

» Bias means to let one's own prior beliefs override the evidence.
» In data science/ML /statistics every model/prediction is a combination of prior belief and
data

» prior = before seeing the data
» (usually) prior belief = prior knowledge, e.g. from previous experiments

> Bias can take many forms — in this course you will encounter several

» We do not explicitly calculate bias, but we want to identify where it is coming from, and
what increases/decreases it

> One way to look for bias: if a predictor f cannot exactly/accurately predict a training
set, “whatever is causing this” is bias.
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The Bias-Variance trade-off

»> When bias 7, variance \

» When data set size n 7, variance \
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