

Lecture 6

Perceptron
LDA
Logistic Regression

Everything up to Lecture
L7 - Jan 29
EXCEPT gradient descent

1/29 with new RNG fix
HW1 - 1/28 due
HW3 - 1/28 out
2/4 due
Tue 2/10 Solutions
Quiz 1 2/12
LII Linear

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Linear predictors generalities ✓

Loss functions ✓

Least squares linear regression ✓

Linear regression as minimizing L_{LS}

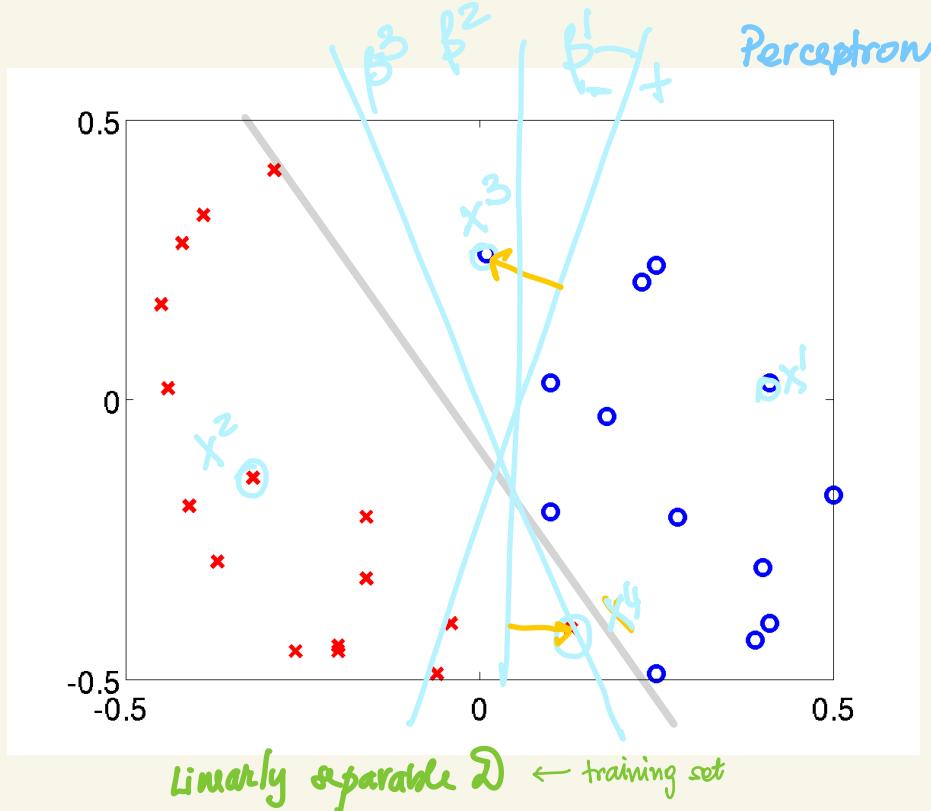
Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA) ↙

QDA (Quadratic Discriminant Analysis)

Logistic Regression ↙

The PERCEPTRON algorithm ↙


Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Linear classifier - linear decision boundary

Losses - L_{0-1} misclassification error \rightarrow Perception ①

- Statistical Loss \approx Max Likelihood \rightarrow Linear Discriminant Analysis LDA ②
- \rightarrow L_{logit} \rightarrow Logistic Regression ③

The PERCEPTRON algorithm

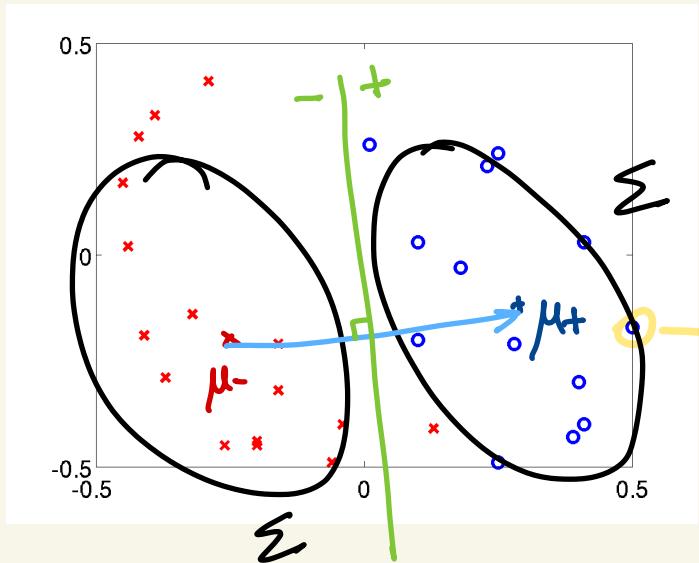
Fitting a linear predictor for classification, third approach.

Define $f(x) = \beta^T x$ and find β that classifies all the data correctly (when possible).

PERCEPTRON Algorithm

Input labeled training set \mathcal{D}

Initialize $\beta = 0$, for all i , $x^i \rightarrow \frac{x^i}{\|x^i\|}$ (normalize the inputs)


Repeat until no more mistakes

 for $i = 1 : N$

1. if $\text{sgn}(\beta^T x^i) \neq y^i$ (a mistake)
 $\beta \leftarrow \beta + y^i x^i$

(Other variants exist)

LDA

Class + : μ_+ } $\Sigma = \Sigma_+ = \Sigma_-$
 Class - : μ_-

$$\pi_+ = \frac{\#\{y^i = +\}}{n}, \quad \pi_- = 1 - \pi_+$$

1. Estimate from \mathcal{D}

2. New x want $P[y=+|x]$

by Bayes' Rule

$$3. \hat{y} = + \Leftrightarrow P[y=+|x] \geq \frac{1}{2}$$

Predict

$$P[y=+|x] \geq P[y=-|x]$$

Analysis

Generative model
for classification

(NOT G.M. for unsupervised)

$$y \sim \text{iid } (\pi_+, \pi_-)$$

$$\begin{cases} y^i = +, \quad x^i \sim N(\mu_+, \Sigma) \\ y^i = -, \quad x^i \sim N(\mu_-, \Sigma) \end{cases}$$

simplify

$$\Sigma = \sigma^2 I$$

Bayes

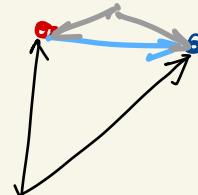
$$P[y=+|x] = \frac{\pi_+ e^{-\|x - \mu_+\|^2/2\sigma^2}}{\pi_+ e^{-\|x - \mu_+\|^2/2\sigma^2} + \pi_- e^{-\|x - \mu_-\|^2/2\sigma^2}}$$

STATISTICS ← CALCULUS

for what $x : \hat{y} = +$?

1. ln

$$P[y=+|x] = \frac{\pi_+ e^{-\|x-\mu_+\|^2/2\sigma^2}}{\pi_+ e^{-\|x-\mu_+\|^2/2\sigma^2} + \pi_- e^{-\|x-\mu_-\|^2/2\sigma^2}}$$


$$2. \|x-\mu\|^2$$

$$1. \hat{y}(x) = + \text{ iff } \ln \pi_+ - \frac{1}{2\sigma^2} \|x-\mu_+\|^2 \geq \ln \pi_- - \frac{1}{2\sigma^2} \|x-\mu_-\|^2$$

$$2. \|x-\mu\|^2 = x^T x + \underbrace{\mu_+^T \mu_+}_{\|\mu\|^2} - \boxed{2 \mu_+^T x}$$

$$3. f: 2\mu_+^T x - 2\mu_-^T x \geq -\ln \frac{\pi_+}{\pi_-} \cdot \frac{(2\sigma^2)}{\|\mu_-\|^2} - \|\mu_-\|^2 + \|\mu_+\|^2$$

$$\underbrace{(\mu_+ - \mu_-)^T x}_{\beta} \geq \sigma^2 \ln \frac{\pi_+}{\pi_-} + \underbrace{\frac{\|\mu_+\|^2 - \|\mu_-\|^2}{2}}_{0 \text{ for } \pi_+ = \pi_-}$$

The perceptron algorithm and linearly separable data

- \mathcal{D} is **linearly separable** iff there is a β_* so that $\text{sgn}\beta_*^T x^i = y^i$ for all $i = 1, \dots, N$.
If one such β_* exists, then there are an infinity of them

Theorem

Let \mathcal{D} be a linearly separable data set, and define

$$\gamma = \min_i \frac{|\beta_*^T x^i|}{\|\beta_*\| \|x^i\|}. \quad (39)$$

Then, the number of mistakes made by the PERCEPTRON algorithm is at most $1/\gamma^2$.

- Note that if we scale the examples to have norm 1, then γ is the minimum distance to the hyperplane $\beta_*^T x = 0$ in the data set.
- Exercise Show that if \mathcal{D} is linearly separable, the scaling $x^i \rightarrow \frac{x^i}{\|x^i\|}$ leaves it linearly separable.
- If \mathcal{D} is not linearly separable, the algorithm oscillates indefinitely.

Linear Discriminant Analysis (LDA)

Fitting a linear predictor for classification, first approach. (We are in the binary classification case)

- ▶ Assume each class is generated by a Normal distribution

$$P_{X|Y}(x|+) = \mathcal{N}(x; \mu_+, \Sigma_+), \quad P_{X|Y}(x|-) = \mathcal{N}(x; \mu_-, \Sigma_-) \quad \text{and} \quad P_Y(1) = p$$

- ▶ Given x , what is the probability it came from class $+$?

$$P_{Y|X}(+|x) = \frac{P_Y(1)P_{X|Y}(x|+)}{P_Y(1)P_{X|Y}(x|+) + P_Y(-)P_{X|Y}(x|-)} \quad \text{and} \quad P_{Y|X}(-|x) = 1 - P_{Y|X}(+|x) \quad (19)$$

This formula is true whether the distributions $P_{X|Y}$ are normal or not.

- ▶ We assign x to the class with maximum posterior probability.

$$\hat{y}(x) = \operatorname{argmax}_{y \in \{\pm 1\}} P_{Y|X}(y|x) \quad (20)$$

This too, holds true whether the distributions $P_{X|Y}$ are normal or not.

LDA – continued

Now we specialize to the case of normal class distribution. We assume in addition that $\Sigma_+ = \Sigma_- = K^{-1}$.

- **Decision rule:** $\hat{y} = 1$ iff $P_{Y|x}(+|x) > P_{Y|x}(-|x)$
- or equivalently iff

$$0 \leq f(x) = \ln \frac{P_{Y|x}(+|x)}{P_{Y|x}(-|x)} \quad (21)$$

$$\begin{aligned} &= \ln \frac{p}{1-p} - \frac{1}{2} \left[x^T K x - 2\mu_+^T K x + \mu_+^T K \mu_+ \right] \\ &\quad - \frac{1}{2} \left[x^T K x - 2\mu_-^T K x + \mu_-^T K \mu_- \right] \end{aligned} \quad (22)$$

$$= [K(\mu_+ - \mu_-)]^T x + \ln \frac{p}{1-p} + \frac{\mu_-^T K \mu_- - \mu_+^T K \mu_+}{2} \quad (23)$$

$$= \beta^T x + \beta_0 \quad (24)$$

- The above is a **linear** expression in x , hence this classifier is called **(Fisher's) Linear Discriminant**
- Note that if we change the variables to $x \leftarrow \sqrt{K}x$, $\mu_{\pm} \leftarrow \sqrt{K}\mu_{\pm}$, and if we shift the origin to $\frac{\mu_+ + \mu_-}{2}$ (24) becomes

$$2\mu_+^T x + \ln \frac{p}{1-p} \quad (25)$$

This has a geometric interpretation

LDA Algorithm

LDA Algorithm

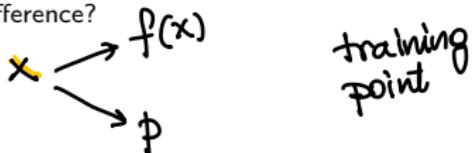
Train

1. Estimate μ_+ from data $\{(x^i, y^i), y^i = +1\}$
2. Estimate μ_- from data $\{(x^i, y^i), y^i = -1\}$
3. Estimate Σ jointly for both classes, calculate $K = \Sigma^{-1}$. **Exercise** Derive the formula for this estimate, in the Max Likelihood setting
4. Estimate $p = |\{(x^i, y^i), y^i = +1\}|/n$.

Predict Now apply (24) to classify new data x

Logistic Regression

Fitting a linear predictor for classification, another approach.


Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(x) = \ln \frac{P(Y=1|X)}{P(Y=-1|X)} \quad \text{log-odds} \quad (31)$$

Then

- $\hat{y} = 1$ iff $P(Y=1|X) > P(Y=-1|X)$
- just like in the previous case! so what's the difference?

1. Almost likelihood

$$f = \ln \frac{P}{1-P} \Rightarrow P = ? \text{ Ex}$$

$$P = \frac{e^f}{1+e^f} = P[Y=+|x]$$

$$1-P = \frac{1}{1+e^f} = P[Y=-|x]$$

$$P[Y_*^i | x^i] = \frac{e^{y_*^i f}}{1+e^{y_*^i f}}$$

$$y_* = 1 \Leftrightarrow y = +1$$

$$0 \Leftrightarrow y = -1$$

2. likelihood

$$L(\beta) = \prod_{i=1}^n P[y_*^i | x^i]$$

$$l(\beta) = \sum_{i=1}^n \ln P[y_*^i | x^i] = \sum_{i=1}^n \left[y_*^i f(x^i) - \ln (1 + e^{f(x^i)}) \right]$$

β

STAT

calculus + Opt.

$$\arg \max_{\beta} L(\beta) = \hat{\beta}$$

$$\beta \in \mathbb{R}^d$$

$$\nabla(\alpha^T z) = a$$

$$2.3. \nabla l \equiv \frac{\partial l}{\partial \beta}$$

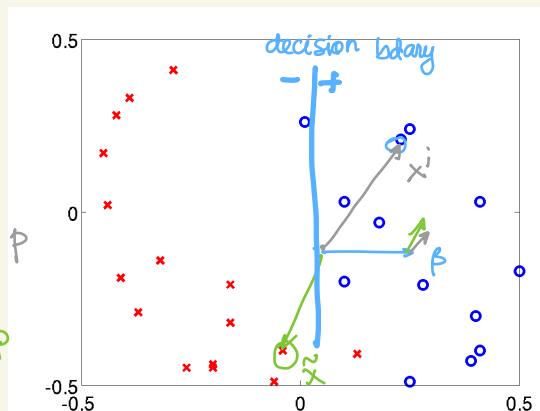
$$n=1 \quad (x, y) : l = y_* f - \ln (1 + e^f) \approx$$

$$\mathbb{R}^d \ni \frac{\partial l}{\partial \beta} = \frac{x}{f} \cdot \frac{\partial f}{\partial \beta}$$

$$\frac{\partial l}{\partial f} = y_* - \frac{e^f}{1 + e^f}$$

$P = P[y=1|x]$

$$\frac{\partial f}{\partial \beta} = \nabla_{\beta} f = \nabla_{\beta} (x^T \beta) = x$$


$$n > 1 \quad \nabla_{\beta} l = \sum_{i=1}^n \left(y_*^i - \frac{e^{f(x^i)}}{1 + e^{f(x^i)}} \right) x^i$$

$$\Rightarrow \frac{\partial l}{\partial \beta} \equiv \nabla_{\beta} l = \left(y_* - \frac{e^f}{1 + e^f} \right) x$$

$w \in \mathbb{R}$

$$y_* = 1 \Rightarrow w = 1 - p$$

$$\tilde{y}_* = 0 \Rightarrow w = -p$$

Logistic Regression

Fitting a linear predictor for classification, another approach.

Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(X) = \frac{P(Y = 1|X)}{P(Y = -1|X)} \quad (31)$$

Then

- ▶ $\hat{y} = 1$ iff $P(Y = 1|X) > P(Y = -1|X)$
 - ▶ just like in the previous case! so what's the difference?
 - ▶ Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA
- ▶ What is $p(x) = P(Y = 1|X = x)$ under our linear model?

$$\ln \frac{p}{1-p} = f, \quad \frac{p}{1-p} = e^f, \quad p = \frac{e^f}{1+e^f}, \quad 1-p = \frac{1}{1+e^f} \quad (32)$$

An alternative "symmetric" expression for $p, 1-p$ is

$$p = \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}, \quad 1-p = \frac{e^{-f/2}}{e^{f/2} + e^{-f/2}}. \quad (33)$$

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

- ▶ Log-likelihood of the data set \mathcal{D}

$$I(\beta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^d I(\beta; (x^i, y^i)) \quad (35)$$

- ▶ The optimal β maximizes $I(\beta; \mathcal{D})$ and therefore

$$\frac{\partial I(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(y_*^i - \frac{1}{1 + e^{-f(x^i)}} \right) x^i = 0 \quad (36)$$

- ▶ Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the β of the classifier.

The gradient – an alternative formula

- We use the original y values instead of y_*
- Note that

$$P_{Y|X}(y|x) = \frac{1}{1 + e^{-yf(x)}} = \phi(yf(x)) \quad (37)$$

- with $\phi' = \phi(1 - \phi)$
- Then, $\frac{\partial \ln P_{Y|X}(y|x)}{\partial f} = \frac{\partial \ln \phi(yf)}{\partial f} = \frac{y\phi(yf)(1 - \phi(yf))}{\phi(yf)} = y(1 - \phi(yf))$
- The gradient of the log-likelihood of the data is now

$$\frac{\partial l(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(1 - \underbrace{\phi(e^{yf(x^i)})}_{P_{Y|X}(y_i|x^i, \beta)} \right) y_i x^i \quad (38)$$