

Lecture Notes 0 – Intro to Machine Learning

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 6, 2026

Course Logistics

Intro to Machine Learning

Resources

- ▶ Course website
- ▶ LEARN – submit homework code
- ▶ Crowdmark – submit homework written part (single pdf)
- ▶ Piazza – discussions, asking questions, announcements
- ▶ ...

Format and grading

- ▶ Lectures – in person, not recorded
- ▶ In class participation – ask questions, answer my questions
- ▶ Homework – about weekly, about 1/2 of homeworks not graded
- ▶ Quizzes – announced, in class, about 3-4 total
- ▶ NO midterm exam
- ▶ Final exam (2h)
- ▶ TA Office hours: 2 hours / week (t.b. scheduled)
- ▶ Instructor Office Hour: Mondays 2-3pm, in person, location TBA

Grade \approx 60% (homework + quizzes) + 35% final exam + 5% participation

These percentages may change by $\pm 5\%$.

What will you learn in this course?

- ▶ Machine Learning (ML) problems (e.g. prediction, classification, clustering)
- ▶ ML models (**learners**, or **predictors**) (e.g. decision trees, neural networks (nn), nearest neighbors (NN))
- ▶ **Training** algorithms (= "learning algorithms")
- ▶ ML concepts (e.g. bias and variance, decision regions, **complexity** (of a model))
- ▶ Statistics (e.g. MaxLikelihood, Bayesian inference)
- ▶ Optimization (e.g. local and global minimum, gradient descent)

Taxonomies

... all of them incomplete

- ▶ Machine Learning Problems
 - ▶ Unsupervised
 - ▶ Supervised
 - ▶ (Semi-supervised)
 - ▶ Reinforcement
- ▶ Machine learning models (statistical predictors)
 - ▶ Parametric
 - ▶ Non-parametric
- ▶ Statistical inference paradigms
 - ▶ Bayesian
 - ▶ Maximum Likelihood (ML)
 - ▶ Penalized Likelihood
 - ▶ Loss-based

These lists are meant to show that in this course we will not adopt a particular paradigm, but we will touch on most of them.

Plan for 480/680

► Supervised Learning (Prediction)

- ▶ Predictor examples
- ▶ Basic concepts: decision region, loss function, generative vs discriminative, bias-variance tradeoff
- ▶ Training predictors: gradient descent, [Newton method]
- ▶ [Combining predictors: bagging, boosting, additive models]
- ▶ Regularized predictors: model selection, support vector machines, L1 regularization,
- ▶ Learning theory and model selection basics

► Unsupervised Learning

- ▶ Clustering: parametric, non-parametric
- ▶ [Graphical models intro]
- ▶ [Non-linear dimension reduction and geometric learning]
- ▶ [Semi-supervised learning]
- ▶ [Modeling graph data]

► [Reinforcement Learning]

Supervised Learning (prediction)

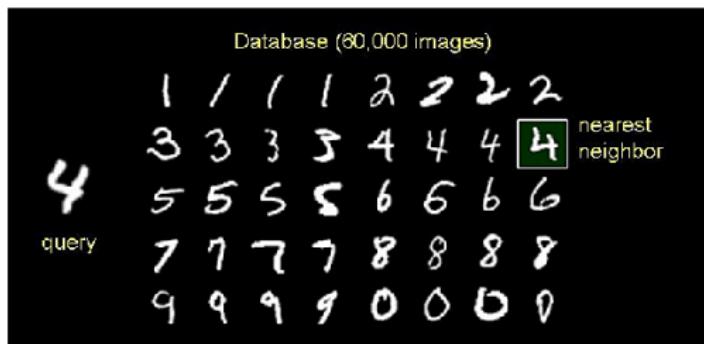
Problem Given **input** $x \in \mathbb{R}^d$, **output** some property $y = f(x)$

- ▶ x is vector of attributes, features, inputs, covariates (if you are a statistician), ...
- ▶ y is **label**
- ▶ Data $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$ used for learning is **labeled data**
- ▶ First encounter with randomness \mathcal{D} is **sampled** from a distribution P_{XY} . Goal is to learn $P_{Y|X}$.

Example: Digit classification

Supervised Learning

- Nearest neighbour:



Unsupervised learning

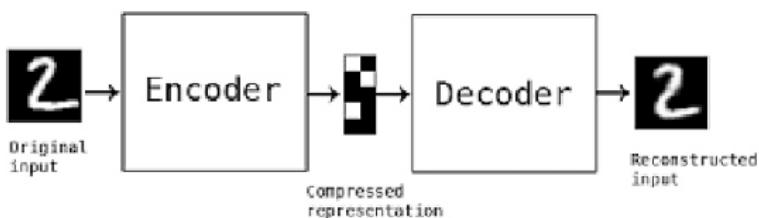
- ▶ Learn the structure of a distribution P_X from unlabeled data $\{x^1, x^2, \dots, x^n\}$
 - ▶ Clustering – find groups in data (if they exist)
 - ▶ Dimension reduction – PCA, non-linear dimension reduction
 - ▶ Sparse dependencies – graphical models, sparse regression
 - ▶ Causal structure

Unsupervised learning

- ▶ Learn the **structure** of a distribution P_X from **unlabeled** data $\{x^1, x^2, \dots x^n\}$
 - ▶ Clustering – find groups in data (if they exist)
 - ▶ Dimension reduction – PCA, non-linear dimension reduction
 - ▶ Sparse dependencies – graphical models, sparse regression
 - ▶ Causal structure
- ▶ Learn a **distribution** P_X from **unlabeled** data $\{x^1, x^2, \dots x^n\}$ – Density estimation, Autoencoders, GANs, “generative models”

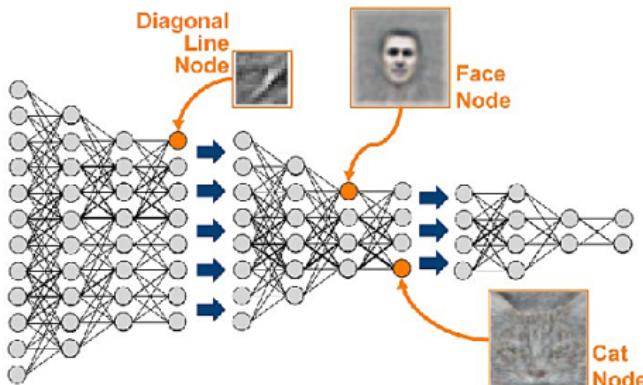
Unsupervised Learning

- Output is not given as part of training set
- Find model that explains the data
 - E.g. clustering, compressed representation, features, generative models



Unsupervised Feature Generation

- Encoder trained on large number of images



Unsupervised Image Generation

- Which images are real? And which ones are fake?

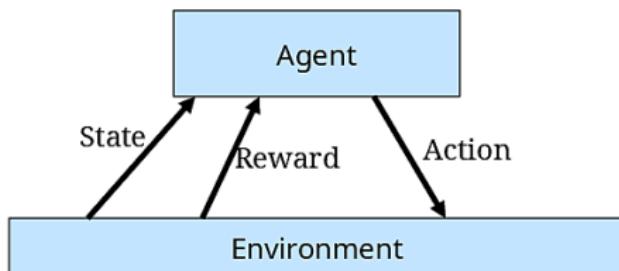
Real

CelebA (Liu et al., 2015)

Fake!

- Image generation: variational autoencoders, generative adversarial networks, diffusion models

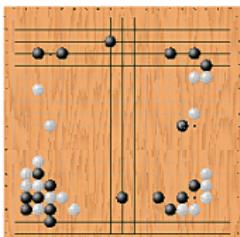
Reinforcement Learning Problem



Goal: Learn to choose actions that maximize rewards

Game Playing

- Example: Go (one of the oldest and hardest board games)
- **Agent:** player
- **Environment:** opponent
- **State:** board configuration
- **Action:** next stone location
- **Reward:** +1 win / -1 loose



2016: AlphaGo defeats top player Lee Sedol (4-1)
Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)

Combining Unsupervised, Supervised and Reinforcement Learning

- Modern systems:
 - Phase 1: unsupervised feature extraction (no labels)
 - Phase 2: supervised training (exploit labels)
 - Phase 3: fine tune by reinforcement learning (exploit reinforcements)
- Alpha Go: supervised + reinforcement learning
- Sentiment analysis with BERT: unsupervised + supervised learning
- ChatGPT: supervised + reinforcement learning

This course

- ▶ Supervised learning
- ▶ Unsupervised learning (some)
- ▶ But not Reinforcement Learning – see CS 486/686/885
<https://cs.uwaterloo.ca/~ppoupart>