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Linear predictors generalities \/

Loss functions /
Least squares linear regression /

Linear regresssion as minimizing L;s
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA) &=
QDA (Quadratic Discriminant Analysis)

Logistic Regression &=
The PERCEPTRON algorithm &
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The PERCEPTRON algorithm

Fitting a linear predictor for classification, third approach.
Define f(x) = 87 x and find 3 that classifies all the data correctly (when possible).
PERCEPTRON Algorithm

Input labeled training set D

i

Initialize 3 = 0, for all i, x' — ﬁ (normalize the inputs)
Repeat until no more mistakes
fori=1:N
1. if sgn(B7x') # y' (a mistake) 05
B+ B+y'x ' N
(Other variants exist) W
2}

£ &L
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The perceptron algorithm and linearly separable data

> D is linearly separable iff there is a B, so that sgn8]x' =y’ forall i=1,...

If one such B. exists, then there are an infinity of them

Theorem
Let D be a linearly separable data set, and define
o [BIX]
Y = min —————.
i 1B« 11X1]

N.

(39)

Then, the number of mistakes made by the PERCEPTRON algorithm is at most 1/~2.

» Note that if we scale the examples to have norm 1, then -y is the minimum distance to the

hyperplane 8] x = 0 in the data set.
i
1> |

» If D is not linearly separable, the algorithm oscillates indefinitely.

Exercise Show that if D is linearly separable, the scaling x =

leaves it linearly separable.
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Linear Discriminant Analysis (LDA)
Fitting a linear predictor for classification, first approach. (We are in the binary classification case)
P Assume each class is generated by a Normal distribution

Pxiy(x|+) = N(x py, T4),  Pxjy(x|=) =N(x;p—,X_) and Py(1) =p

P Given x, what is the probability it came from class + ?
Py (1)Px v (x|+)
Py(1)Px v (x|4) + Py (=)Px)y (x| + —)

This formula is true whether the distributions Px/y are normal or not.
P We assign x to the class with maximum posterior probability.

y(x) = argmax Py x(y|x) (20)
ye{+1

Py x(+|x) = and Py x(—|x) = 1=Pyx(+[x) (19)

This too, holds true whether the distributions Px|y are normal or not.
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LDA — continued
Now we specialize to the case of normal class distribution. We assume in addition that
Y =Y =K1l

» Decision rule: y = 1 iff PY‘X(-‘rlX) > PY\X(—|X)

> or equivalently iff

P —+|x
0 < f(x) = |nM
Py x(=[x)
P 177 T
= Inl_p—i[x KX—2;L+KX+,U‘+K/J,+1|

f% [XTKX —2uT Kx+puT K,u,]

.
p pl Kp— — pl Ky
= [K(u+—u—)]TX+|n1_p+ > -

= BTx+ 8

» The above is a linear expression in x, hence this classifier is called (Fisher’s) Linear
Discriminant

> Note that if we change the variables to x +— VKx, pu+ < VKu=+, and if we shift the
origin to W% (24) becomes

2u1x+ In lf

This has a geometric interpretation

(21)

(22)

(23)

(24)

(25)



LDA Algorithm
LDA Algorithm

Train o '
1. Estimate p4 from data {(x',y'), y' = +1}
2. Estimate p_ from data {(x',y'), y' = —1}

3. Estimate ¥ jointly for both classes, calculate K = ¥ ~!. Exercise Derive the formula for this
estimate, in the Max leellhood setting

4. Estimate p = |{(x,y"), y' = +1}|/n.

fredict Now apply (24) to classify new data x
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And QDA (Quadratic Discriminant Analysis) A/o7 hﬁuim

» If we do not assume X = ¥ _ then (21) is a quadratic function of x Exercise Plot the curve
f(x) = 0 in (21) for various data sets in two dimensions. What kind of curves do you observe? Can the
decision region be bounded?

f(x) =
= |In 1 FIn|Zi |+ Zin|z_| (26)
1
- 5[ Tx—ouls x4l u+] (27)
1
+ E[Tz L —ouTs~ x+uIz:1u_] (28)
P
- [Inl_p—%ln\z+|+%ln|2 — Iy + 3T T (29)
+ [;Jz*l— Tzf]x—fx [): ! }:71]x (30)
D > -

linear quadratic



Logistic Regression [‘ 4 :]"1
Fitting a linear predictor for classification, another approach. 3" 0 \-_g_ %a—‘
Let f(x) = B' x| model the log odds of class 1
P(Y = 1|X)
FO=Aws (31)

~11X)
Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)

P just like in the previous case! so what's the difference?

_Ywaw:]x—a-?,?

T
-S::J?M,%“; —?Q‘?"\f,d\)a(«-?)e?
= ’P(’\—*Q’})"e:}
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f(x) = 87 x model the log odds of class 1

P(Y = 1|X)

0 = piy=—1x)

Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)

P just like in the previous case! so what's the difference?

(31)

» Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA

» What is p(x) = P(Y = 1|X = x) under our linear model?

f
e 1
Inp :f,L:ef,p: 1—-p = ——
1—-p 1—-p 1+ ef 1+ ef
An alternative “symmetric” expression for p,1 — p is
of /2 e—f/2

=5  1-p= "
P = Gy etr2’ R

(32)

(33)



Estimating the parameters by Max Likelihood

» Denote y. = (1 —y)/2 € {0,1}

ey f(x)

> The likelihood of a data point is Py |x(y|x) = e
> The log-likelihood is /(8; x) = yxf(x) — In(1 + e’™))
> 0 !

_ _ 1
of = Yx — lief =Yx = 1+e—f
This is a scalar, and sgn% =y
> We have also 8;—(5() =x
» Now, the gradient of / w.r.t the parameter vector 3 is
ol ol of 1
— = —— = (y*fi)x (34)
ap of 9B 14 e f(x)
Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y

Ligched  L@) = PLyix,p] = TLyix]

= (X,i; i)7 ].—-I:n} " . ’P"b)
Zﬁ —{Qikwé?aa/ Lip)= ZX Hcy,')-—mu te ]_j’
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Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = le:_*eiff((xx))
The log- ||ke||hood is 1(8;x) = yf(x) — In(1 + )

al _ ., _ . |
oF = Yx 1+ef == 1+e— T
This is a scalar, and sgn% =y

We have also % =x
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y

Log-likelihood of the data set D
1 o
I(5:D) = D 1B (1) (35)
i=1
The optimal 3 maximizes /(3; D) and therefore
M l ; x=0 (36)
14 e ()

Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
R of the claccifier



The gradient — an alternative formula

» We use the original y values instead of y.
> Note that

1
Pyx(y|x) = Tr e — = ¢(yf(x)) (37)
> with ¢/ = ¢(1 - 9)

dln Py x(y|x) _
> Then, “oxd B'ngSf(yf) - y¢(yfq)>((1yf)¢(yf) = y(1— ¢(yf)
» The gradient of the log-likelihood of the data is now

d
L o) | yix (38)
N _,_/

Py x(yilx",8)
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