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Linear predictors generalities /
Loss functions /

Least squares linear regressior/
Linear regresssion as minimizing L;s
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)g=
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithmc..
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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The PERCEPTRON algorithm

Fitting a linear predictor for classification, third approach.
Define f(x) = 87 x and find 3 that classifies all the data correctly (when possible).
PERCEPTRON Algorithm

Input labeled training set D
Initialize 3 = 0, for all i, x' —
Repeat until no more mistakes

NIl ’H (normalize the inputs)

fori=1:N
1. ifsgn(BTx)) # y' (2 mistake)
B~ B+y'X

(Other variants exist)
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The perceptron algorithm and linearly separable data

> D is linearly separable iff there is a B, so that sgn8]x' =y’ forall i=1,...

If one such B. exists, then there are an infinity of them

Theorem
Let D be a linearly separable data set, and define
o [BIX]
Y = min —————.
i 1B« 11X1]

N.

(39)

Then, the number of mistakes made by the PERCEPTRON algorithm is at most 1/~2.

» Note that if we scale the examples to have norm 1, then -y is the minimum distance to the

hyperplane 8] x = 0 in the data set.
i
1> |

» If D is not linearly separable, the algorithm oscillates indefinitely.

Exercise Show that if D is linearly separable, the scaling x =

leaves it linearly separable.
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Linear Discriminant Analysis (LDA)
Fitting a linear predictor for classification, first approach. (We are in the binary classification case)
P Assume each class is generated by a Normal distribution

Pxiy(x|+) = N(x py, T4),  Pxjy(x|=) =N(x;p—,X_) and Py(1) =p

P Given x, what is the probability it came from class + ?
Py (1)Px v (x|+)
Py(1)Px v (x|4) + Py (=)Px)y (x| + —)

This formula is true whether the distributions Px/y are normal or not.
P We assign x to the class with maximum posterior probability.

y(x) = argmax Py x(y|x) (20)
ye{+1

Py x(+|x) = and Py x(—|x) = 1=Pyx(+[x) (19)

This too, holds true whether the distributions Px|y are normal or not.
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LDA — continued
Now we specialize to the case of normal class distribution. We assume in addition that
Y =Y =K1l

> Decision rule: § = 1 iff Py|x(+[x) > Py|x(—[x)

> or equivalently iff

P —+|x
0 < f(x) = |nM
Py x(=[x)
P 117 T T
= Inl_p—i[x KX—2;L+KX+[L+K/J,+]

,% [XTKX — 2,uI Kx + ,LLI K,u,]

TKu_ —u’'K
= [K(/H—M—)]TX-Hnlfp—i-}L " 2“+ e

= BTx+ 8

» The above is a linear expression in x, hence this classifier is called (Fisher’s) Linear
Discriminant
» Note that if we change the variables to x +— VKx, p+ < vV Kpu+, and if we shift the

origin to W% (24) becomes

2u1x+ In I P

This has a geometric interpretation

(21)

(22)

(23)

(24)

(25)



LDA Algorithm
LDA Algorithm

Train o '
1. Estimate p4 from data {(x',y'), y' = +1}
2. Estimate p_ from data {(x',y'), y' = —1}

3. Estimate ¥ jointly for both classes, calculate K = ¥ ~!. Exercise Derive the formula for this
estimate, in the Max leellhood setting

4. Estimate p = |{(x,y"), y' = +1}|/n.

fredict Now apply (24) to classify new data x
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f(x) = 87 x model the log odds of class 1

X)_gw

—-11X)
Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)
P just like in the previous case! so what's the difference? c
K) A

- ___de'? fu= LY
A o3 0 &Y=
A )

(31)
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f(x) = 87 x model the log odds of class 1

P(Y = 1|X)

0 = piy=—1x)

Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)

P just like in the previous case! so what's the difference?

(31)

» Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA

» What is p(x) = P(Y = 1|X = x) under our linear model?

f
e 1
Inp :f,L:ef,p: 1—-p = ——
1—-p 1—-p 1+ ef 1+ ef
An alternative “symmetric” expression for p,1 — p is
of /2 e—f/2

=5  1-p= "
P = Gy etr2’ R

(32)

(33)



-
5
g
S
S
g
el
g
I
=
&
g
]
8
°
8
8
g
S
8
g
&
<]
=
]
b3
]
8
b3

Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = ley_;iff((xx))

The log-likelihood is /(53; x) = y«f(x) — In(1 + ef())
al f

—y, e, 1
af — ¥* Tref — ¥* 1+e— 1
This is a scalar, and sgn% =y
9f(x)

We have also 5 =X
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y
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Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = le:_*eiff((xx))
The log- ||ke||hood is 1(8;x) = yf(x) — In(1 + )

al _ ., _ . |
oF = Yx 1+ef == 1+e— T
This is a scalar, and sgn% =y

We have also % =x
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y

Log-likelihood of the data set D
1 o
I(5:D) = D 1B (1) (35)
i=1
The optimal 3 maximizes /(3; D) and therefore
M l ; x=0 (36)
14 e ()

Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
R of the claccifier



The gradient — an alternative formula

» We use the original y values instead of y.
> Note that

1
Pyx(y|x) = Tr e — = ¢(yf(x)) (37)
> with ¢/ = ¢(1 - 9)

dln Py x(y|x) _
> Then, “oxd B'ngSf(yf) - y¢(yfq)>((1yf)¢(yf) = y(1— ¢(yf)
» The gradient of the log-likelihood of the data is now

d
L o) | yix (38)
N _,_/

Py x(yilx",8)
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