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The case K = 1: Variance

I D ⇠ PXY ) D is random

I Hence any function fK we estimate from D is also random

I Formally, for any fixed x , fK (x) is a random variable, hence it has a variance.
I In this course, we do not explicitly calculate the variance, but we want to know what

increases or decreases it.
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The case of K large: Bias

(K = 11)

I Bias means to let one’s own prior beliefs override the evidence.
I In data science/ML/statistics every model/prediction is a combination of prior belief and

data

I prior = before seeing the data
I (usually) prior belief = prior knowledge, e.g. from previous experiments

I Bias can take many forms – in this course you will encounter several
I We do not explicitly calculate bias, but we want to identify where it is coming from, and

what increases/decreases it
I One way to look for bias: if a predictor f cannot exactly/accurately predict a training

set,“whatever is causing this” is bias.
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The Bias-Variance trade-o↵

I When bias %, variance &

I When data set size n %, variance &
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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing LLS
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Linear predictors

I Linear predictors for regression
f (x) = �T x (1)

where Y 2 R, X 2 Rd and � 2 Rd is a vector of parameters.
Hence, the model class is F = {� 2 Rd} the set of all linear functions over Rd .

I Linear predictors for classification

ŷ(x) = sgn(�T x) (2)

i.e. the decision boundary is linear
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Transforming categorical inputs into real values

I if Xj takes two values (e.g “yes”, “no”), map it to {±1} or {0, 1} ⇢ R.
I discrete multivariate inputs

I Let Xj take values in ⌦j = {0, . . . r � 1}.
I One defines the r � 1 binary variables X̃jk = 1[]Xj = k, k = 1 : r � 1. The variable Xj is replaced

with X̃jk , k = 1 : r � 1
I the parameter �j with r � 1 parameters �j1 . . . �j, r � 1 representing the coe�cients of

X̃j1, . . . X̃j,r�1.

This substitution is widely used to parametrize any function of a discrete variable as a linear function

Example: The demographic variable Race takes values in { African, Asian, Caucasian, . . .}; the
corresponding parameters in the model will be �̂Asian, �̂Caucasian, . . ..
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The intercept as a slope

I Sometimes we like f to have an intercept f (x) = �T x + �0, with x ,� 2 Rd . Such a
function is a�ne, not linear, and not homogeneous. Here is a trick to get the best of both
worlds.

I Add a dummy input x0 ⌘ 1 to x . Then its coe�cient �0 is the intercept.

x̃  

2

664

x0
x1
. . .
xd

3

775 2 Rd+1 �̃  

2

664

�0

�1

. . .
�d

3

775 2 Rd+1 f (x) = �̃T x̃ (3)

I in classification, �0 is called threshold or bias term
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How good is a regressor? Measuring the “Error”

I Prediction error for y i : ei = y i � f (xi )
I “Error” of f on D

I 00Err 00 = 1
n

Pn
i=1 e

i X
I 00Err 00 = 1

n

Pn
i=1 |e

i | ?
I . . . norms!

I Let e = [e1 e2 . . . en].
I e is a vector in Rn. 1

n

Pn
i=1 |ei | = 1

n kek1
I But we can use other norms, e.g. 1

n kek2,
1
n kek1.

I Formally, 00Err 00 as above is called loss function.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y , ŷ) = the cost of predicting ŷ when the actual outcome is y

As usually ŷ = f (x) or sgnf (x), we will typically abuse notation and write L(y , f (x)).

I For Regression
I Least-Squares L2 Loss LLS (y , f (x)) = 1

n kek
2
2I L1 Loss LLS (y , f (x)) = 1

n kek1I Statistical losses. . .
I For Classification

I Misclassification Error (0-1 Loss) L01 = 1
n

Pn
i=1 1[yi 6=ŷ i ]

I Statistical losses. . .
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

L01(y , f (x)) = 1[y 6=f (x)] =

⇢
1 if y 6= f (x)
0 if y = f (x)

(5)

Sometimes di↵erent errors have di↵erent costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f (x) : + �
true :+ 0 100

� 1 0

In general, when there are p classes, the matrix L = [Lkl ] defines the loss, with Lkl being the
cost of misclassifying as l an example whose true class is k.
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Training set loss and expected loss

I Training set loss
I Objective of prediction = to minimize loss on future data,

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f 2 F (6)

We call L(f ) above expected loss.

Example (Misclassification error L01(f ))

L01(f ) = probability of making an error on future data.

L01(f ) = P[Yf (X ) < 0] = EPXY
[1[Yf (X )<0]] (7)

I Therefore, in training we use the traing set loss.
I . . . we approximate data distribution PXY by the sample D.
I The empirical loss (or empirical error or training error) is the average loss on D

L̂(f ) =
1

n

nX

i=1

1[y i f (xi )<0] (8)

I And we approximate L(f ) the expected loss by a di↵erent data set Dtest from the same
PXY .

I The size of Dtest is n0, not necessarily equal to n.
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Training set loss and expected loss

I Training set loss
I Objective of prediction = to minimize loss on future data,

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f 2 F (6)

We call L(f ) above expected loss.
I L(f ) cannot be minimized or even computed directly, because we don’t know the data

distribution PXY .
I Therefore, in training we use the traing set loss.
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I The size of Dtest is n0, not necessarily equal to n.
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(Linear) least squares regression

I define data matrix or (transpose) design matrix

X =

2

6666664

(x1)T

(x2)T

. . .
(xi )T

. . .
(xn)T

3

7777775
2 RN⇥n and Y =

2

664

y1

y2

. . .
yn

3

775 , E =

2

664

"1

"2

. . .
"d

3

775 2 Rd

I Then we can write
Y = X� + E

I The solution �̂ is chosen to minimize the sum of the squared errorsPd
i=1("

i )2 =
Pd

i=1(y
i � �T xi )2 = ||E ||2

�̂ = argmin
�2Rd

dX

i=1

(y i � �T xi )
2

I This optimization problem is called a least squares problem. Its solution is

�̂ = (XTX)�1XTY (8)

I Underlying statistical model y = �T x + ", " ⇠ N(0,�2) (and i.i.d. sampling of
(x1:N , y1:N) of course).
Then �̂ from (8) is the Maximum Likelihood (ML) estimator of the parameter �.






