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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing LLS
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The Perceptron algorithm

Fitting a linear predictor for classification, third approach.
Define f (x) = �T x and find � that classifies all the data correctly (when possible).
Perceptron Algorithm

Input labeled training set D
Initialize � = 0, for all i , xi ! xi

||xi || (normalize the inputs)

Repeat until no more mistakes
for i = 1 : N
1. if sgn(�T xi ) 6= y i (a mistake)

�  � + y i x i

(Other variants exist)
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The perceptron algorithm and linearly separable data

I D is linearly separable i↵ there is a �⇤ so that sgn�T
⇤ xi = y i for all i = 1, . . . N.

If one such �⇤ exists, then there are an infinity of them

Theorem

Let D be a linearly separable data set, and define

� = min
i

|�T
⇤ xi |

||�⇤||||xi ||
. (39)

Then, the number of mistakes made by the Perceptron algorithm is at most 1/�2.

I Note that if we scale the examples to have norm 1, then � is the minimum distance to the
hyperplane �T

⇤ x = 0 in the data set.

Exercise Show that if D is linearly separable, the scaling xi ! xi

||xi ||
leaves it linearly separable.

I If D is not linearly separable, the algorithm oscillates indefinitely.
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Linear Discriminant Analysis (LDA)

Fitting a linear predictor for classification, first approach. (We are in the binary classification case)

I Assume each class is generated by a Normal distribution

PX|Y (x|+) = N (x ;µ+,⌃+), PX|Y (x|�) = N (x ;µ�,⌃�) and PY (1) = p

I Given x , what is the probability it came from class + ?

PY |X (+|x) =
PY (1)PX|Y (x|+)

PY (1)PX|Y (x|+) + PY (�)PX|Y (x| +�)
and PY |X (�|x) = 1�PY |X (+|x) (19)

This formula is true whether the distributions PX|Y are normal or not.
I We assign x to the class with maximum posterior probability.

ŷ(x) = argmax
y2{±1

PY |X (y |x) (20)

This too, holds true whether the distributions PX|Y are normal or not.
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LDA – continued

Now we specialize to the case of normal class distribution. We assume in addition that
⌃+ = ⌃� = K�1.

I Decision rule: ŷ = 1 i↵ PY |X (+|x) > PY |X (�|x)
I or equivalently i↵

0  f (x) = ln
PY |X (+|x)
PY |X (�|x)

(21)

= ln
p

1� p
�

1

2

h
xTKx � 2µT

+Kx + µT
+Kµ+

i

�
1

2

h
xTKx � 2µT

�Kx + µT
�Kµ�

i
(22)

= [K(µ+ � µ�)]T x + ln
p

1� p
+

µT
�Kµ� � µT

+Kµ+

2
(23)

= �T x + �0 (24)

I The above is a linear expression in x , hence this classifier is called (Fisher’s) Linear
Discriminant

I Note that if we change the variables to x  
p
Kx , µ±  

p
Kµ±, and if we shift the

origin to
µ++µ�

2 (24) becomes

2µT
+x + ln

p

1� p
(25)

This has a geometric interpretation
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LDA Algorithm

LDA Algorithm

Train
1. Estimate µ+ from data {(xi , y i ), y i = +1}
2. Estimate µ� from data {(xi , y i ), y i = �1}
3. Estimate ⌃ jointly for both classes, calculate K = ⌃�1. Exercise Derive the formula for this

estimate, in the Max Likelihood setting

4. Estimate p = |{(xi , y i ), y i = +1}|/n.
Predict Now apply (24) to classify new data x
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And QDA (Quadratic Discriminant Analysis)

I If we do not assume ⌃+ = ⌃� then (21) is a quadratic function of x Exercise Plot the curve

f (x) = 0 in (21) for various data sets in two dimensions. What kind of curves do you observe? Can the

decision region be bounded?

f (x) =

= ln
p

1� p
� 1

2 ln |⌃+|+ 1
2 ln |⌃�| (26)

�
1

2

h
xT⌃�1

+ x � 2µT
+⌃

�1
+ x + µT

+⌃
�1
+ µ+

i
(27)

+
1

2

h
xT⌃�1

� x � 2µT
�⌃�1

� x + µT
�⌃�1

� µ�
i

(28)

=


ln

p

1� p
� 1

2 ln |⌃+|+ 1
2 ln |⌃�|� 1

2µ
T
+⌃

�1
+ µ+ + 1

2µ
T
�⌃�1

� µ�

�
(29)

+
h
µT
+⌃

�1
+ � µT

�⌃�1
�

i
x

| {z }
linear

�
1

2
xT

h
⌃�1

+ � ⌃�1
�

i
x

| {z }
quadratic

(30)
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f (x) = �T x model the log odds of class 1

f (X ) =
P(Y = 1|X )

P(Y = �1|X )
(31)

Then
I ŷ = 1 i↵ P(Y = 1|X ) > P(Y = �1|X )

I just like in the previous case! so what’s the di↵erence?

I Answer: We don’t assume each class is Gaussian, so we are in a more general situation than LDA
I What is p(x) = P(Y = 1|X = x) under our linear model?

ln
p

1� p
= f ,

p

1� p
= ef , p =

ef

1 + ef
1� p =

1

1 + ef
(32)

An alternative “symmetric” expression for p, 1� p is

p =
ef /2

ef /2 + e�f /2
, 1� p =

e�f /2

ef /2 + e�f /2
. (33)
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Estimating the parameters by Max Likelihood

I Denote y⇤ = (1� y)/2 2 {0, 1}
I The likelihood of a data point is PY |X (y |x) = ey⇤ f (x)

1+ef (x)

I The log-likelihood is l(�; x) = y⇤f (x)� ln(1 + ef (x))

I @l
@f = y⇤ � ef

1+ef
= y⇤ � 1

1+e�f

This is a scalar, and sgn @l
@f = y

I We have also @f (x)
@� = x

I Now, the gradient of l w.r.t the parameter vector � is

@l

@�
=

@l

@f

@f

@�
=

✓
y⇤ �

1

1 + e�f (x)

◆
x (34)

Interpretation: The infinitezimal change of � to increase log-likelihood for a single data
point is along the direction of x , with the sign of y

I Log-likelihood of the data set D

l(�;D) =
1

N

dX

i=1

l(�; (xi , y i )) (35)

I The optimal � maximizes l(�;D) and therefore

@l(�;D)

@�
=

1

N

dX

i=1

✓
y i
⇤ �

1

1 + e�f (xi )

◆
xi = 0 (36)

I Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
� of the classifier.
I this iterative estimation converges asymptotically
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The gradient – an alternative formula

I We use the original y values instead of y⇤
I Note that

PY |X (y |x) =
1

1 + e�yf (x)
= �(yf (x)) (37)

I with �0 = �(1� �)

I Then,
@ ln PY |X (y|x)

@f = @ ln�(yf )
@f = y�(yf )(1��(yf )

�(yf ) = y(1� �(yf )
I The gradient of the log-likelihood of the data is now

@l(�;D)

@�
=

1

N

dX

i=1

0

BBB@
1� �(eyf (x

i ))
| {z }

PY |X (yi |xi ,�)

1

CCCA
yi x

i (38)


