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Lecture II: Linear regression and classification. Loss functions
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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing LLS
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeo↵, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f (x) = �T x model the log odds of class 1

f (X ) =
P(Y = 1|X )

P(Y = �1|X )
(31)

Then
I ŷ = 1 i↵ P(Y = 1|X ) > P(Y = �1|X )

I just like in the previous case! so what’s the di↵erence?
I Answer: We don’t assume each class is Gaussian, so we are in a more general situation than LDA

I What is p(x) = P(Y = 1|X = x) under our linear model?

ln
p

1 � p
= f ,

p

1 � p
= ef , p =

ef

1 + ef
1 � p =

1

1 + ef
(32)

An alternative “symmetric” expression for p, 1 � p is

p =
ef /2

ef /2 + e�f /2
, 1 � p =

e�f /2

ef /2 + e�f /2
. (33)
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Estimating the parameters by Max Likelihood

I Denote y⇤ = (1� y)/2 2 {0, 1}
I The likelihood of a data point is PY |X (y |x) = ey⇤ f (x)

1+ef (x)

I The log-likelihood is l(�; x) = y⇤f (x)� ln(1 + ef (x))

I @l
@f = y⇤ � ef

1+ef
= y⇤ � 1

1+e�f

This is a scalar, and sgn @l
@f = y

I We have also @f (x)
@� = x

I Now, the gradient of l w.r.t the parameter vector � is

@l

@�
=

@l

@f

@f

@�
=

✓
y⇤ �

1

1 + e�f (x)

◆
x (34)

Interpretation: The infinitezimal change of � to increase log-likelihood for a single data
point is along the direction of x , with the sign of y

I Log-likelihood of the data set D

l(�;D) =
1

N

dX

i=1

l(�; (xi , y i )) (35)

I The optimal � maximizes l(�;D) and therefore

@l(�;D)

@�
=

1

N

dX

i=1

✓
y i
⇤ �

1

1 + e�f (xi )

◆
xi = 0 (36)

I Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
� of the classifier.
I this iterative estimation converges asymptotically









M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
C
A
R
T

1
/
2
7
/
2
6

1

Lecture III: Classification and Decision Trees (CART)
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Classification and regression tree(s) (CART)

Learnin a CART

Predicting with a CART

Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1–4 CART, Bach Ch.:
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Classification and regression trees (CART)

I A classification tree or (decision tree) is built recursively by splitting the data with
hyperplanes parallel to the coordinate axes.
I At each split, try to separate + examples from � examples as well as possible.
I Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.

I Classification trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split)

I A regression tree uses the same principle for regression
here we try to obtain regions where the outputs are nearly the same
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Classification Tree (Decision Tree)
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Classification Tree (Decision Tree)
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Regression Tree
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Regression Tree
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Hierarchical partitions

I a hierarchical partition T of Rd is a set of regions {Rq}, so that Rd =
S

q Rq and between
any two Rq ,Rq0 we have either

Rq \ Rq0 = ;, or Rq ⇢ Rq0 or Rq0 ⇢ Rq . (1)

(we include the boundariy between 2 regions Rq ,Rq0 arbitrarily in a single one of them)
I In a CART, the partitions are usually chosen to be axis-aligned, i.e.

Rq = {x | ± xj1” > ”⌧1, ±xj2” > ”⌧2, . . .± xjl ” > ”⌧l} where ” > ” stands for one of > or

�, so that the union of all regions covers Rd .
I The number of inequalities l defining the region is called the level of the region.
I Rq is a leaf of T i↵ there is no other Rq0 included in it.

Example (A hierarchical partition with 3 levels over R2)
Level 1: R1 = {x | x2 > 3},

R2 = {x | x2  3}
Level 2: R3 = {x | x2 > 3, x1 � �2},

R4 = {x | x2 > 3, x1 < �2},
R5 = {x | x2  3, x1 > 0},
R6 = {x | x2  3, x1  0}

Level 3: R7 = {x | x2 > 3, x1 � �2, x1 < 4},
R8 = {x | x2 > 3, x1 � 4},
R9 = {x | x2 < 3, x1 � 1}
R10 = {x | x2  3, x1  0, x2 > �1},
R11 = {x | x2  �1, x1  0},
R12 = {x | x2 < 3, x1 > 0, x1 < 1}

The leaves are R4,R7, . . . R12. Not all leaves are at the same level; for example R4 is at level 2.


