

lecture 4

Losses

Linear Regression by LS

HW1 due Next
Wed

[HW2 NOT GRADED]

LII linear
predictors

Prob / Stat
refresher

• Fri 9:30, 10:30
Gavin

mc 2035

Predictors

- K-Nearest-Neighbor
- Linear - for regression
 - for classification

Algorithms

LS Regression

Concepts

- Decision Region, Dec. Boundary
- Training error, Test error
- Expected error \uparrow

Variance, Bias

- Loss functions - training / test / expected loss

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Linear predictors generalities

Loss functions

Least squares linear regression

Linear regression as minimizing L_{LS}

Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA)

QDA (Quadratic Discriminant Analysis)

Logistic Regression

The PERCEPTRON algorithm

Support Vector Machines

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Linear predictors

↗ regression
 ↘ classification

- Linear predictors for regression

$$f(x) = \beta^T x$$

where $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ is a **vector of parameters**.

Hence, the **model class** is $\mathcal{F} = \{\beta \in \mathbb{R}^d\}$ the set of all linear functions over \mathbb{R}^d .

- Linear predictors for classification

e.g. $\hat{y}(x) = \text{sgn}(\beta^T x)$

$$\hat{y}, y \in \{\pm 1\} \quad (2)$$

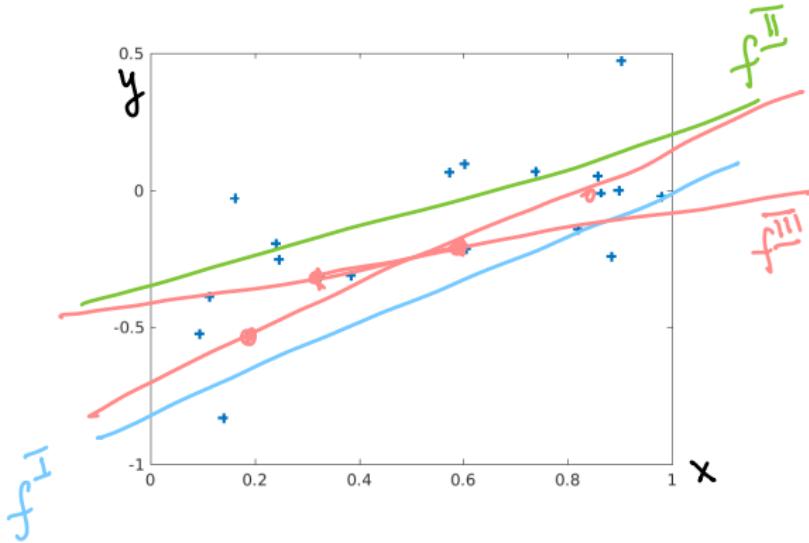
i.e. the decision boundary is linear

$$\text{sgn } \beta^T x = \text{sgn} \left(e^{\beta^T x} - 1 \right)$$

$$= \text{sgn} \left(g(\beta^T x) \right)$$

↗ monotonically
 ↘ increasing

$$\beta \in \mathbb{R}^d$$



$$d=1$$

$$x \in \mathbb{R}$$

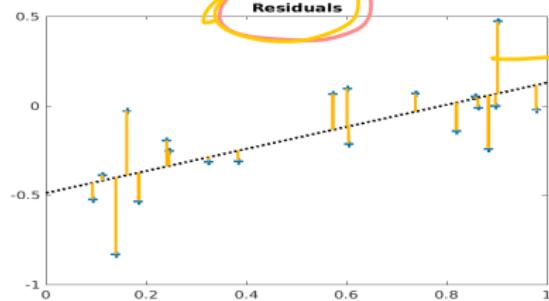
$$f(x) = \beta_0 + \beta_1 x$$

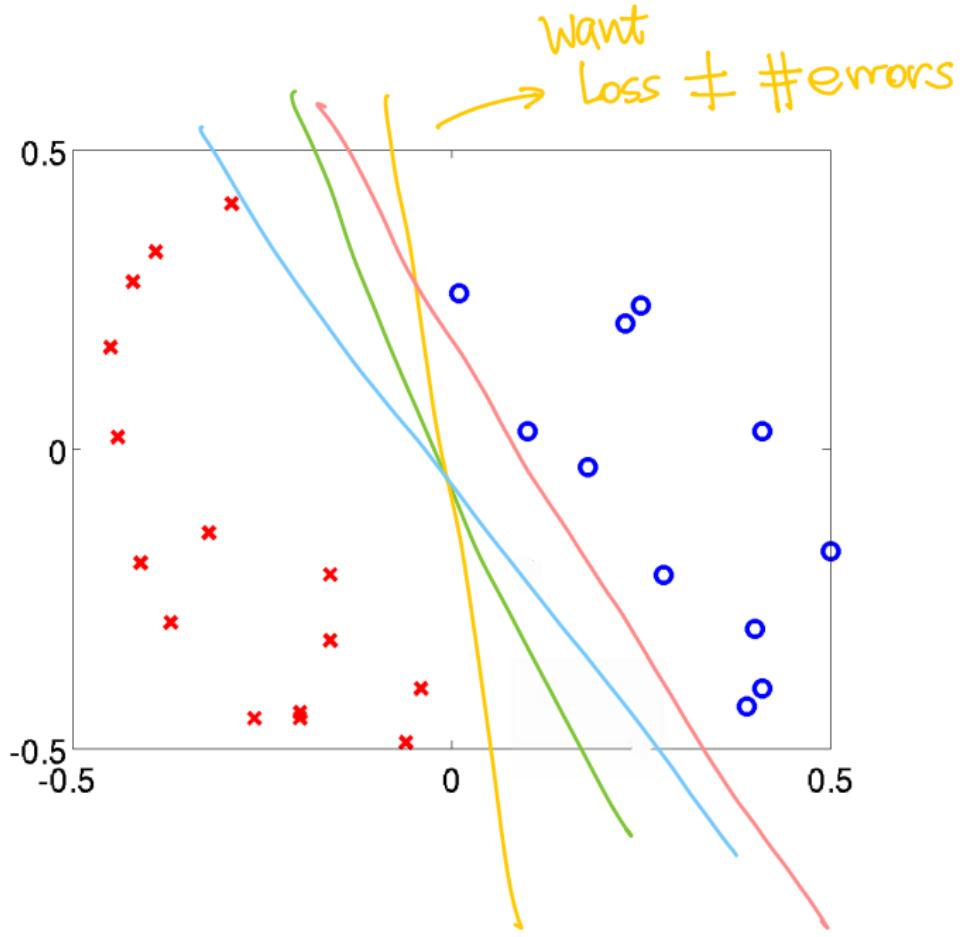
↑
intercept

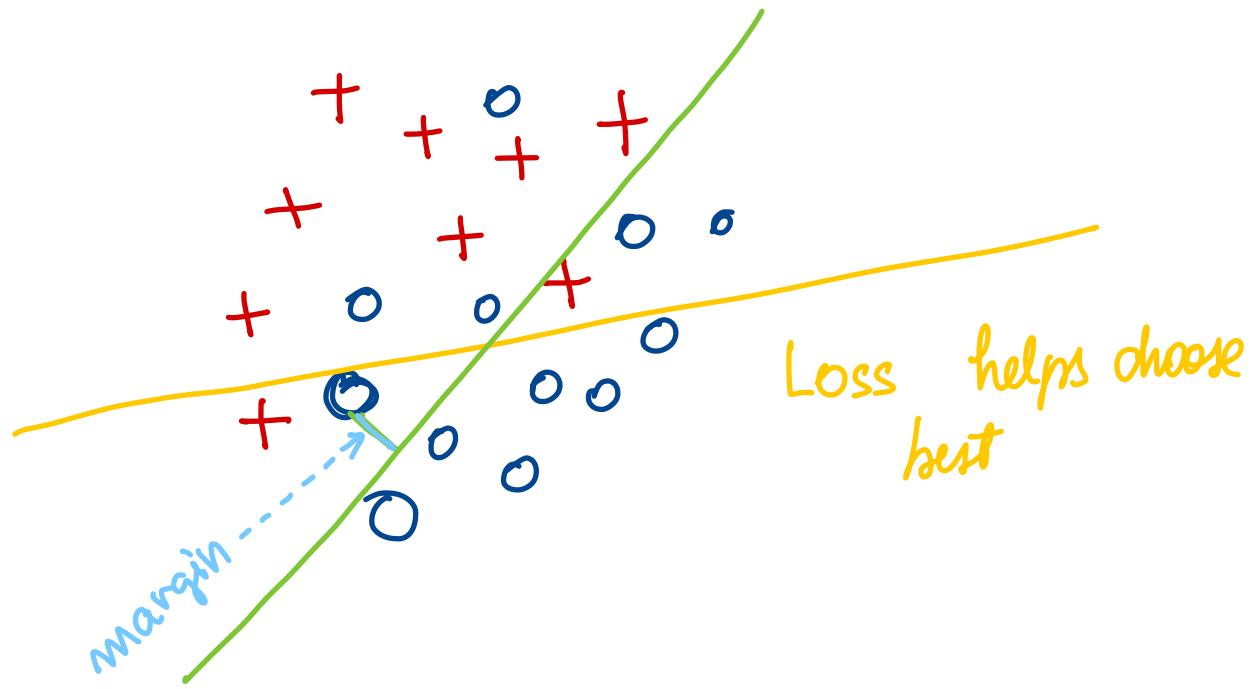
$$\tilde{x} = \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^2$$

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} \in \mathbb{R}^2$$

$$f(x) = \beta^T x^2$$







How good is a regressor? Measuring the "Error"

- ▶ Prediction error for y^i : $e^i = y^i - f(x^i)$
- ▶ "Error" of f on \mathcal{D}

- ▶ ~~"Err" = $\frac{1}{n} \sum_{i=1}^n e^i$~~ X

- ▶ ~~"Err" = $\frac{1}{n} \sum_{i=1}^n |e^i|$~~ ?

- ▶ ... norms!

- ▶ Let $e = [e^1 \ e^2 \ \dots \ e^n]$, $e \in \mathbb{R}^n$

- ▶ e is a vector in \mathbb{R}^n . $\frac{1}{n} \sum_{i=1}^n |e^i| = \frac{1}{n} \|e\|_1$ 1-NORM

- ▶ But we can use other norms, e.g. $\frac{1}{n} \|e\|_2$, $\frac{1}{n} \|e\|_\infty = \max_i |e^i| \cdot \frac{1}{n}$

$$\frac{1}{n} \|e\|_2$$

Euclidean norm, 2-Norm \Leftrightarrow Mean Squared Error

$$\frac{1}{n} \|e\|_2^2$$

How good is a regressor? Measuring the “Error”

- ▶ Prediction error for y^i : $e^i = y^i - f(x^i)$
- ▶ “Error” of f on \mathcal{D}
 - ▶ $“Err” = \frac{1}{n} \sum_{i=1}^n e^i \text{ X}$
 - ▶ $“Err” = \frac{1}{n} \sum_{i=1}^n |e^i|$?
 - ▶ ... norms!
- ▶ Let $e = [e^1 \ e^2 \ \dots \ e^n]$.
- ▶ e is a vector in \mathbb{R}^n . $\frac{1}{n} \sum_{i=1}^n |e^i| = \frac{1}{n} \|e\|_1$
- ▶ But we can use other norms, e.g. $\frac{1}{n} \|e\|_2$, $\frac{1}{n} \|e\|_\infty$.
- ▶ Formally, $“Err”$ as above is called **loss** function.

Loss functions

The **loss function** represents the cost of error in a prediction problem. We denote it by L , where

$L(y, \hat{y})$ = the cost of predicting \hat{y} when the actual outcome is y
 true \uparrow predicted

As usually $\hat{y} = f(x)$ or $\text{sgn}f(x)$, we will typically abuse notation and write $L(y, f(x))$.

$$\frac{1}{n} \|e\|_1 \rightarrow L_1 = |y - \hat{y}| \rightarrow L_1^{\text{train}} = \frac{1}{n} \sum_{i=1}^n L_1(y^i, f(x^i))$$

$$\frac{1}{n} \|e\|_2^2 \rightarrow L_2 = (y - \hat{y})^2 \rightarrow L_2^{\text{train}} = \frac{1}{n} \sum_{i=1}^n L_2(y^i, f(x^i))$$

↑

Training set of loss

Loss function

$$\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$$

Loss functions

The **loss function** represents the cost of error in a prediction problem. We denote it by L , where

$L(y, \hat{y}) = \text{the cost of predicting } \hat{y} \text{ when the actual outcome is } y$

As usually $\hat{y} = f(x)$ or $\text{sgnf}(x)$, we will typically abuse notation and write $L(y, f(x))$.

► For **Regression**

- Least-Squares L_2 Loss $L_{LS}(y, f(x)) = \frac{1}{n} \|e\|_2^2$ ↗
- L_1 Loss $L_{LS}(y, f(x)) = \frac{1}{n} \|e\|_1$ ✓
- Statistical losses...

► For **Classification**

- Misclassification Error (0-1 Loss) $L_{01} = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[y^i \neq \hat{y}^i]}$ ✓
- Statistical losses...

$$L_{01}(y, \hat{y}) = \begin{cases} 1 & y \neq \hat{y} \\ 0 & y = \hat{y} \end{cases} = \mathbf{1}_{[\hat{y} \neq y]}$$

Loss functions for classification

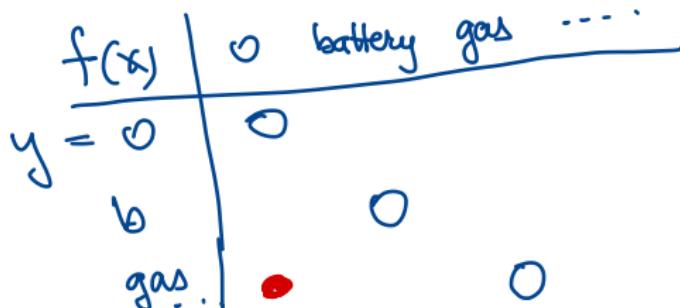
For classification, a natural loss function is the **misclassification error** (also called **0-1 loss**)

$$L_{01}(y, f(x)) = \mathbf{1}_{[y \neq f(x)]} = \begin{cases} 1 & \text{if } y \neq f(x) \\ 0 & \text{if } y = f(x) \end{cases} \quad (5)$$

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as negative (**a false negative error**) incurs a much higher cost than classifying a normal patient as HIV+ (**false positive error**). This is expressed by **asymmetric misclassification costs**. For instance, assume that a false positive has cost one and a false negative has cost 100. We can express this in the matrix

		$f(x) :$	
		$+$	$-$
true :	$+$	0	100
	$-$	1	0

In general, when there are p classes, the matrix $L = [L_{kl}]$ defines the loss, with L_{kl} being the cost of misclassifying as l an example whose true class is k .



Training set loss and expected loss

► Training set loss

► Objective of prediction = to minimize loss on future data,

$$\frac{1}{n} \sum_{i=1}^n L(y^i, f(x^i)) = \overset{\text{train}}{L}(f)$$

↳ learned predictor

$$\text{minimize } L(f) = E_{P(X, Y)}[L(Y, f(X))] \text{ over } f \in \mathcal{F} \quad (6)$$

We call $L(f)$ above expected loss.

use

$$\overset{\text{test}}{L}(f) = \frac{1}{n} \sum_{i=1}^n L(y^i, f(x^i))$$

Example (Misclassification error $L_{01}(f)$) $L_{01}(f)$ = probability of making an error on future data.

$$L_{01}(f) = P[Yf(X) < 0] = E_{P_{XY}}[1_{[Yf(X) < 0]}] \quad (7)$$

↗ test

$$P(x, y) = P_{xy}$$

$$\mathcal{D}, \mathcal{D}^{\text{test}} \sim \text{iid } P_{xy}$$

Training set loss and expected loss

- ▶ **Training set loss**
- ▶ Objective of prediction = to minimize loss on future data,

$$\text{minimize } L(f) = E_{P(X,Y)}[L(Y, f(X))] \text{ over } f \in \mathcal{F} \quad (6)$$

We call $L(f)$ above **expected loss**.

- ▶ Therefore, in **training** we use the **training set** loss.
- ▶ ... we approximate data distribution P_{XY} by the sample \mathcal{D} .
- ▶ The **empirical loss** (or **empirical error** or **training error**) is the average loss on \mathcal{D}

$$\hat{L}(f) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[y^i f(x^i) < 0]} \quad (7)$$

- ▶ And we approximate $L(f)$ the expected loss by a **different** data set $\mathcal{D}^{\text{test}}$ from the same P_{XY} .
- ▶ The size of $\mathcal{D}^{\text{test}}$ is n' , not necessarily equal to n .

(Linear) least squares regression

Loss

Pb: learn β

- ▶ define **data matrix** or (transpose) **design matrix**

$$\mathbf{X} = \begin{bmatrix} (\mathbf{x}^1)^T \\ (\mathbf{x}^2)^T \\ \vdots \\ (\mathbf{x}^i)^T \\ \vdots \\ (\mathbf{x}^n)^T \end{bmatrix} \in \mathbb{R}^{N \times n} \quad \text{and} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{y}^1 \\ \mathbf{y}^2 \\ \vdots \\ \mathbf{y}^n \end{bmatrix}, \quad \mathbf{E} = \begin{bmatrix} \varepsilon^1 \\ \varepsilon^2 \\ \vdots \\ \varepsilon^d \end{bmatrix} \in \mathbb{R}^d$$

- ▶ Then we can write

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{E}$$

- ▶ The solution $\hat{\beta}$ is chosen to minimize the sum of the squared errors $\sum_{i=1}^d (\varepsilon^i)^2 = \sum_{i=1}^d (y^i - \beta^T \mathbf{x}^i)^2 = \|\mathbf{E}\|^2$

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^d (y^i - \beta^T \mathbf{x}^i)^2$$

- ▶ This **optimization** problem is called a **least squares** problem. Its solution is

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \tag{8}$$

- ▶ Underlying statistical model $\mathbf{y} = \beta^T \mathbf{x} + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ (and i.i.d. sampling of $(\mathbf{x}^{1:N}, \mathbf{y}^{1:N})$ of course).

Then $\hat{\beta}$ from (8) is the **Maximum Likelihood** (ML) estimator of the parameter β .

LS Regression Problem

1. error in matrix-vector form

$$\mathcal{D} = \{(x^i, y^i), i=1:n\}$$

$$f(x) = \beta^T x$$

$$\text{Want } \beta = ?$$

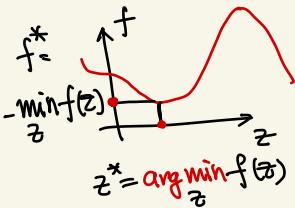
$$\text{loss} = L_2 = (y - f(x))^2 \Rightarrow \text{want } \beta^* = \underset{\beta}{\operatorname{argmin}} L_2^{\text{train}}$$

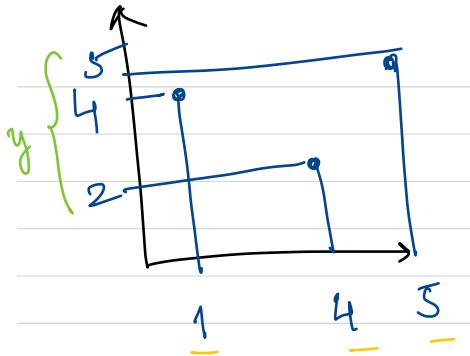
$$L_2^{\text{train}} = \frac{1}{n} \sum_{i=1}^n (y^i - \beta^T x^i)^2 = \frac{1}{n} \|e\|_2^2 = \frac{1}{n}$$

$$e = \begin{bmatrix} y^1 - \beta^T x^1 \\ y^2 - \beta^T x^2 \\ \vdots \end{bmatrix} = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \end{bmatrix} - \begin{bmatrix} (x^1)^T \beta \\ (x^2)^T \beta \\ \vdots \end{bmatrix} = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \end{bmatrix} - \begin{bmatrix} (x^1)^T \\ (x^2)^T \\ \vdots \end{bmatrix} \beta \stackrel{\text{def}}{=} y - x\beta$$

$y \in \mathbb{R}^n$ $x \in \mathbb{R}^{n \times d}$

$$\beta^T x = x^T \beta$$





$$\beta \in [\beta_0, \beta_1]$$

$$f(x^1) = \beta_0 \cdot 1 + \beta_1 \cdot \frac{1}{1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix}$$

$$f(x^2) = \begin{bmatrix} 4 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix}$$

$$e = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix} - x\beta = y - x\beta$$

$$e = \begin{bmatrix} 1 \\ y \end{bmatrix} - \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \beta$$

$$x = \begin{bmatrix} 1 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix}$$

↑ ↑

$\beta_1 \quad \beta_0$

Finding the optimal β

2. $\min_{\beta} L_2^{\text{train}} = \|e\|_2^2 = \|y - X\beta\|_2^2 = (y - X\beta)^T(y - X\beta)$

$y^T y - \beta^T X^T y - y^T X \beta + \beta^T X^T X \beta$

$\frac{\partial L_2}{\partial \beta} = 2X^T X \beta - 2X^T y$

$2X^T X \beta = 2X^T y$

$X^T X \beta = X^T y$

$\beta = (X^T X)^{-1} X^T y$

Loss in matrix-vector form

$\|e\|^2 = e^T e$

$(X\beta)^T = \beta^T X^T$

$\alpha^T z = g(z) = z^T \alpha$

$\nabla g(z) = \alpha$

$h(z) = z^T A z$

$\nabla h = 2Az$

A symmetric

3. $\nabla L_2^{\text{train}} = 0 - X^T y + 2X^T X \beta = 0$

Find β by solving $\nabla L_2^{\text{train}} = 0$

(+ b. continued)

The intercept as a slope

- Sometimes we like f to have an intercept $f(x) = \beta^T x + \beta_0$, with $x, \beta \in \mathbb{R}^d$. Such a function is **affine**, not linear, and not **homogeneous**. Here is a trick to get the best of both worlds.
- Add a dummy input $x_0 \equiv 1$ to x . Then its coefficient β_0 is the intercept.

$$\tilde{x} \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_d \end{bmatrix} \in \mathbb{R}^{d+1} \quad \tilde{\beta} \leftarrow \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_d \end{bmatrix} \in \mathbb{R}^{d+1} \quad f(x) = \tilde{\beta}^T \tilde{x} \quad (3)$$

- in classification, β_0 is called **threshold** or **bias term**