

Lecture 6

Logistic Regression

HW1 - due tomorrow

HW3 - t.b. posted →
↳ due Feb 4

Sol 3 Feb 10 Tue

Q1 Feb 12 Thu

all material to L7-Jan 28
→ gradient descent

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Linear predictors generalities ✓

Loss functions ✓

Least squares linear regression ✓

Linear regression as minimizing L_{LS}

Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA) ↙

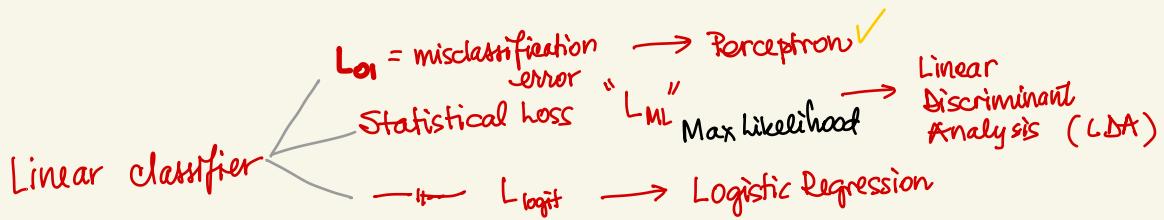
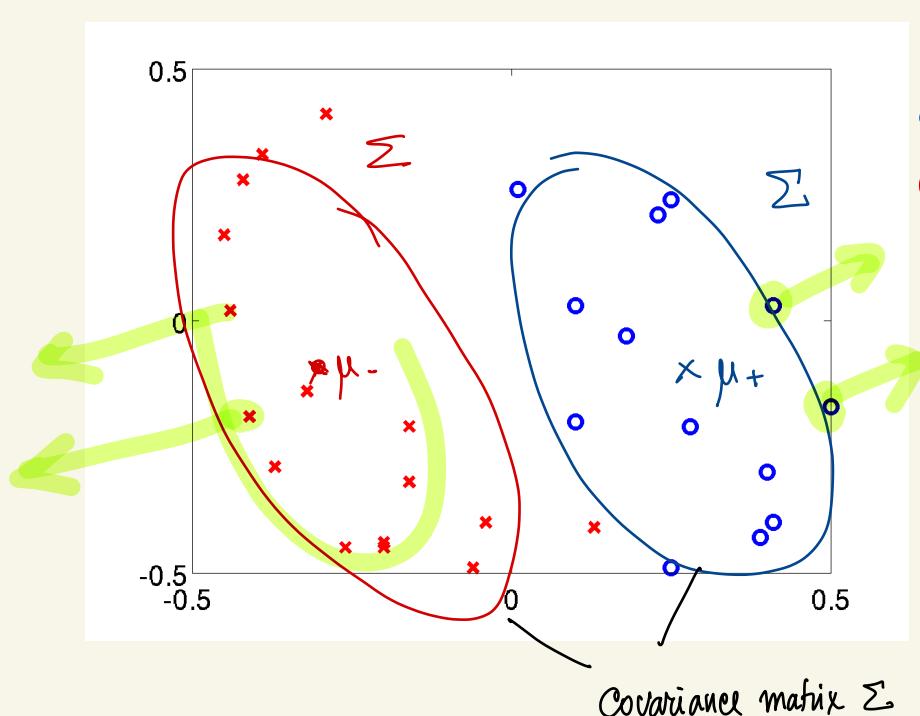
QDA (Quadratic Discriminant Analysis)

Logistic Regression ↙

The PERCEPTRON algorithm ↙

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



LDA

for calculations

$$\text{Class } + \rightarrow \mu_+, \quad \sum = \sigma^2 I$$

$$\text{Class } - \rightarrow \mu_-$$

$$\pi_+ = \Pr[y = +] = \frac{n_+}{n}$$

$$n_+ = \#\{y^i = +1\}$$

$$\pi_- = 1 - \pi_+$$

$$\Pr[y | x] = ?$$

↑
new

Generative Model for classification (NOT Gen Model for unsupervised learning)

- $y^i \sim (\pi_+, \pi_-) \in \{\pm 1\} \leftarrow R_y$
- If $y^i = 1 \Rightarrow x^i \sim N(\mu_+, \Sigma) \leftarrow P_{x|y}$
else $\Rightarrow x^i \sim N(\mu_-, \Sigma)$

PREDICTION

$$\text{Given } x \quad P[y|x] = \frac{P[x|y] \cdot P_y}{P_y = P[x|+] + P_{y=-} \cdot P[x|-]}$$

Wanted

$$f(x) = P[y=+1|x] = \frac{N(\mu_+, \sigma^2 I) \cdot \pi_+}{N(\mu_+, \sigma^2 I) \cdot \pi_+ + N(\mu_-, \sigma^2 I) \pi_-}$$

$$\hat{y} = + \text{ if } f(x) \geq \frac{1}{2}$$

- otherwise

STATISTICS \uparrow
CALCULUS \downarrow

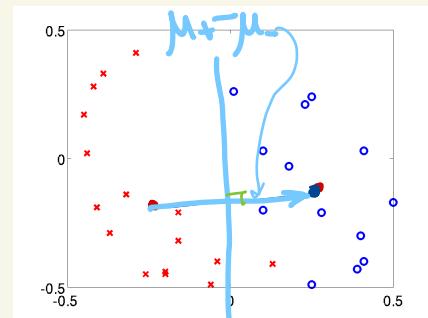
$$\pi_+ N(\mu_+, \sigma^2 I) \geq \pi_- N(\mu_-, \sigma^2 I) \quad | \ln$$

$$\pi_+ e^{-\frac{\|x - \mu_+\|^2}{2\sigma^2}} \geq \pi_- e^{-\frac{\|x - \mu_-\|^2}{2\sigma^2}}$$

$$\ln \pi_+ - \frac{\|x - \mu_+\|^2}{2\sigma^2} \geq \ln \pi_- - \frac{\|x - \mu_-\|^2}{2\sigma^2}$$

$$\|x - \mu\|^2 = x^T x + \mu^T \mu - 2 \mu^T x \quad \leftarrow \text{Ex}$$

$$-\|\mu_+\|^2 + \|\mu_-\|^2 + 2 \mu_+^T x - 2 \mu_-^T x \geq \ln \frac{\pi_-}{\pi_+} - 2\sigma^2$$



$$\in [0, 1]$$

new x

$$f^T \downarrow$$

$$(\mu_+ - \mu_-)^T x \geq -\sigma^2 \ln \frac{\pi_+}{\pi_-} + \frac{\|\mu_+\|^2 - \|\mu_-\|^2}{2}$$

β₀

The PERCEPTRON algorithm

Fitting a linear predictor for classification, third approach.

Define $f(x) = \beta^T x$ and find β that classifies all the data correctly (when possible).

PERCEPTRON Algorithm

Input labeled training set \mathcal{D}

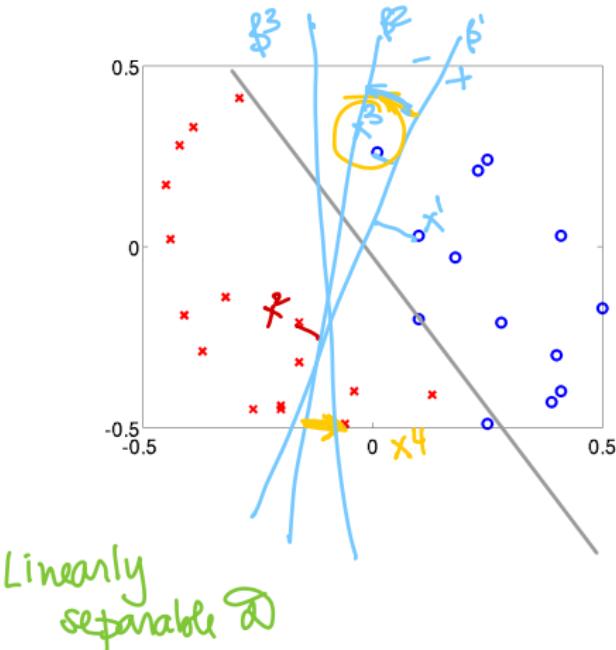
Initialize $\beta = 0$, for all i , $x^i \rightarrow \frac{x^i}{\|x^i\|}$ (normalize the inputs)

Repeat until no more mistakes

for $i = 1 : N$

1. if $\text{sgn}(\beta^T x^i) \neq y^i$ (a mistake)
 $\beta \leftarrow \beta + y^i x^i$

(Other variants exist)



The perceptron algorithm and linearly separable data

- \mathcal{D} is **linearly separable** iff there is a β_* so that $\text{sgn}\beta_*^T x^i = y^i$ for all $i = 1, \dots, N$.
If one such β_* exists, then there are an infinity of them

Theorem

Let \mathcal{D} be a linearly separable data set, and define

$$\gamma = \min_i \frac{|\beta_*^T x^i|}{\|\beta_*\| \|x^i\|}. \quad (39)$$

Then, the number of mistakes made by the PERCEPTRON algorithm is at most $1/\gamma^2$.

- Note that if we scale the examples to have norm 1, then γ is the minimum distance to the hyperplane $\beta_*^T x = 0$ in the data set.
- Exercise Show that if \mathcal{D} is linearly separable, the scaling $x^i \rightarrow \frac{x^i}{\|x^i\|}$ leaves it linearly separable.
- If \mathcal{D} is not linearly separable, the algorithm oscillates indefinitely.

Linear Discriminant Analysis (LDA)

Fitting a linear predictor for classification, first approach. (We are in the binary classification case)

- ▶ Assume each class is generated by a Normal distribution

$$P_{X|Y}(x|+) = \mathcal{N}(x; \mu_+, \Sigma_+), \quad P_{X|Y}(x|-) = \mathcal{N}(x; \mu_-, \Sigma_-) \quad \text{and} \quad P_Y(1) = p$$

- ▶ Given x , what is the probability it came from class $+$?

$$P_{Y|X}(+|x) = \frac{P_Y(1)P_{X|Y}(x|+)}{P_Y(1)P_{X|Y}(x|+) + P_Y(-)P_{X|Y}(x|-)} \quad \text{and} \quad P_{Y|X}(-|x) = 1 - P_{Y|X}(+|x) \quad (19)$$

This formula is true whether the distributions $P_{X|Y}$ are normal or not.

- ▶ We assign x to the class with maximum posterior probability.

$$\hat{y}(x) = \operatorname{argmax}_{y \in \{\pm 1\}} P_{Y|X}(y|x) \quad (20)$$

This too, holds true whether the distributions $P_{X|Y}$ are normal or not.

LDA – continued

Now we specialize to the case of normal class distribution. We assume in addition that $\Sigma_+ = \Sigma_- = K^{-1}$.

- **Decision rule:** $\hat{y} = 1$ iff $P_{Y|X}(+|x) > P_{Y|X}(-|x)$
- or equivalently iff

$$0 \leq f(x) = \ln \frac{P_{Y|X}(+|x)}{P_{Y|X}(-|x)} \quad (21)$$

$$\begin{aligned} &= \ln \frac{p}{1-p} - \frac{1}{2} \left[x^T K x - \underline{2\mu_+^T K x + \mu_+^T K \mu_+} \right] \\ &\quad - \frac{1}{2} \left[x^T K x - \underline{2\mu_-^T K x + \mu_-^T K \mu_-} \right] \end{aligned} \quad (22)$$

$$= [K(\mu_+ - \mu_-)]^T x + \ln \frac{p}{1-p} + \frac{\mu_-^T K \mu_- - \mu_+^T K \mu_+}{2} \quad (23)$$

$$= \beta^T x + \beta_0 \quad (24)$$

- The above is a **linear** expression in x , hence this classifier is called **(Fisher's) Linear Discriminant**
- Note that if we change the variables to $x \leftarrow \sqrt{K}x$, $\mu_{\pm} \leftarrow \sqrt{K}\mu_{\pm}$, and if we shift the origin to $\frac{\mu_+ + \mu_-}{2}$ (24) becomes

$$2\mu_+^T x + \ln \frac{p}{1-p} \quad (25)$$

This has a geometric interpretation

LDA Algorithm

LDA Algorithm

Train

1. Estimate μ_+ from data $\{(x^i, y^i), y^i = +1\}$
2. Estimate μ_- from data $\{(x^i, y^i), y^i = -1\}$
3. Estimate Σ jointly for both classes, calculate $K = \Sigma^{-1}$. **Exercise** Derive the formula for this estimate, in the Max Likelihood setting
4. Estimate $p = |\{(x^i, y^i), y^i = +1\}|/n$.

Predict Now apply (24) to classify new data x

And QDA (Quadratic Discriminant Analysis)

Not required

- If we do not assume $\Sigma_+ = \Sigma_-$ then (21) is a quadratic function of x **Exercise** Plot the curve $f(x) = 0$ in (21) for various data sets in two dimensions. What kind of curves do you observe? Can the decision region be bounded?

$$f(x) =$$

$$= \ln \frac{p}{1-p} - \frac{1}{2} \ln |\Sigma_+| + \frac{1}{2} \ln |\Sigma_-| \quad (26)$$

$$- \frac{1}{2} \left[x^T \Sigma_+^{-1} x - 2\mu_+^T \Sigma_+^{-1} x + \mu_+^T \Sigma_+^{-1} \mu_+ \right] \quad (27)$$

$$+ \frac{1}{2} \left[x^T \Sigma_-^{-1} x - 2\mu_-^T \Sigma_-^{-1} x + \mu_-^T \Sigma_-^{-1} \mu_- \right] \quad (28)$$

$$= \left[\ln \frac{p}{1-p} - \frac{1}{2} \ln |\Sigma_+| + \frac{1}{2} \ln |\Sigma_-| - \frac{1}{2} \mu_+^T \Sigma_+^{-1} \mu_+ + \frac{1}{2} \mu_-^T \Sigma_-^{-1} \mu_- \right] \quad (29)$$

$$+ \underbrace{\left[\mu_+^T \Sigma_+^{-1} - \mu_-^T \Sigma_-^{-1} \right] x}_{\text{linear}} - \underbrace{\frac{1}{2} x^T \left[\Sigma_+^{-1} - \Sigma_-^{-1} \right] x}_{\text{quadratic}} \quad (30)$$

Logistic Regression

Fitting a linear predictor for classification, another approach.

Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(x) = \ln \frac{P(Y=1|X)}{P(Y=-1|X)}$$

$$y_* = \begin{cases} 1 & \text{if } y=1 \\ 0 & \text{if } y=-1 \end{cases}$$

Notation

(31)

Then

- $\hat{y} = 1$ iff $P(Y=1|X) > P(Y=-1|X)$
- just like in the previous case! so what's the difference?

Almost
Likelihood

for any $x \rightarrow f, p$

$$f = \ln \frac{p}{1-p} \rightarrow e^f = \frac{p}{1-p} \rightarrow (1-p)e^f = p$$

$$\Rightarrow p(1+e^f) = e^f$$

$$\Rightarrow p = \frac{e^f}{1+e^f} = \frac{e^f}{e^f + e^0} = \frac{e^f}{e^f + 1} = p[Y=1|X]$$

Logit

$$1-p = \frac{1}{1+e^f} = P[Y \neq 1|x]$$

$$P[Y|x] = \frac{e^{y_* f}}{1+e^f}$$

$$= \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}$$

Step 1

Logistic Regression

Fitting a linear predictor for classification, another approach.

Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(X) = \frac{P(Y = 1|X)}{P(Y = -1|X)} \quad (31)$$

Then

- ▶ $\hat{y} = 1$ iff $P(Y = 1|X) > P(Y = -1|X)$
 - ▶ just like in the previous case! so what's the difference?
 - ▶ Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA
- ▶ What is $p(x) = P(Y = 1|X = x)$ under our linear model?

$$\ln \frac{p}{1-p} = f, \quad \frac{p}{1-p} = e^f, \quad p = \frac{e^f}{1+e^f}, \quad 1-p = \frac{1}{1+e^f} \quad (32)$$

An alternative "symmetric" expression for $p, 1-p$ is

$$p = \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}, \quad 1-p = \frac{e^{-f/2}}{e^{f/2} + e^{-f/2}}. \quad (33)$$

Estimating the parameters by Max Likelihood

Step 2.
Log-likelihood ℓ

- Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1 + e^{f(x)}}$
- The log-likelihood is $\ell(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- $\frac{\partial \ell}{\partial f} = y_* - \frac{e^f}{1 + e^f} = y_* - \frac{1}{1 + e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial \ell}{\partial f} = y$
- We have also $\frac{\partial f(x)}{\partial \beta} = x$
- Now, the gradient of ℓ w.r.t the parameter vector β is

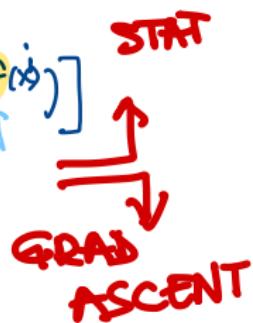
$$\frac{\partial \ell}{\partial \beta} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

Likelihood $\ell(\beta) = P[y|x, \beta] = P[y|x]$

$$\mathcal{D} = \{ (x^i, y^i), i=1:n \}$$

Log-likelihood $\ell(\beta) = \sum_{i=1}^n [y^i_* f(x^i) - \ln(1 + e^{f(x^i)})]$



Gradient of L w.r.t β

$$n=1 \quad l = \underbrace{y_* f(x)}_{\text{y*}} - \underbrace{\ln(1+e^{f(x)})}_{\text{ln}(1+e^f)} \quad \text{P}[y=+]$$
$$\frac{\partial l}{\partial \beta} = \underbrace{y_*}_{\text{y*}} - \frac{e^f}{1+e^f} \in \mathbb{R}$$

Step 3.
Gradient

$$\frac{\partial f}{\partial \beta} = \nabla f = \nabla_{\beta} (x^T \beta) = x \in \mathbb{R}^d$$

$$\nabla l = \frac{\partial l}{\partial \beta} = \left(y_* - \frac{e^f}{1+e^f} \right) x = y \cdot w \cdot x$$

$$y=+ \quad y_*=1 \Rightarrow \underbrace{1 - P[y=1|x]}_{w^i}$$

$$y=- \quad y_*=0 \Rightarrow -P[y=1] = -\underbrace{(1 - P[y_*=0])}_{w^i}$$

Step 4. (next lecture)

Gradient ascent

$$\beta \leftarrow \beta + \underbrace{\eta}_{\eta > 0} \frac{\partial l}{\partial \beta}$$

"step size"

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

- ▶ Log-likelihood of the data set \mathcal{D}

$$I(\beta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^d I(\beta; (x^i, y^i)) \quad (35)$$

- ▶ The optimal β maximizes $I(\beta; \mathcal{D})$ and therefore

$$\frac{\partial I(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(y_*^i - \frac{1}{1 + e^{-f(x^i)}} \right) x^i = 0 \quad (36)$$

- ▶ Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the β of the classifier.

The gradient – an alternative formula

- We use the original y values instead of y_*
- Note that

$$P_{Y|X}(y|x) = \frac{1}{1 + e^{-yf(x)}} = \phi(yf(x)) \quad (37)$$

- with $\phi' = \phi(1 - \phi)$
- Then, $\frac{\partial \ln P_{Y|X}(y|x)}{\partial f} = \frac{\partial \ln \phi(yf)}{\partial f} = \frac{y\phi(yf)(1 - \phi(yf))}{\phi(yf)} = y(1 - \phi(yf))$
- The gradient of the log-likelihood of the data is now

$$\frac{\partial l(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(1 - \underbrace{\phi(e^{yf(x^i)})}_{P_{Y|X}(y_i|x^i, \beta)} \right) y_i x^i \quad (38)$$