

lecture 4

Bias and Variance (finish)

Losses

Linear Regression by LS

HW1 due Next
Wed

[HW2 NOT GRADED]

LII linear
predictors

Prob / Stat
refresher

• Fri 9:30, 10:30
Gavin

mc 2035

Predictors

- K-Nearest-Neighbor
- Linear - for regression
 - for classification

Algorithms

LS Regression

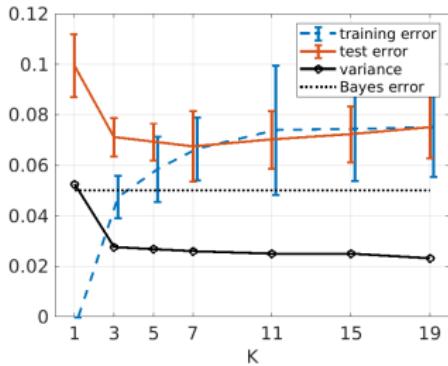
Concepts

- Decision Region, Dec. Boundary
- Training error, Test error
- Expected error \uparrow

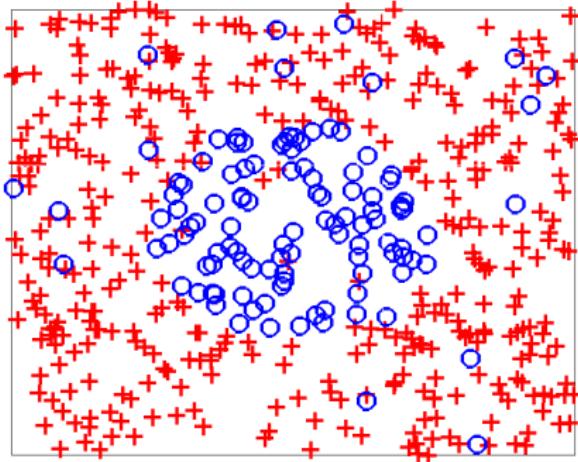
Variance, Bias

- Loss functions - training / test / expected loss

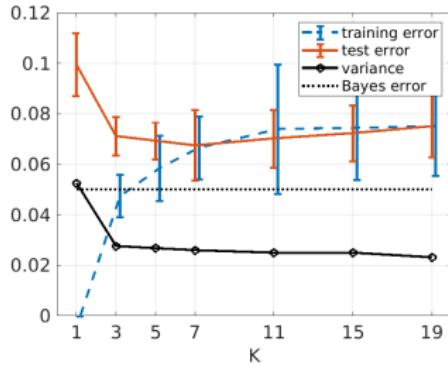
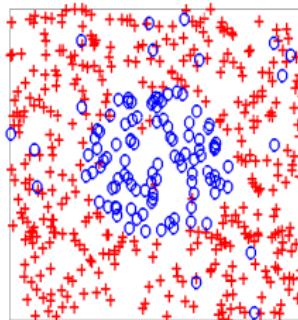
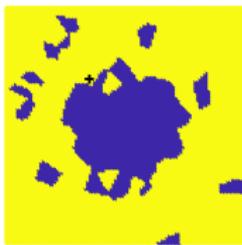
The case $K = 1$: Variance



► $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is **random**



The case $K = 1$: Variance

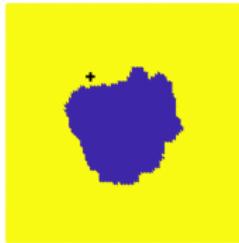
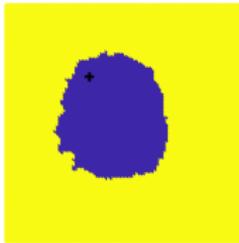


$(K = 1)$

- ▶ $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is **random**
- ▶ Hence any function f_K we estimate from \mathcal{D} is also **random**
- ▶ Formally, for any fixed x , $f_K(x)$ is a **random variable**, hence it has a **variance**.
- ▶ In this course, we do not explicitly calculate the variance, but we want to know what increases or decreases it.

The case of K large: Bias

($K = 11$)

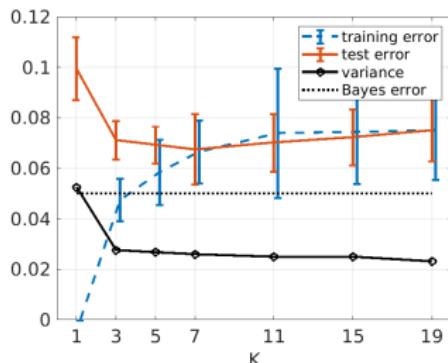


- ▶ **Bias** means to let one's own prior beliefs override the evidence.
- ▶ In data science/ML/statistics **every model/prediction** is a combination of prior belief and data
- ▶ **prior** = before seeing the data
- ▶ (usually) **prior belief** = prior **knowledge**, e.g. from previous experiments
- ▶ Bias can take many forms – in this course you will encounter several
- ▶ We do not explicitly calculate bias, but we want to identify where it is coming from, and what increases/decreases it
- ▶ One way to look for bias: if a predictor f cannot exactly/accurately predict a training set, “whatever is causing this” is bias.

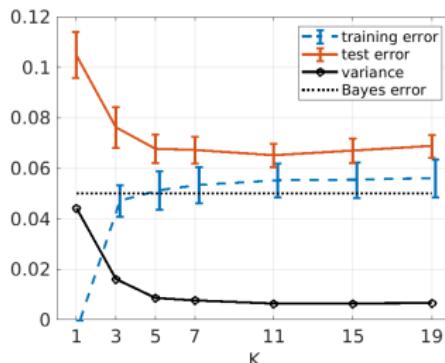
The Bias-Variance trade-off

- When bias \nearrow , variance \searrow

- When data set size $n \nearrow$, variance \searrow \Rightarrow bias \downarrow



$n = 2000$



$n = 2000$

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Linear predictors generalities

Loss functions

Least squares linear regression

Linear regression as minimizing L_{LS}

Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA)

QDA (Quadratic Discriminant Analysis)

Logistic Regression

The PERCEPTRON algorithm

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Linear predictors

regr.
classifiers

$$\beta, x \in \mathbb{R}^d$$

$$y = \hat{y} = f(x)$$

- Linear predictors for regression

$$f(x) = \beta^T x$$

where $Y \in \mathbb{R}$, $X \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^d$ is a **vector of parameters**.

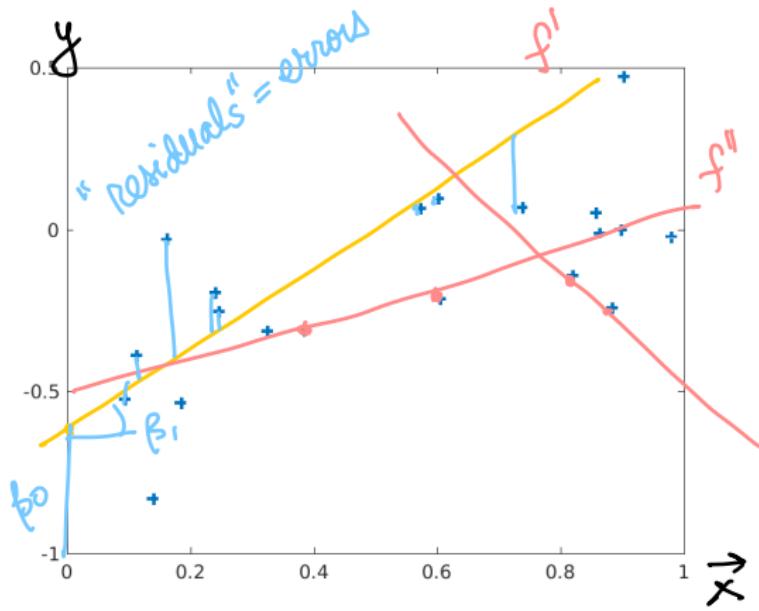
Hence, the **model class** is $\mathcal{F} = \{\beta \in \mathbb{R}^d\}$ the set of all linear functions over \mathbb{R}^d .

- Linear predictors for classification

$$\hat{y}(x) = \text{sgn}(\beta^T x) \leftarrow \text{for example} \quad (2)$$

i.e. **the decision boundary is linear**

$$\begin{aligned} \text{sgn } \beta^T x &= \text{sgn} \left(e^{\beta^T x} - 1 \right) \\ &= \text{sgn } g(\beta^T x) \\ &\leftarrow g(0) = 0 \\ &g \uparrow \end{aligned}$$



$$\theta = 1$$

$$f(x) = \beta_1 x + \beta_0$$

$$= \beta^T x$$

$$x^2 = \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^{d+1}$$

$$\beta^2 = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix} \in \mathbb{R}^{d+1}$$

“Loss” = “avg” of errors

Transforming categorical inputs into real values

- ▶ if X_j takes two values (e.g “yes”, “no”), map it to $\{\pm 1\}$ or $\{0, 1\} \subset \mathbb{R}$.
- ▶ discrete multivariate inputs
 - ▶ Let X_j take values in $\Omega_j = \{0, \dots, r - 1\}$.
 - ▶ One defines the $r - 1$ binary variables $\tilde{X}_{jk} = \mathbf{1}_{\{X_j = k\}}$, $k = 1 : r - 1$. The variable X_j is replaced with $\tilde{X}_{j1}, \dots, \tilde{X}_{j,r-1}$.
 - ▶ the parameter β_j with $r - 1$ parameters $\beta_{j1} \dots \beta_{jr-1}$ representing the coefficients of $\tilde{X}_{j1}, \dots, \tilde{X}_{j,r-1}$.

This substitution is widely used to parametrize any function of a discrete variable as a linear function

Example: The demographic variable Race takes values in $\{\text{African, Asian, Caucasian, ...}\}$; the corresponding parameters in the model will be $\hat{\beta}_{\text{Asian}}, \hat{\beta}_{\text{Caucasian}}, \dots$

The intercept as a slope

- Sometimes we like f to have an intercept $f(x) = \beta^T x + \beta_0$, with $x, \beta \in \mathbb{R}^d$. Such a function is **affine**, not linear, and not **homogeneous**. Here is a trick to get the best of both worlds.
- Add a dummy input $x_0 \equiv 1$ to x . Then its coefficient β_0 is the intercept.

$$\tilde{x} \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_d \end{bmatrix} \in \mathbb{R}^{d+1} \quad \tilde{\beta} \leftarrow \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_d \end{bmatrix} \in \mathbb{R}^{d+1} \quad f(x) = \tilde{\beta}^T \tilde{x} \quad (3)$$

- in classification, β_0 is called **threshold** or **bias term**

How good is a regressor? Measuring the “Error”

- ▶ Prediction error for y^i : $e^i = y^i - f(x^i)$
- ▶ “Error” of f on \mathcal{D}
- ▶ “ Err ” = $\frac{1}{n} \sum_{i=1}^n |e^i|$? $\leftarrow L_1 = \|e\|_1 \cdot \frac{1}{n}$
- ▶ ... norms!
- ▶ Let $e = [e^1 \ e^2 \ \dots \ e^n]$.
- ▶ e is a vector in \mathbb{R}^n . $\frac{1}{n} \sum_{i=1}^n |e^i| = \frac{1}{n} \|e\|_1$
- ▶ But we can use other norms, e.g. $\frac{1}{n} \|e\|_2$, $\frac{1}{n} \|e\|_\infty$.
- ▶ Formally, “ Err ” as above is called **loss** function.

$$e = \begin{bmatrix} e^1 \\ e^2 \\ \vdots \end{bmatrix} \Big\}^n$$

$$\text{train } L_2 = \frac{1}{n} \|e\|_2^2$$

$$\text{train } L_\infty = \frac{1}{n} \max_{i=1:n} |e^i|$$

Mean Squared Error
Least Squares Loss

Loss functions

The **loss function** represents the cost of error in a prediction problem. We denote it by L , where

$L(y, \hat{y})$ = the cost of predicting \hat{y} when the actual outcome is y

$\xrightarrow{\text{true}}$ $\xrightarrow{\text{predicted}}$

As usually $\hat{y} = f(x)$ or $\text{sgnf}(x)$, we will typically abuse notation and write $L(y, f(x))$.

$$L(e) \rightarrow L(y, \hat{y})$$

$$e = y - \hat{y}$$

Loss functions

The **loss function** represents the cost of error in a prediction problem. We denote it by L , where

$$L(y, \hat{y}) = \text{the cost of predicting } \hat{y} \text{ when the actual outcome is } y$$

As usually $\hat{y} = f(x)$ or $\text{sgnf}(x)$, we will typically abuse notation and write $L(y, f(x))$.

► For **Regression**

- Least-Squares L_2 Loss $L_{LS}(y, f(x)) = \frac{1}{n} \|e\|_2^2$ ↪
- L_1 Loss $L_{LS}(y, f(x)) = \frac{1}{n} \|e\|_1$
- Statistical losses. . . ↗

► For **Classification**

- Misclassification Error (0-1 Loss) $L_{01} = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[y^i \neq \hat{y}^i]}$
- Statistical losses. . . ↗

► *Imbalanced losses*

Loss functions for classification

For classification, a natural loss function is the **misclassification error** (also called **0-1 loss**)

$$L_{01}(y, f(x)) = \mathbf{1}_{[y \neq f(x)]} = \begin{cases} 1 & \text{if } y \neq f(x) \\ 0 & \text{if } y = f(x) \end{cases} \quad (5)$$

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as negative (**a false negative error**) incurs a much higher cost than classifying a normal patient as HIV+ (**false positive error**). This is expressed by **asymmetric misclassification costs**. For instance, assume that a false positive has cost one and a false negative has cost 100. We can express this in the matrix

		$f(x) :$	
		$+$	$-$
true : +	$+$	0	100
	$-$	1	0

In general, when there are p classes, the matrix $L = [L_{kl}]$ defines the loss, with L_{kl} being the cost of misclassifying as l an example whose true class is k .

		\hat{y}	
		$+$	$-$
$y :$	$+$	0	1
	$-$	1	0

$$\begin{aligned}
 L^{\text{train}} &= \frac{1}{n} \sum_{i=1}^n L_{y_i \hat{y}_i} = \\
 &= \frac{1}{n} \left\{ \#(\hat{y}_i=1, y_i=0) \cdot L_{01} + \right. \\
 &\quad \left. \#(\hat{y}_i=0, y_i=1) \cdot L_{10} \right\}
 \end{aligned}$$

Training set loss and expected loss

- ▶ **Training set loss**
- ▶ **Objective of prediction** = to minimize loss on future data,

$$\text{minimize } L(f) = E_{P(X,Y)}[L(Y, f(X))] \text{ over } f \in \mathcal{F} \quad (6)$$

We call $L(f)$ above **expected loss**.

Example (Misclassification error $L_{01}(f)$)

$L_{01}(f) =$ probability of making an error on future data.

$$L_{01}(f) = P[Yf(X) < 0] = E_{P_{XY}}[1_{[Yf(X) < 0]}] \quad (7)$$

Training set loss and expected loss

- ▶ **Training set loss**
- ▶ Objective of prediction = to minimize loss on future data,

$$\text{minimize } L(f) = E_{P(X,Y)}[L(Y, f(X))] \text{ over } f \in \mathcal{F}$$

$$\text{test } L(f) = \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i))$$

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n \quad (6)$$

We call $L(f)$ above **expected loss**.

- ▶ $L(f)$ cannot be minimized or even computed directly, because we don't know the data distribution P_{XY} .
- ▶ Therefore, in **training** we use the **training set** loss.
- ▶ ... we approximate data distribution P_{XY} by the sample \mathcal{D} .
- ▶ The **empirical loss** (or **empirical error** or **training error**) is the average loss on \mathcal{D}

$$\hat{L}(f) = \frac{1}{n} \sum_{i=1}^n 1_{[y_i f(x_i) < 0]} = \hat{L}_{\text{train}}(f) \quad (7)$$

Training set loss and expected loss

- ▶ **Training set loss**
- ▶ Objective of prediction = to minimize loss on future data,

$$\text{minimize } L(f) = E_{P(X,Y)}[L(Y, f(X))] \text{ over } f \in \mathcal{F} \quad (6)$$

We call $L(f)$ above **expected loss**.

- ▶ Therefore, in **training** we use the **training set** loss.
- ▶ ... we approximate data distribution P_{XY} by the sample \mathcal{D} .
- ▶ The **empirical loss** (or **empirical error** or **training error**) is the average loss on \mathcal{D}

$$\hat{L}(f) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[y^i f(x^i) < 0]} \quad (7)$$

- ▶ And we approximate $L(f)$ the expected loss by a **different** data set $\mathcal{D}^{\text{test}}$ from the same P_{XY} .
- ▶ The size of $\mathcal{D}^{\text{test}}$ is n' , not necessarily equal to n .

Linear least squares regression

Problem

$$\mathcal{D} = \{(x^i, y^i), i=1:n\} \sim \text{iid } P_{xy}$$

- ▶ define **data matrix** or (transpose) **design matrix**

L

$$X = \begin{bmatrix} (x^1)^T \\ (x^2)^T \\ \vdots \\ (x^i)^T \\ \vdots \\ (x^n)^T \end{bmatrix} \in \mathbb{R}^{N \times n} \quad \text{and} \quad Y = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{bmatrix}, \quad E = \begin{bmatrix} \varepsilon^1 \\ \varepsilon^2 \\ \vdots \\ \varepsilon^d \end{bmatrix} \in \mathbb{R}^d$$

- ▶ Then we can write

$$Y = X\beta + E$$

- ▶ The solution $\hat{\beta}$ is chosen to minimize the sum of the squared errors

$$\sum_{i=1}^d (\varepsilon^i)^2 = \sum_{i=1}^d (y^i - \beta^T x^i)^2 = \|E\|^2$$

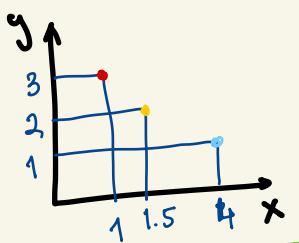
$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^d (y^i - \beta^T x^i)^2$$

- ▶ This **optimization** problem is called a **least squares** problem. Its solution is

$$\hat{\beta} = (X^T X)^{-1} X^T Y \tag{8}$$

- ▶ Underlying statistical model $y = \beta^T x + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$ (and i.i.d. sampling of $(x^{1:N}, y^{1:N})$ of course).

Then $\hat{\beta}$ from (8) is the **Maximum Likelihood** (ML) estimator of the parameter β .



$$d=1$$

$$\tilde{x} = \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \tilde{\beta} = \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix}$$

$$\tilde{x}^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \tilde{x}^2 = \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} \quad \tilde{x}^3 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

$$\hat{y} = f(\tilde{x}) = \tilde{x}^T \tilde{\beta} = \beta_1 x + \beta_0$$

$$x = \begin{bmatrix} 1 & 1 & (\tilde{x}^1)^T \\ 1.5 & 1 & \\ 4 & 1 & \end{bmatrix}$$

prediction

$$\hat{y} = \begin{bmatrix} \hat{y}^1 \\ \hat{y}^2 \\ \hat{y}^3 \end{bmatrix} = \begin{bmatrix} \text{---} \\ \text{---} \\ \text{---} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_0 \end{bmatrix}$$

$$e = y - \hat{y} = y - X\beta$$

$$1. \mathbf{e} = \mathbf{y} - \mathbf{X}\beta$$

2. Loss in matrix vector form

$$\text{min}_\beta L_2(\beta) = \|\mathbf{e}\|_2^2 = (\mathbf{y} - \mathbf{X}\beta)^T(\mathbf{y} - \mathbf{X}\beta) \\ = \mathbf{y}^T \mathbf{y} - \beta^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \beta + \beta^T \mathbf{X}^T \mathbf{X} \beta \quad \text{symmetric}$$

$$3. \text{Find } \hat{\beta} = \underset{\beta}{\operatorname{argmin}} L_2(\beta)$$

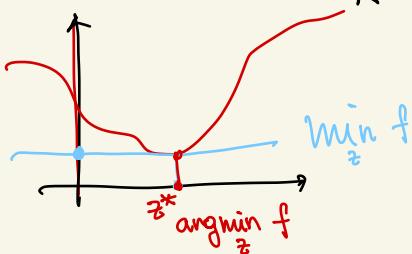
by solving $\nabla L_2(\beta) = 0$

$$3.1. \nabla L_2(\beta) = 0 - 2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \beta = 0$$

3.2 solve linear system

$$(\mathbf{X}^T \mathbf{X}) \beta = \mathbf{X}^T \mathbf{y} \quad \begin{matrix} \mathbf{A} \\ \mathbf{b} \end{matrix}$$

$$\begin{matrix} \mathbf{A} = d \times d \\ \beta \in \mathbb{R}^d \\ \mathbf{b} = \mathbb{R}^d \end{matrix}$$



$$\|\mathbf{e}\|_2^2 = \mathbf{e}^T \mathbf{e}$$

$$(\mathbf{X}\beta)^T = \beta^T \mathbf{X}^T$$

$$g(z) = \mathbf{a}^T z \in \mathbb{R}$$

$$\nabla g = \mathbf{a} \quad \text{quadratic}$$

$$h(z) = z^T \mathbf{A} z$$

$$\nabla h = 2\mathbf{A}z$$

\mathbf{A} symmetric

$$\mathbf{A}z = \mathbf{b}$$