

Lecture 7

Gradient Descent

Decision Tree

HW3 = out

Tomorrow 9:30, 10:30
Tutorial: matplotlib

Lecture II: Linear regression and classification. Loss functions

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Predictors

- K-Nearest-Neighbor
- Linear - for regression
 - for classification
- logistic regression ↑
- Perceptron, LDA
- Decision Trees (CART)

Algorithms

- LS Regression
- Logistic Regression by
Gradient Ascent/Descent

Concepts

- Decision Region, Dec. Boundary
- Training error, Test error
- Expected error ↑
- Variance, Bias
- Loss functions - training / test / expected loss
- Max likelihood

Linear predictors generalities ✓

Loss functions ✓

Least squares linear regression ✓

Linear regression as minimizing L_{LS}

Linear regression as maximizing likelihood

Linear Discriminant Analysis (LDA)

QDA (Quadratic Discriminant Analysis)

Logistic Regression

The PERCEPTRON algorithm

Decision trees

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Logistic Regression

Fitting a linear predictor for classification, another approach.

Let $f(x) = \beta^T x$ model the **log odds** of class 1

$$f(X) = \frac{P(Y = 1|X)}{P(Y = -1|X)} \quad (31)$$

Then

- ▶ $\hat{y} = 1$ iff $P(Y = 1|X) > P(Y = -1|X)$
 - ▶ just like in the previous case! so what's the difference?
 - ▶ Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA
- ▶ What is $p(x) = P(Y = 1|X = x)$ under our linear model?

$$\ln \frac{p}{1-p} = f, \quad \frac{p}{1-p} = e^f, \quad p = \frac{e^f}{1+e^f}, \quad 1-p = \frac{1}{1+e^f} \quad (32)$$

An alternative "symmetric" expression for $p, 1-p$ is

$$p = \frac{e^{f/2}}{e^{f/2} + e^{-f/2}}, \quad 1-p = \frac{e^{-f/2}}{e^{f/2} + e^{-f/2}}. \quad (33)$$

Estimating the parameters by Max Likelihood

- ▶ Denote $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is $I(\beta; x) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ $\frac{\partial I}{\partial f} = y_* - \frac{e^f}{1+e^f} = y_* - \frac{1}{1+e^{-f}}$
This is a scalar, and $\text{sgn} \frac{\partial I}{\partial f} = y$
- ▶ We have also $\frac{\partial f(x)}{\partial \beta} = x$
- ▶ Now, the gradient of I w.r.t the parameter vector β is

$$\frac{\partial I}{\partial \beta} = \frac{\partial I}{\partial f} \frac{\partial f}{\partial \beta} = \left(y_* - \frac{1}{1 + e^{-f(x)}} \right) x \quad (34)$$

Interpretation: The infinitesimal change of β to increase log-likelihood for a single data point is along the direction of x , with the sign of y

- ▶ Log-likelihood of the data set \mathcal{D}

$$I(\beta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^d I(\beta; (x^i, y^i)) \quad (35)$$

- ▶ The optimal β maximizes $I(\beta; \mathcal{D})$ and therefore

$$\frac{\partial I(\beta; \mathcal{D})}{\partial \beta} = \frac{1}{N} \sum_{i=1}^d \left(y_*^i - \frac{1}{1 + e^{-f(x^i)}} \right) x^i = 0 \quad (36)$$

- ▶ Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the β of the classifier.

2. likelihood

$$L(\beta) = \prod_{i=1}^n P[y_i^* | x^i]$$

TRAINING

$$l(\beta) = \sum_{i=1}^n \ln P[y_i^* | x^i] = \sum_{i=1}^n \left[y_i^* f(x^i) - \ln (1 + e^{f(x^i)}) \right]$$

$$\beta$$

STAT

Model $f(x) = \beta^T x$

Predict $\hat{y}(x) = 1 \text{ if } f(x) \geq 0$
 $\hat{y}(x) = \text{sgn } f(x)$

calculus + Opt.

$$\underset{\beta}{\text{arg max}} L(\beta) = \hat{\beta}$$

$$\beta \in \mathbb{R}^d$$

$$\nabla(\alpha^T z) = \alpha$$

23. $\nabla l \equiv \frac{\partial l}{\partial \beta}$

$$n=1 \quad (x, y) : l = y^* f - \ln (1 + e^f) \approx$$

$$\mathbb{R}^d \ni \frac{\partial l}{\partial \beta} = \frac{x}{\mathbb{R}} \cdot \frac{\partial f}{\partial \beta}$$

$$\frac{\partial l}{\partial f} = y^* - \frac{e^f}{1 + e^f}$$

$P = P[y=1|x]$

$$\Rightarrow \frac{\partial l}{\partial \beta} \equiv \nabla l = \left(y^* - \frac{e^f}{1 + e^f} \right) x$$

$w \in \mathbb{R}$

$$\frac{\partial f}{\partial \beta} = \nabla_{\beta} f = \nabla_{\beta} (x^T \beta) = x$$

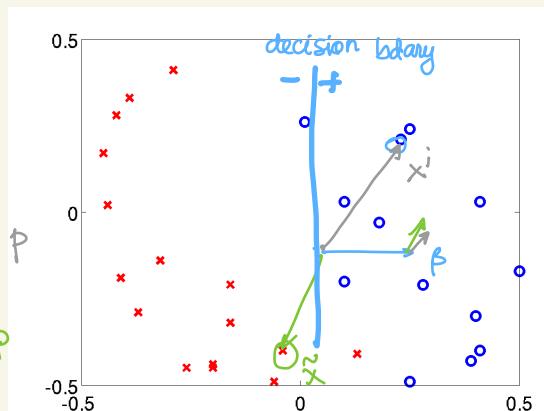
$$n > 1 \quad \nabla_{\beta} l = \sum_{i=1}^n \left(y_i^* - \frac{e^{f(x^i)}}{1 + e^{f(x^i)}} \right) x^i$$

w_i

Wanted $= 0$

$$y^* = 1 \Rightarrow w = 1 - p$$

$$\hat{y}^* = 0 \Rightarrow w = -p$$



Training by Gradient descent

$$L(\beta) = \frac{1}{n} \sum_{i=1}^n \left[y_i f(x_i) - \ln (1 + e^{f(x_i)}) \right]$$

concave ↗

$$\nabla L(\beta) = \frac{1}{n} \sum_{i=1}^n \left[y_i - \frac{e^{f(x_i)}}{1 + e^{f(x_i)}} \right] x_i$$

← max β

$\stackrel{\pm w_i}{\text{min}}$

← convex ↗

min β by Grad. Descent

LOSS

$$L_{\text{train}}^{\text{logit}}(\beta) = -L(\beta)$$

$$\nabla L_{\text{train}}^{\text{logit}} = -\nabla L(\beta)$$

Grad. Descent Algo

In $\mathcal{D}, \eta, \text{tol}$

Init $\beta^0 = 0$

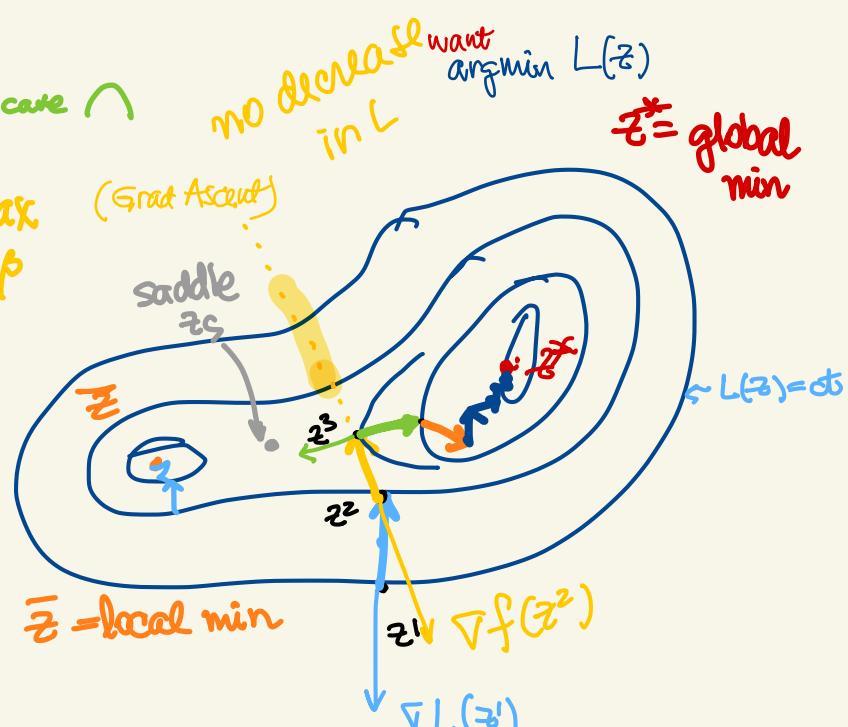
Do for $t = 1, 2, \dots$

calculate $L(\beta^{t-1}), \nabla L(\beta^{t-1})$

$\beta^t \leftarrow \beta^{t-1} - \eta \nabla L(\beta^{t-1})$

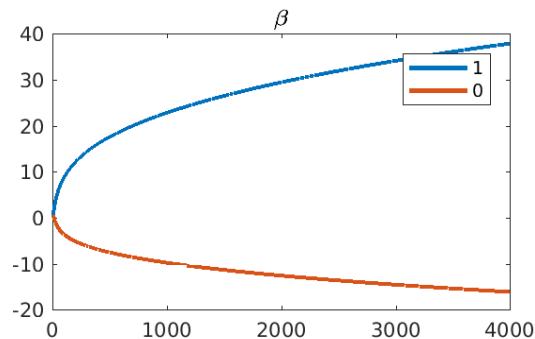
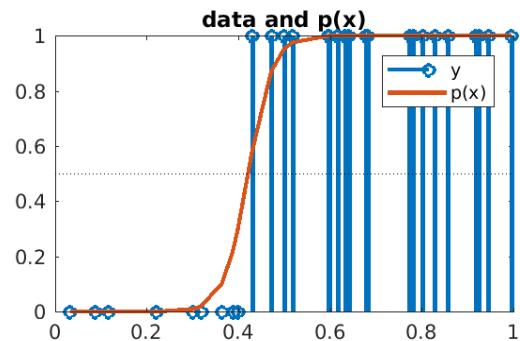
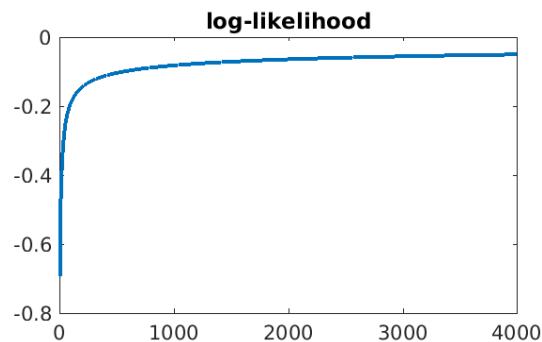
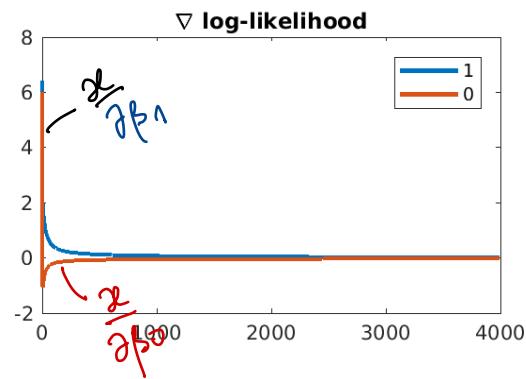
until $\frac{|L(\beta^{t-1}) - L(\beta^t)|}{L(\beta^{t-1})} < \text{tol}$

$$\text{tol} = 10^{-3}, \dots, 10^{-8}$$



$$p(x) = \frac{e^f}{1+e^f}$$

$$f(x) = \beta_1 x + \beta_0$$



Lecture III: Classification and Decision Trees (CART)

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 27, 2026

Classification and regression tree(s) (CART)

Learnin a CART

Predicting with a CART

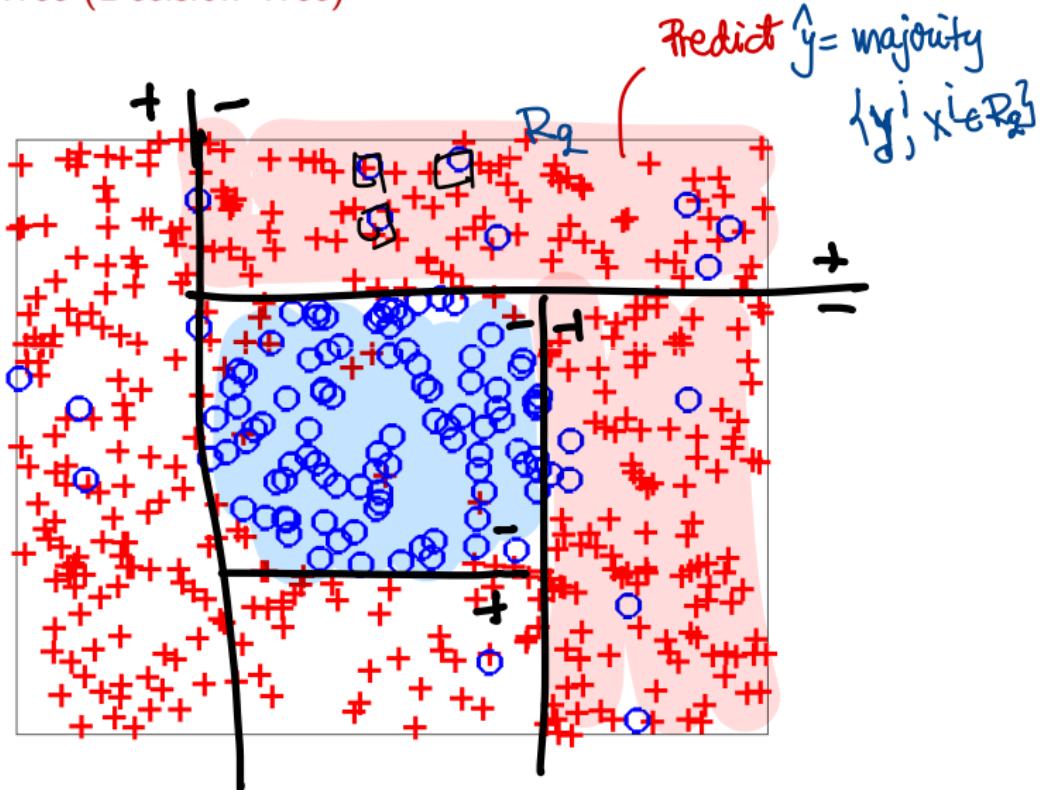
Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1–4 CART, Bach Ch.:

Classification and regression trees (CART)

- ▶ A **classification tree** or (**decision tree**) is built recursively by splitting the data with hyperplanes parallel to the coordinate axes.
 - ▶ At each split, try to separate **+** examples from **-** examples as well as possible.
 - ▶ Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.
- ▶ Classification trees can be used in multiway classification as well (there we try to create a pure region on at least one side of the split)
- ▶ A **regression tree** uses the same principle for regression
 - here we try to obtain regions where the outputs are nearly the same

Classification Tree (Decision Tree)

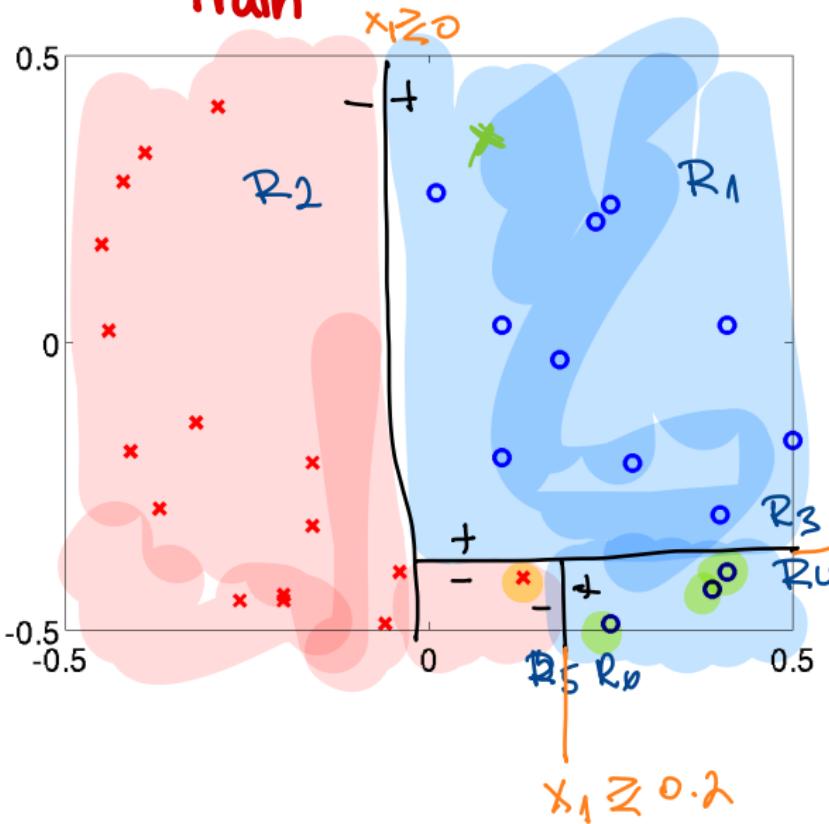


- Can approximate any decision regions
- Can classify correctly any \Rightarrow can overfit (variance)

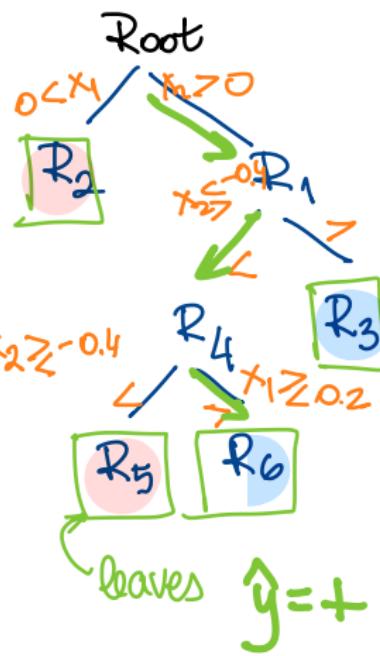
Classification Tree (Decision Tree)

Recursive Greedy

Train



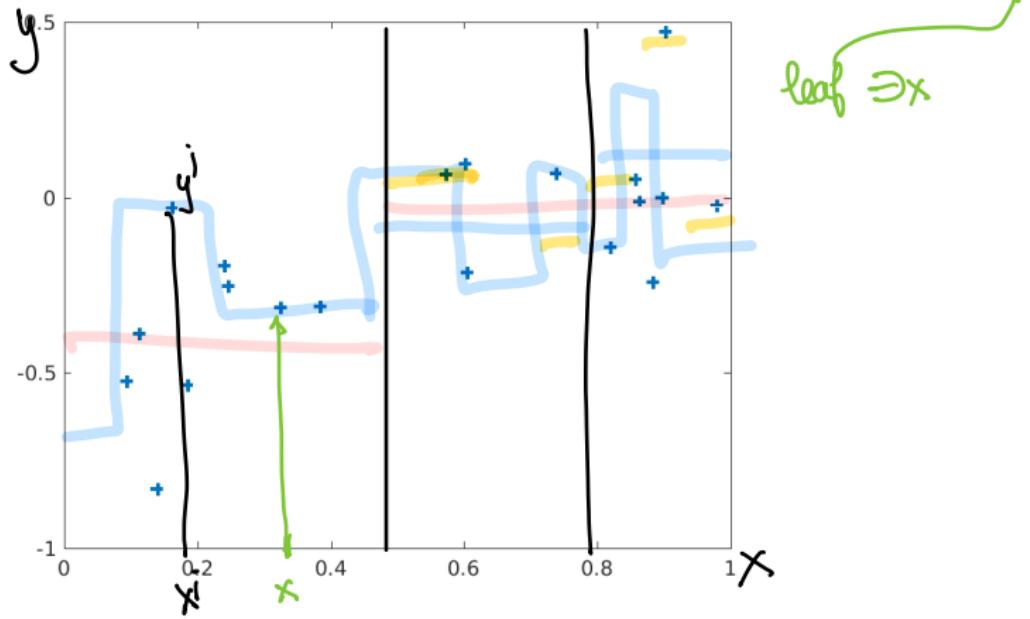
Prediction



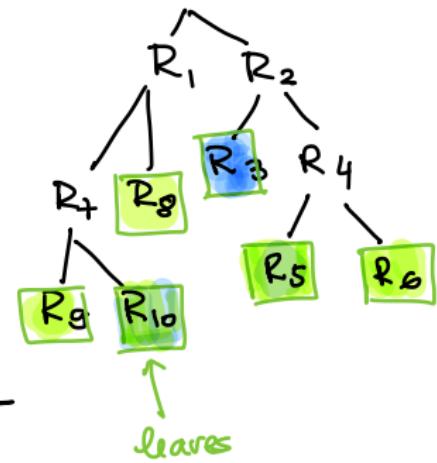
Regression Tree

Predict

$$\hat{y} = \arg \{ y^i, x^i \in R_2 \}$$



Regression Tree



$$\hat{y}(\text{leaf}) = \text{avg}\{y_i, x_i \in R_j\}$$

Hierarchical partitions

- a **hierarchical partition** \mathcal{T} of \mathbb{R}^d is a set of regions $\{R_q\}$, so that $\mathbb{R}^d = \bigcup_q R_q$ and between any two $R_q, R_{q'}$ we have either

$$R_q \cap R_{q'} = \emptyset, \text{ or } R_q \subset R_{q'} \text{ or } R_{q'} \subset R_q. \quad (1)$$

(we include the boundary between 2 regions $R_q, R_{q'}$ arbitrarily in a single one of them)

- In a CART, the partitions are usually chosen to be **axis-aligned**, i.e.
 $R_q = \{x \mid \pm x_{j_1} > \tau_1, \pm x_{j_2} > \tau_2, \dots \pm x_{j_l} > \tau_l\}$ where " $>$ " stands for one of $>$ or \geq , so that the union of all regions covers \mathbb{R}^d .
- The number of inequalities l defining the region is called the *level* of the region.
- R_q is a **leaf** of \mathcal{T} iff there is no other $R_{q'}$ included in it.

Example (A hierarchical partition with 3 levels over \mathbb{R}^2)

Level 1: $R_1 = \{x \mid x_2 > 3\},$
 $R_2 = \{x \mid x_2 \leq 3\}$

Level 2: $R_3 = \{x \mid x_2 > 3, x_1 \geq -2\},$
 $R_4 = \{x \mid x_2 > 3, x_1 < -2\},$
 $R_5 = \{x \mid x_2 \leq 3, x_1 > 0\},$
 $R_6 = \{x \mid x_2 \leq 3, x_1 \leq 0\}$

Level 3: $R_7 = \{x \mid x_2 > 3, x_1 \geq -2, x_1 < 4\},$
 $R_8 = \{x \mid x_2 > 3, x_1 \geq 4\},$
 $R_9 = \{x \mid x_2 < 3, x_1 \geq 1\}$
 $R_{10} = \{x \mid x_2 \leq 3, x_1 \leq 0, x_2 > -1\},$
 $R_{11} = \{x \mid x_2 \leq -1, x_1 \leq 0\},$
 $R_{12} = \{x \mid x_2 < 3, x_1 > 0, x_1 < 1\}$

The leaves are R_4, R_7, \dots, R_{12} . Not all leaves are at the same level; for example R_4 is at level 2.