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The case K = 1: Variance
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» D ~ Pxy = D is random
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The case K = 1: Variance
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: (K=1)
g > D~ Pxy = D is random
© » Hence any function fx we estimate from D is also random
g
£ » Formally, for any fixed x, fx(x) is a random variable, hence it has a variance.
2

» In this course, we do not explicitly calculate the variance, but we want to know what
increases or decreases it.




The case of K large: Bias
(K = 11)

» Bias means to let one’s own prior beliefs override the evidence.
» In data science/ML /statistics every model/prediction is a combination of prior belief and
data

» prior = before seeing the data
» (usually) prior belief = prior knowledge, e.g. from previous experiments

> Bias can take many forms — in this course you will encounter several

» We do not explicitly calculate bias, but we want to identify where it is coming from, and
what increases/decreases it

> One way to look for bias: if a predictor f cannot exactly/accurately predict a training
set, “whatever is causing this” is bias.
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The Bias-Variance trade-off

»> When bias 7, variance \

» When data set size n 7, variance \

0.12 0.12
2 [ rrr—— P
z =1 -training error = I =training error
¢ —J— test error —F—test error
g 0.1 —e— variance 0.1 —e— variance
e N e Bayeserror || | N\ e Bayes error
& 0.08 0.08
®
2 0.06 0.06
g T
3
& P! r
8 0.04 0.04
H
3
0.02f 0.02
o 1
g ol 0
S 13 5 7 11 15 19
5 K

Marina Meila




Lecture Il: Linear regression and classification. Loss functions
Marina Meila
mmpQuwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

&
g
2
5
o
2
k]
2
3
o
&
&
g
&
5
3
8
8
L
S
8
2
3
<]
2
K
s
I
5
=




Linear predictors generalities &=

Loss functions &=

Least squares linear regression &
Linear regresssion as minimizing L, sé&”
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithm
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Linear predictors <mw %,Ké'ﬂi’

> Linear predictors for regression N
f(x) = BTx = :33%)
where Y € R, X € RY and 8 € R is a vector of parameters.
Hence, the model class is F = {8 € R?} the set of all linear functions over RY.
» Linear predictors for classification
—assimcation

y(x) = sen(8'x) & Sor exawmg ()

i.e. the decision boundary is linear
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Transforming categorical inputs into real values

> if X; takes two values (e.g “yes”, “no"), map it to {1} or {0,1} C R.
» discrete multivariate inputs
P Let X; take values in Q; = {0,...r — 1}.
P One defines the r — 1 binary variables )~(_,vk = 1[]Xj =k, k =1:r —1. The variable X; is replaced
with Xj, k=1:r—1
» the parameter 3; with r — 1 parameters S3j1 ... 3j, r — 1 representing the coefficients of
Xity oo Xjr—1.
This substitution is widely used to parametrize any function of a discrete variable as a linear function
Example: The demographic variable Race takes values in { African, Asian, Caucasian, ...}; the

corresponding parameters in the model will be Sasian, BCaucasian, - - -
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The intercept as a slope

» Sometimes we like f to have an intercept f(x) = BT x + Bo, with x, 8 € RY. Such a
function is affine, not linear, and not homogeneous. Here is a trick to get the best of both
worlds.

» Add a dummy input xg = 1 to x. Then its coefficient Sy is the intercept.

X0 Bo
e | | ert G| P erY Fx) = BT 3)
Xd Bd

» in classification, [y is called threshold or bias term
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How good is a regressor? Measuring the “Error”

> Prediction error for y': e/ = y — f(x')
» “Error” of f on D

> i’ X

> e = Iy e a— Ly = fel, - L

> |

...norms! Yv

> Lete = [el e ... e"]. )
> eisa vector in R". 1370 |ef| = Lje||y
» But we can use other norms, e.g. %HGHQ, %||e||o<,.
» Formally, ""Err'’ as above is called loss function.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y,9) = the cost of predicting § when the actual outcome is y
7 ioved
une. N o

As usually § = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y,9) = the cost of predicting § when the actual outcome is y

As usually § = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).
» For Regression
» Least-Squares L, Loss Lis(y, f(x)) = %HeH% &
> Ly Loss Lis(y, f(x)) = llellx
P Statistical losses. «
» For Classification
. e L _ 1< o
» Misclassification Error (0-1 Loss) Loy = D l[y,#,]
P Statistical losses. .

b Jubalowesd howed
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

Loa(y, f(x)) = 1z = { (1) Eii ?Eig ®

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

In general, when there are p classes, the matrix L = [Ly] defines the loss, with Ly being the
cost of misclassifying as / an example whose true class is k.
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Training set loss and expected loss

» Training set loss
» Objective of prediction = to minimize loss on future data,

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F
We call L(f) above expected loss.

Example (Misclassification error Lg1(f))

Lo1(f) = probability of making an error on future data.

Loi(f) = P[Yf(X) <0] = Epy [Ljvr(x)<all

(6)

(™



Training set loss and expected loss

» Training set loss
Objective of prediction = to minimize loss on future data,

v

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F (6)

We call L(f) above expected loss.

L(f) cannot be minimized or even computed directly, because we don’t know the data
distribution Pxy .

Therefore, in training we use the traing set loss.

.. we approximate data distribution Pxy by the sample D.

The empirical loss (or empirical error or training error) is the average loss on D

v

\4

vy

L(f) Z lyif(xiy<o] (7)

2
5
g
S
S
g
el
g
I
-
&
g
]
8
°
3
8
g
S
8
2
&
<]
=
]
b3
[
8
2




Training set loss and expected loss

» Training set loss
» Objective of prediction = to minimize loss on future data,

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F (6)

We call L(f) above expected loss.
» Therefore, in training we use the traing set loss.
... we approximate data distribution Pxy by the sample D.
The empirical loss (or empirical error or training error) is the average loss on D

vy

. 1<
L(f) = ;Zlyf(xf)@] (7)
i=1

> And we approximate L(f) the expected loss by a different data set D5t from the same

» The size of D't is n’, not necessarily equal to n.
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(Linear) least squares regression

» define data matrix or (transpose) design matrix

- (Xl)T
(XZ)T yl El
2 2
X = | iyT ERV and Y = | Y |, @=|° |er?
Vv o
7T

» Then we can write

Y = XB+E
> Thj solution ﬁA iZ chosen to minimize the sum of the squared errors
() = (v = BTX)? = E|P?
d
3 — argmin i 8T x.)?
e (v B xi)

i=1
» This optimization problem is called a least squares problem. Its solution is

B = (XTX)"XTy (8)
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» Underlying statistical model y = 37x +¢, &~ N(0,02) (and i.i.d. sampling of
(x¥N, yBNY of course).
Then 3 from (8) is the Maximum Likelihood (ML) estimator of the parameter 3.
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