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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing LLS
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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(Linear) least squares regression

I define data matrix or (transpose) design matrix

X =

2

6666664

(x1)T

(x2)T

. . .
(xi )T

. . .
(xn)T

3

7777775
2 RN⇥n and Y =

2

664

y1

y2

. . .
yn

3

775 , E =

2

664

"1

"2

. . .
"d

3

775 2 Rd

I Then we can write
Y = X� + E

I The solution �̂ is chosen to minimize the sum of the squared errorsPd
i=1("

i )2 =
Pd

i=1(y
i � �T xi )2 = ||E ||2

�̂ = argmin
�2Rd

dX

i=1

(y i � �T xi )
2

I This optimization problem is called a least squares problem. Its solution is

�̂ = (XTX)�1XTY (8)

I Underlying statistical model y = �T x + ", " ⇠ N(0,�2) (and i.i.d. sampling of
(x1:N , y1:N) of course).
Then �̂ from (8) is the Maximum Likelihood (ML) estimator of the parameter �.
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Transforming categorical inputs into real values

I if Xj takes two values (e.g “yes”, “no”), map it to {±1} or {0, 1} ⇢ R.
I discrete multivariate inputs

I Let Xj take values in ⌦j = {0, . . . r � 1}.
I One defines the r � 1 binary variables X̃jk = 1[]Xj = k, k = 1 : r � 1. The variable Xj is replaced

with X̃jk , k = 1 : r � 1
I the parameter �j with r � 1 parameters �j1 . . . �j, r � 1 representing the coe�cients of

X̃j1, . . . X̃j,r�1.

This substitution is widely used to parametrize any function of a discrete variable as a linear function

Example: The demographic variable Race takes values in { African, Asian, Caucasian, . . .}; the
corresponding parameters in the model will be �̂Asian, �̂Caucasian, . . ..
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The statisticaal view of Machine Learning: Likelihood

I What is random? the noise ✏1:n

I Express noise as function of (x1:n, y1:n)

✏i = y i � �0 � �T xi ⇠ N(0,�2) (9)

I Likelihood

I Let p0,�2 (✏) = 1
�
p

2⇡
e
� ✏2

2�2 = N(✏; 0,�2)
I Then

L(�0,�1:d ,�
2) =

nY

i=1

p0,�2 (✏i ) (10)

=
nY

i=1

1

�
p
2⇡

e
� (✏i )2

2�2 (11)

=
nY

i=1

1

�
p
2⇡

e
� (yi��0��T xi )2

2�2 (12)

I log-likelihood

l(�0,�1:d ,�
2) = (13)

=
nX

i=1

⇢
�
1

2
ln�2 �

1

2
ln(2⇡)�

1

2

⇣
y i � �0 � �T xi

⌘2 1

2�2

�
(14)

= �
n

2
ln�2 �

1

2
ln(2⇡) + constant�

1

2�2

nX

i=1

⇣
y i � �0 � �T xi

⌘2
(15)
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Maximizing the log-likelihood w.r.t �

I For simplicity, let �0 = 0; hence y i = �T xi + ✏i

I log-likelihood

l(�1:d ,�
2) = �

n

2
ln�2 �

1

2�2

nX

i=1

⇣
y i � �0 � �T xi

⌘2
+ constant (16)

I For any �2,

argmax
�

l(�2,�) = argmin
�

nX

i=1

⇣
y i � �0 � �T xi

⌘2
(17)

a Least Squares Problem

I In matrix form min� ky � X�k2
I Solution

�ML = (XTX)�1XT y (18)

with (XTX)�1XT ⌘ X† the pseudoinverse of X
I �ML is linear in y !


