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Linear predictors generalities |/

Loss functions ‘/

Least squares linear regression l/
Linear regresssion as minimizing L;s
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression g
The PERCEPTRON algorithm
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f(x) = 87 x model the log odds of class 1

P(Y = 1|X)

0 = piy=—1x)

Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)

P just like in the previous case! so what's the difference?

(31)

» Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA

» What is p(x) = P(Y = 1|X = x) under our linear model?

f
e 1
Inp :f,L:ef,p: 1—-p = ——
1—-p 1—-p 1+ ef 1+ ef
An alternative “symmetric” expression for p,1 — p is
of /2 e—f/2

=5  1-p= "
P = Gy etr2’ R

(32)

(33)
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Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = ley_;iff((xx))

The log-likelihood is /(53; x) = y«f(x) — In(1 + ef())
al f

—y, e, 1
af — ¥* Tref — ¥* 1+e— 1
This is a scalar, and sgn% =y
9f(x)

We have also 5 =X
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y
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Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = le:_*eiff((xx))
The log- ||ke||hood is 1(8;x) = yf(x) — In(1 + )

al _ ., _ . |
oF = Yx 1+ef == 1+e— T
This is a scalar, and sgn% =y

We have also % =x
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y

Log-likelihood of the data set D
1 o
I(5:D) = D 1B (1) (35)
i=1
The optimal 3 maximizes /(3; D) and therefore
M l ; x=0 (36)
14 e ()

Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
R of the claccifier



The gradient — an alternative formula

» We use the original y values instead of y.
> Note that

1
Pyx(y|x) = Tr e — = ¢(yf(x)) (37)
> with ¢/ = ¢(1 - 9)

dln Py x(y|x) _
> Then, “oxd B'ngSf(yf) - y¢(yfq)>((1yf)¢(yf) = y(1— ¢(yf)
» The gradient of the log-likelihood of the data is now

d
L o) | yix (38)
N _,_/

Py x(yilx",8)
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Classification and regression tree(s) (CART) &&=

Learnin a CART &=

Predicting with a CART €

Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1-4 CART, Bach Ch.:
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Classification and regression trees (CART)

> A classification tree or (decision tree) is built recursively by splitting the data with
hyperplanes parallel to the coordinate axes.

P At each split, try to separate + examples from — examples as well as possible.
P Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.
» Classification trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split)
> A regression tree uses the same principle for regression
here we try to obtain regions where the outputs are nearly the same
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Classification Tree (Decision Tree)
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Hierarchical partitions

> a hierarchical partition 7 of RY is a set of regions {Ry}, so that RY = Ugq Rq and between

any two Rgq, Rys we have either
RqNRy =10, or Rg C Ry or Ry CRy. (1)

(we include the boundariy between 2 regions Rq, Ry arbitrarily in a single one of them)

» In a CART, the partitions are usually chosen to be axis-aligned, i.e.
Rg ={x| £x," >"71, £x;," >"72,... £ x;," > "7/} where” >" stands for one of > or
>, so that the union of all regions covers RY.

» The number of inequalities / defining the region is called the level of the region.

> Rq is a leaf of T iff there is no other R/ included in it.

Example (A hierarchical partition with 3 levels over R?)

Level 1: Ry = {x|x > 3},
Ry = {x|x <3}

Level 22 R3 = {x|x >3, x1 > —2},
Ri={x|x2 >3, x1 < =2},
Rs = {x|x2 < 3,x; > 0}
Rs = {x|x2 < 3,x <0}

Level 3: R ={x|x >3, x1 > —2,x <4},
Rg = {x|x2 >3, x1 > 4},
Ry = {x|x2 < 3,x > 1}

Rio = {x|x <3,x1 <0,x > —1},
R = {x|x < —1,x <0},
Ry = {XlXQ < 3,X1 >0,x < 1}
The leaves are R4, R7, ... Ri2. Not all leaves are at the same level; for example Ry is at level 2.
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“Learning” a CART

A standard algorithm for building a decision tree works recursively in top-down fashion.

Input Training set D of size n
Initialize with a tree with only one region, that contains all the data
Refeat until all leaves are pure (or until desired purity is attained in all leaves)
2. Find the “optimal” split over all leaves R; and all possible splits of Ry.
“Optimal” is defined in terms on purity (e.g split the least pure leaf, find the split that
makes one of the new leaves pure)
3. Perform the “optimal” split and add the two new leaves to the tree

This is a greedy algorithm. Sometimes, trees obtained this way are pruned back to smaller sizes.



