

CS 480 / 680

1/29/26

Lecture 7

HW1 —
[HW2 —]
HW3 out ←
Quiz 1 Feb 12
LIII CART

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Predictors

- K-Nearest-Neighbor
- Linear - for regression
 - for classification
- logistic regression ↑
- Perceptron, LDA
- Decision Trees (CART)

Algorithms

- LS Regression
- Logistic Regression by
Gradient Ascent/Descent

Concepts

- Decision Region, Dec. Boundary
- Training error, Test error
- Expected error ↑
- Variance, Bias
- Loss functions - training / test / expected loss
- Max likelihood

Linear predictors generalities ✓

Loss functions ✓

Least squares linear regression ✓

Linear regression as minimizing L_{LS}

Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA)

QDA (Quadratic Discriminant Analysis)

Logistic Regression ↙

The PERCEPTRON algorithm

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Logistic Regression

Fitting a linear predictor for classification, another approach.

Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(X) = \frac{P(Y = 1|X)}{P(Y = -1|X)} \quad (31)$$

Then

- ▶ $\hat{y} = 1$ iff $P(Y = 1|X) > P(Y = -1|X)$
 - ▶ just like in the previous case! so what's the difference?
 - ▶ Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA
- ▶ What is $p(x) = P(Y = 1|X = x)$ under our linear model?

$$\ln \frac{p}{1-p} = f, \quad \frac{p}{1-p} = e^f, \quad p = \frac{e^f}{1+e^f}, \quad 1-p = \frac{1}{1+e^f} \quad (32)$$

An alternative "symmetric" expression for $p, 1-p$ is

$$p = \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}, \quad 1-p = \frac{e^{-f/2}}{e^{f/2} + e^{-f/2}}. \quad (33)$$

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

Gradient of L w.r.t β

$$n=1 \quad l = \underbrace{y_* f(x)}_{\beta} - \underbrace{\ln(1+e^{f(x)})}_{\text{P}[y=+]} \\ \frac{\partial l}{\partial \beta} = \underbrace{y_*}_{\beta} - \frac{e^f}{1+e^f} \in \mathbb{R}$$

$\text{P}[y=+]$

$$\frac{\partial f}{\partial \beta} = \nabla f = \nabla_{\beta}(x^T \beta) = x \in \mathbb{R}^d$$

$$\nabla l = \frac{\partial l}{\partial \beta} = \left(y_* - \frac{e^f}{1+e^f} \right) x = y_* \cdot w \cdot x$$

± 1

$$y=+ \quad y_*=1 \Rightarrow \underbrace{1 - \text{P}[y=1|x]}_{w^i}$$

$$y=- \quad y_*=0 \Rightarrow -\text{P}[y=1] = -\underbrace{(1 - \text{P}[y=0])}_{w^i}$$

Step 4. (next lecture)

$$\beta \leftarrow \beta + \underbrace{\eta \frac{\partial L}{\partial \beta}}_{\eta > 0 \text{ "step size"}}$$

Step 3. Gradient

Logistic Regression

Model

$$f(x) = \beta^T x$$

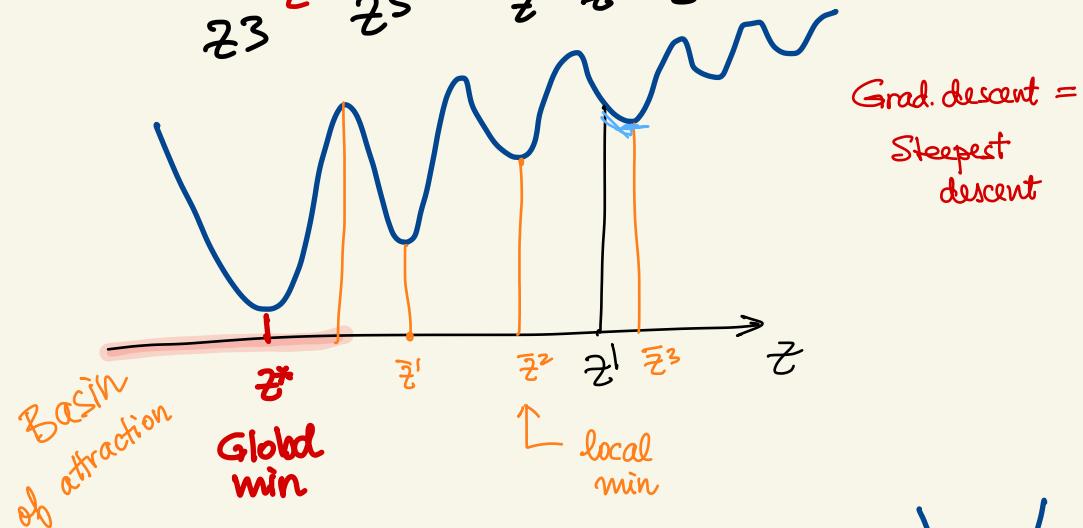
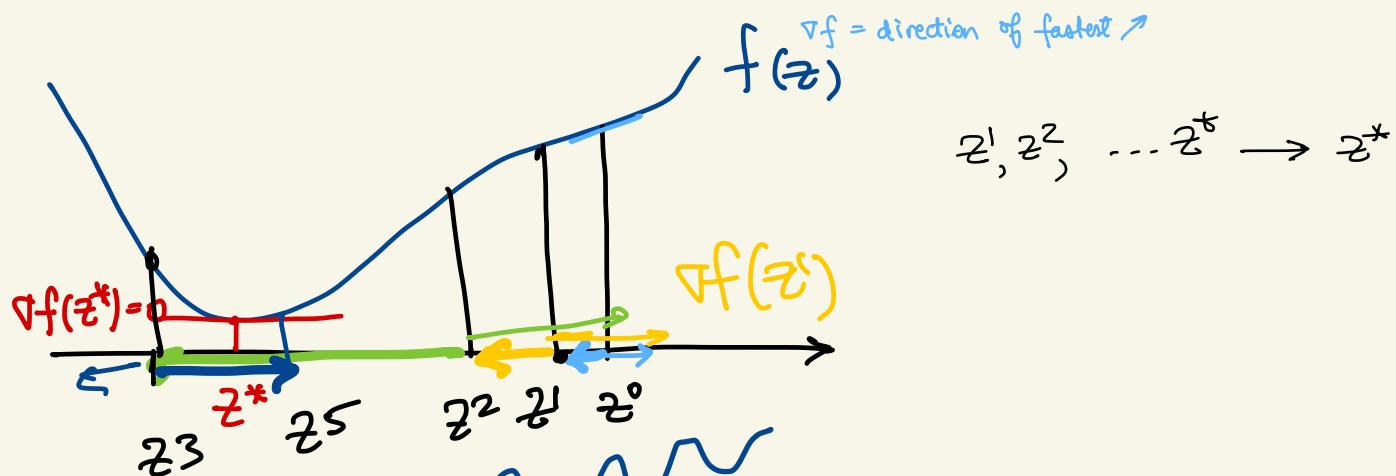
predict $\hat{y} = +1 \text{ iff } \beta^T x \geq 0$

$n > 1$

Training $\mathcal{D} = \{(x^i, y^i), i=1:n\}$

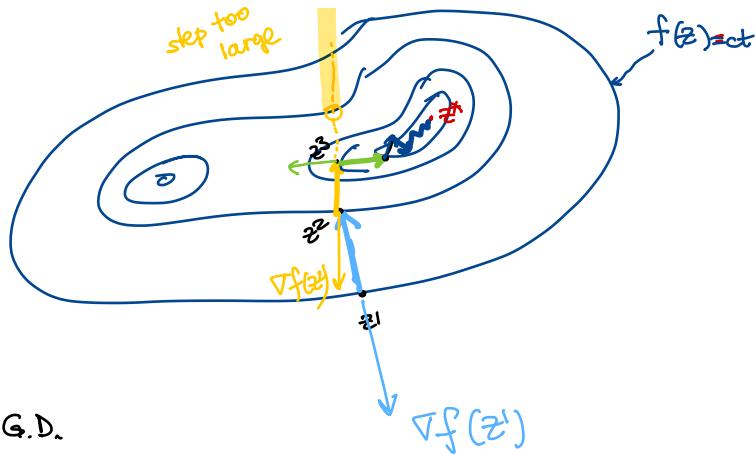
$$l(\beta) = \sum_{i=1}^n \left[y_*^i f(x^i) - \ln(1+e^{f(x^i)}) \right]$$

(concave) \max_{β}



$$y^i \in \{-1\} \Leftrightarrow y_*^i \in \{0, 1\}$$

$$\text{Loss} \quad L_{\text{logit}}^{\text{train}} = -\frac{1}{n} l(\beta) \quad \min_{\beta}$$

(convex)
no local minima


$$\nabla L_{\text{logit}}^{\text{train}} = -\frac{1}{n} \sum_{i=1}^n \left(y_*^i - \frac{e^{f(x^i)}}{1+e^{f(x^i)}} \right) \cdot x^i$$

$y^i w_i \in \mathbb{R}$

$$f'' \geq 0 \Rightarrow f \text{ convex}$$

$$\left[\frac{\partial^2 f}{\partial z_i \partial z_j} \right] = H \text{ Hessian} \quad H \succ 0 \Rightarrow f \text{ convex}$$

Init z^0

for $t = 1, 2, \dots$
 $z^t \leftarrow z^{t-1} - \eta \nabla f(z^{t-1})$

(compute $f(z^{t-1})$) has it increased?
 step size

Gradient Ascent for $\max L(\beta)$

$n L(\beta) = - \sum_{\text{train}}^{\text{logit}}$

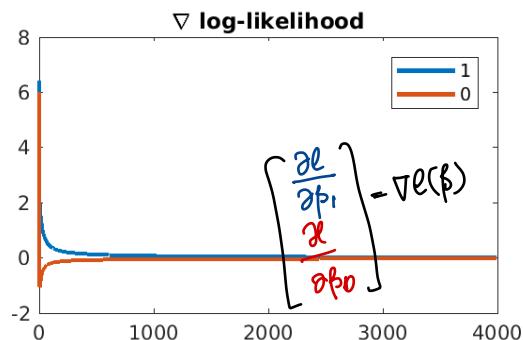
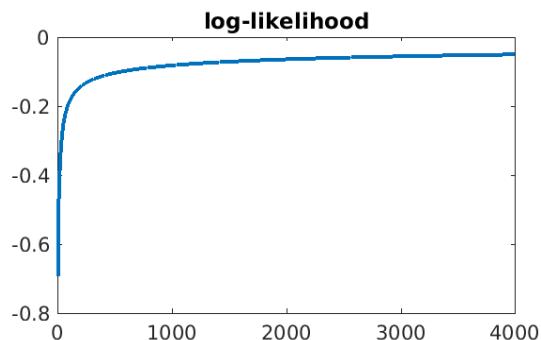
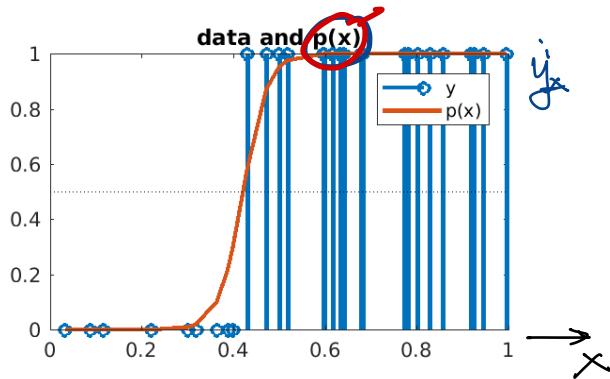
$n \nabla L(\beta) = - \nabla \sum_{\text{train}}^{\text{logit}}$

for t compute $L(\beta^t)$, $\nabla L(\beta^t)$
 $\beta^t \leftarrow \beta^{t-1} + \eta \nabla L(\beta^{t-1})$

Gradient Descent for Logistic Regression

"L" $\leftarrow \sum_{\text{train}}^{\text{logit}}$
 In data \mathcal{D} , η , tol
 Init $\beta^0 = 0$

Do for $t = 1, 2, \dots$
 compute $L(\beta^{t-1})$, $\nabla L(\beta^{t-1})$
 $\beta^t \leftarrow \beta^{t-1} - \eta \nabla L(\beta^{t-1})$
 until $\frac{|L(\beta^{t-1}) - L(\beta^t)|}{L(\beta^{t-1})} < \text{tol}$




Out $\beta^t, L(\beta^t)$

$\text{tol} = 10^{-3}, \dots, 10^{-8}$

$$f(x) = \beta_1 x + \beta_0$$

$$p_x = \frac{e^f}{1+e^f}$$

after training

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

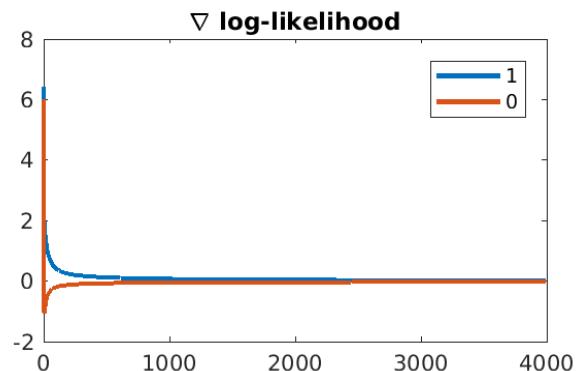
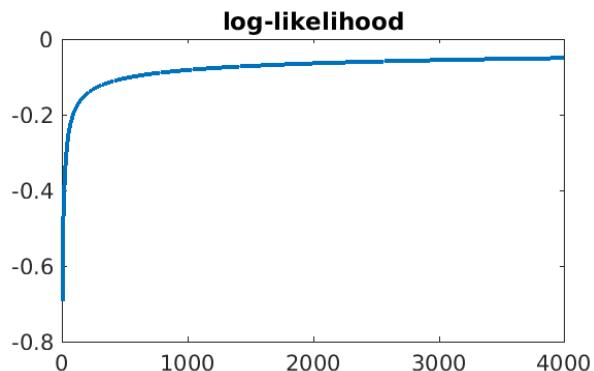
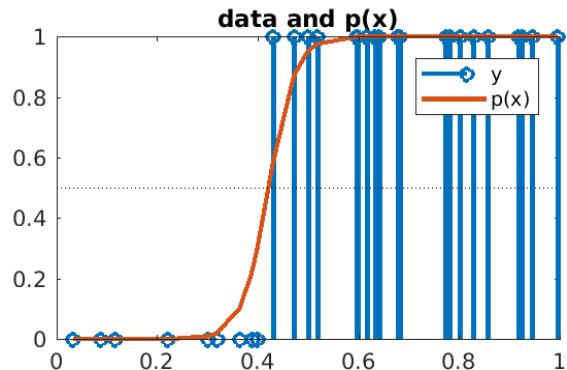
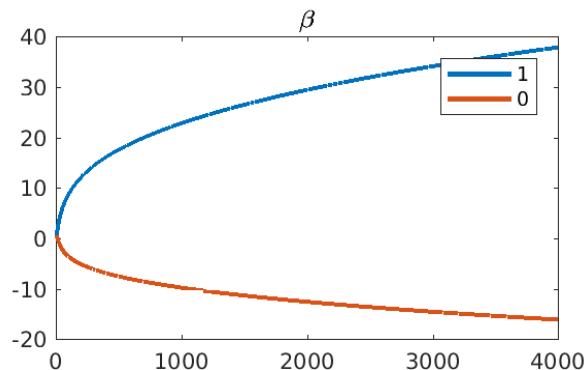
- ▶ Log-likelihood of the data set \mathcal{D}

$$I(\beta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^d I(\beta; (x^i, y^i)) \quad (35)$$

- ▶ The optimal β maximizes $I(\beta; \mathcal{D})$ and therefore

$$\frac{\partial I(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(y_*^i - \frac{1}{1 + e^{-f(x^i)}} \right) x^i = 0 \quad (36)$$

- ▶ Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the β of the classifier.





The gradient – an alternative formula

- We use the original y values instead of y_*
- Note that

$$P_{Y|X}(y|x) = \frac{1}{1 + e^{-yf(x)}} = \phi(yf(x)) \quad (37)$$

- with $\phi' = \phi(1 - \phi)$
- Then, $\frac{\partial \ln P_{Y|X}(y|x)}{\partial f} = \frac{\partial \ln \phi(yf)}{\partial f} = \frac{y\phi(yf)(1 - \phi(yf))}{\phi(yf)} = y(1 - \phi(yf))$
- The gradient of the log-likelihood of the data is now

$$\frac{\partial l(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(1 - \underbrace{\phi(e^{yf(x^i)})}_{P_{Y|X}(y_i|x^i, \beta)} \right) y_i x^i \quad (38)$$

Lecture III: Classification and Decision Trees (CART)

Marina Meilă
mmp@uwaterloo.ca

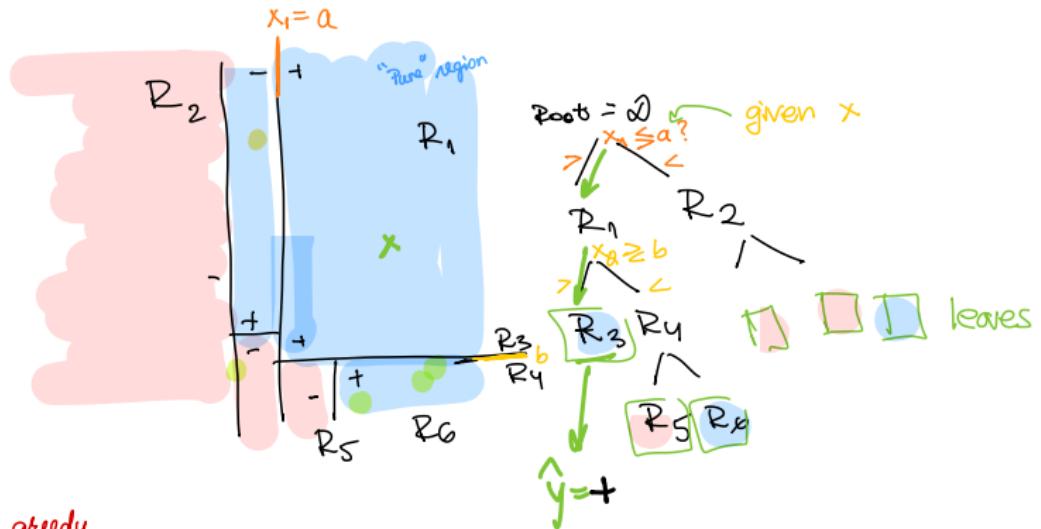
With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 27, 2026

Classification and regression tree(s) (CART)

Learnin a CART

Predicting with a CART


Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1–4 CART, Bach Ch.:

Classification and regression trees (CART)

- ▶ A **classification tree** or (**decision tree**) is built recursively by splitting the data with hyperplanes parallel to the coordinate axes.
 - ▶ At each split, try to separate **+** examples from **-** examples as well as possible.
 - ▶ Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.
- ▶ Classification trees can be used in multiway classification as well (there we try to create a pure region on at least one side of the split)
- ▶ A **regression tree** uses the same principle for regression
 - here we try to obtain regions where the outputs are nearly the same

Classification Tree (Decision Tree)

Training - greedy
- recursive

Prediction - recursive down the tree

Hierarchical partitions

- a **hierarchical partition** \mathcal{T} of \mathbb{R}^d is a set of regions $\{R_q\}$, so that $\mathbb{R}^d = \bigcup_q R_q$ and between any two $R_q, R_{q'}$ we have either

$$R_q \cap R_{q'} = \emptyset, \text{ or } R_q \subset R_{q'} \text{ or } R_{q'} \subset R_q. \quad (1)$$

(we include the boundary between 2 regions $R_q, R_{q'}$ arbitrarily in a single one of them)

- In a CART, the partitions are usually chosen to be **axis-aligned**, i.e.
 $R_q = \{x \mid \pm x_{j_1} > \tau_1, \pm x_{j_2} > \tau_2, \dots \pm x_{j_l} > \tau_l\}$ where " $>$ " stands for one of $>$ or \geq , so that the union of all regions covers \mathbb{R}^d .
- The number of inequalities l defining the region is called the *level* of the region.
- R_q is a **leaf** of \mathcal{T} iff there is no other $R_{q'}$ included in it.

Example (A hierarchical partition with 3 levels over \mathbb{R}^2)

Level 1: $R_1 = \{x \mid x_2 > 3\},$
 $R_2 = \{x \mid x_2 \leq 3\}$

Level 2: $R_3 = \{x \mid x_2 > 3, x_1 \geq -2\},$
 $R_4 = \{x \mid x_2 > 3, x_1 < -2\},$
 $R_5 = \{x \mid x_2 \leq 3, x_1 > 0\},$
 $R_6 = \{x \mid x_2 \leq 3, x_1 \leq 0\}$

Level 3: $R_7 = \{x \mid x_2 > 3, x_1 \geq -2, x_1 < 4\},$
 $R_8 = \{x \mid x_2 > 3, x_1 \geq 4\},$
 $R_9 = \{x \mid x_2 < 3, x_1 \geq 1\}$
 $R_{10} = \{x \mid x_2 \leq 3, x_1 \leq 0, x_2 > -1\},$
 $R_{11} = \{x \mid x_2 \leq -1, x_1 \leq 0\},$
 $R_{12} = \{x \mid x_2 < 3, x_1 > 0, x_1 < 1\}$

The leaves are R_4, R_7, \dots, R_{12} . Not all leaves are at the same level; for example R_4 is at level 2.

“Learning” a CART

A standard algorithm for building a decision tree works recursively in top-down fashion.

Input Training set \mathcal{D} of size n

Initialize with a tree with only one region, that contains all the data

Repeat until all leaves are pure (or until desired purity is attained in all leaves)

2. Find the “optimal” split over all leaves R_q and all possible splits of R_q .
“Optimal” is defined in terms on purity (e.g split the least pure leaf, find the split that makes one of the new leaves pure)
3. Perform the “optimal” split and add the two new leaves to the tree

This is a greedy algorithm. Sometimes, trees obtained this way are **pruned** back to smaller sizes.