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Linear predictors generalities |/

Loss functions ‘/

Least squares linear regression l/
Linear regresssion as minimizing L;s
Linear regresssion as maximizing likelihood
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The PERCEPTRON algorithm

Degision Hrays

Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:
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Marina Meila

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f(x) = 87 x model the log odds of class 1

P(Y = 1|X)

0 = piy=—1x)

Then
> 9 =1iff P(Y =1|X) > P(Y = —1|X)

P just like in the previous case! so what's the difference?

(31)

» Answer: We don't assume each class is Gaussian, so we are in a more general situation than LDA

» What is p(x) = P(Y = 1|X = x) under our linear model?

f
e 1
Inp :f,L:ef,p: 1—-p = ——
1—-p 1—-p 1+ ef 1+ ef
An alternative “symmetric” expression for p,1 — p is
of /2 e—f/2

=5  1-p= "
P = Gy etr2’ R

(32)

(33)
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Estimating the parameters by Max Likelihood

Denote y. = (1 — y)/2 € {0,1}
The likelihood of a data point is Py|x(y|x) = le:_*eiff((xx))
The log- ||ke||hood is 1(8;x) = yf(x) — In(1 + )

al _ ., _ . |
oF = Yx 1+ef == 1+e— T
This is a scalar, and sgn% =y

We have also % =x
Now, the gradient of / w.r.t the parameter vector 3 is
! | of 1
8— = 8—8— = (y*77>x (34)
ap of 9p 14 ef(¥)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y

Log-likelihood of the data set D
1 o
I(5:D) = D 1B (1) (35)
i=1
The optimal 3 maximizes /(3; D) and therefore
M l ; x=0 (36)
14 e ()

Unfortunately, (36) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
R of the claccifier
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Classification and regression tree(s) (CART) &—

Learnin a CART (’ -

Predicting with a CART é

Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1-4 CART, Bach Ch.:
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Classification and regression trees (CART)

> A classification tree or (decision tree) is built recursively by splitting the data with
hyperplanes parallel to the coordinate axes.

P At each split, try to separate + examples from — examples as well as possible.
P Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.
» Classification trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split)
> A regression tree uses the same principle for regression
here we try to obtain regions where the outputs are nearly the same
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Classification Tree (Decision Tree)
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Classification Tree (Decision Tree)
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Regression Tree
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Hierarchical partitions

> a hierarchical partition 7 of RY is a set of regions {Ry}, so that RY = Ugq Rq and between

any two Rgq, Rys we have either
RqNRy =10, or Rg C Ry or Ry CRy. (1)

(we include the boundariy between 2 regions Rq, Ry arbitrarily in a single one of them)

» In a CART, the partitions are usually chosen to be axis-aligned, i.e.
Rg ={x| £x," >"71, £x;," >"72,... £ x;," > "7/} where” >" stands for one of > or
>, so that the union of all regions covers RY.

» The number of inequalities / defining the region is called the level of the region.

> Rq is a leaf of T iff there is no other R/ included in it.

Example (A hierarchical partition with 3 levels over R?)

Level 1: Ry = {x|x > 3},
Ry = {x|x <3}

Level 22 R3 = {x|x >3, x1 > —2},
Ri={x|x2 >3, x1 < =2},
Rs = {x|x2 < 3,x; > 0}
Rs = {x|x2 < 3,x <0}

Level 3: R ={x|x >3, x1 > —2,x <4},
Rg = {x|x2 >3, x1 > 4},
Ry = {x|x2 < 3,x > 1}

Rio = {x|x <3,x1 <0,x > —1},
R = {x|x < —1,x <0},
Ry = {XlXQ < 3,X1 >0,x < 1}
The leaves are R4, R7, ... Ri2. Not all leaves are at the same level; for example Ry is at level 2.



