Lecture Notes |-2 — Examples of Predictors. Nearest Neighbor and
Kernel Predictors. Bias and Variance
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Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6, Bach Ch.:
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INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



Training and testing error

> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

> How “good” is fx?

» Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i
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Training and testing error

> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

> How “good” is fx?

» Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i

» Test error Pr{fx(x) # y]
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Training and testing error

> Let D = {(x}, 1), (x2,¥?), ... (x",¥")} be the training set and let the K-NN classifier
from D be fx

> How “good” is fx?

» Training error = %#(errors of fx on D) = %Z,’-’:l L1 ()i

» Test error Pr{fx(x) # y] for new points (x,y) ~ Pxy
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Training and testing error

>

vyvyyy

v

Let D = {(x}, y!), (x3,¥2), ... (x",y™)} be the training set and let the K-NN classifier
from D be fx
How “good” is fx?
Training error = %#(errors of fx on D) = %Z,’-’:l llfK(Xi)#y,‘]
Test error Pr[fx(x) # y] for new points (x, y) ~ Pxy
We approximate the test error by using a test set
ptest = {(£1, 1), (%2,72),... (%", 7" )} from the same Pxy.
’
Thus, in practice, Test error= %#(errors of fx on Dtest) = % >y L (x)25]
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Training and testing error for K-NN
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—{ -training error
—F— test error
=—&=— variance

= Bayes error

Ignore the “variance” and “Bayes error” for now
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Training and testing error for K-NN

0.12

0.1

0.08

0.06

0.04

0.02

Ignore the “variance” and “Bayes error” for now

—{ -training error
—F— test error
=—&=— variance

= Bayes error

» So, what's happening? For K = 1, training error=0 but test error is large

> As K increases, test error decreases at first, then increases again



The case K = 1: Variance
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» D ~ Pxy = D is random
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The case K = 1: Variance
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: (K=1)
g > D ~ Pxy = D is random
e » Hence any function fx we estimate from D is also random
1
£ » Formally, for any fixed x, fx(x) is a random variable, hence it has a variance.
2

» In this course, we do not explicitly calculate the variance, but we want to know what
increases or decreases it.




The case of K large: Bias

(K =11)
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The case of K large: Bias
(K = 11)

» Bias means to let one's own prior beliefs override the evidence.
» In data science/ML /statistics every model/prediction is a combination of prior belief and
data

» prior = before seeing the data
» (usually) prior belief = prior knowledge, e.g. from previous experiments

> Bias can take many forms — in this course you will encounter several

» We do not explicitly calculate bias, but we want to identify where it is coming from, and
what increases/decreases it

»> One way to look for bias: if a predictor f cannot exactly/accurately predict a training
set, “whatever is causing this” is bias.
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The Bias-Variance trade-off

» When bias 7, variance \

» When data set size n 7, variance \
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