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Linear predictors generalities /

Loss functions /

Least squares linear regression
Linear regresssion as minimizing L;s &~
Linear regresssion as maximizing likeli &«
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithm

S. V. Macdmwe
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



oy= B
v ﬁ’7

LS ’quvession FroblewL

|, crror N WakiY. - vector
Soew
~ Lot
\:3 Wk %:m\%“gﬂ Lg’



Findiag OWW‘“Q—T’T

Wl el = Ny = (41 (Y1)
= j‘-\j — E;r

\ e
n _
win LU > Tl =0

Yo =

VLa =

XX B = XTj
JAN Ny
% ()" exids = b - () Xy

7’}\5
-7,

2
(P‘ A5 *

d

\

A ke X =4 <d

\)\% ——%

lef= e
= T,
KX ($)=Fx
) =4
@)= 22
Th = 282
A\ sqpmeiric
X1 wasingalal” &
o hay hamle & &
cpumns QA}\Q@’% ndp &
l\ )Q){",.. jy —wv
Wo will apume i alusy
aplasian %‘)‘f&ﬂ.

LR =2 Pt



(Linear) least squares regression

> define data matrix or (transpose) design matrix

M
)T vl el
2 2
X = | iy ERV and Y = | Y |, E=| ° |er?
y" ed
COM

» Then we can write

Y = XB+E
> Thj solution ﬁA iZ chosen to minimize the sum of the squared errors
() = = BTX)? = E|P?
d
3 — argmin i 8T x.)?
iy (v B xi)

i=1
» This optimization problem is called a least squares problem. Its solution is

B = (XTX)"xTy (8)
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» Underlying statistical model y = 87x +¢, &~ N(0,02) (and i.i.d. sampling of
(XN, yBNY of course).
Then 3 from (8) is the Maximum Likelihood (ML) estimator of the parameter 3.
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Transforming categorical inputs into real values

> if X; takes two values (e.g “yes”, “no"), map it to {1} or {0,1} C R.
» discrete multivariate inputs
P Let X; take values in Q; = {0,...r — 1}.
P One defines the r — 1 binary variables )~(_,vk = 1[]Xj =k, k =1:r —1. The variable X; is replaced
with Xj, k=1:r—1
» the parameter 3; with r — 1 parameters S3j1 ... 3j, r — 1 representing the coefficients of
Xity oo Xjr—1.
This substitution is widely used to parametrize any function of a discrete variable as a linear function
Example: The demographic variable Race takes values in { African, Asian, Caucasian, ...}; the

corresponding parameters in the model will be Sasian, BCaucasian, - - -
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H The statisticasl view of Machine Learning: Likelihood= B [ doda \my]
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8 The statisticaal view of Machine Learning: Likelihood
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The statisticaal view of Machine Learning: Likelihood
St 4o b =

Residuals Em‘n = \QQW
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The statisticasl view of Machine Learning: Likelihood

» What is random? the noise 1"

> Express noise as function of (x1", y1i")

=y —B-p"x ~ N0 9)
> Likelihood
&2
> Let py ,2(€) = a\}ﬂe_%? = N(e0,02)
» Then
n .
, L(Bo, Br:ar0®) = [ ]Pos2(€) (10)
i=1
[[ e (1)
g = JE— 20
& Pl 27
?: n 1 _(yi—B —BTxi)z
= ——e 202 (12)
: i1 oV 2m
i > log-likelihood
I(Bo, Bras 0%) = (13)
g n
1, 5, 1 1/, N
s — I P P i — J R
Z{ 5 Ino 5 In(27) 5 (y Bo— B X) 202} (14)

i=1
1 1 X 2
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Maximizing the log-likelihood w.r.t g8

» For simplicity, let 8o = 0; hence y’ = BT x/ 4 ¢
> log-likelihood
n 1 < 2
I(B1:4,0%) = —=Ino? — — ( By — Txf> constant 16
(Br.d,0%) ynet =23 ;:1 y' —po—8 + (16)

» For any o2,
n
. N2
argmax /(02, 8) = argmin E (y‘ — Bo — 5Tx’) (17)
B B P
i=1

a Least Squares Problem

> In matrix form ming ||y — X3
» Solution
6ML _ (XTX)—ley (18)
with (XTX)~1XT = XT the pseudoinverse of X
» BML is |inear in y!
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