
M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
L
ec

tu
re

I
P
re
d
ic
to
rs
.
N
N

1
/
1
2
/
2
6

1

Lecture Notes I-2 – Examples of Predictors. Nearest Neighbor and
Kernel Predictors. Bias and Variance

Marina Meilă
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Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Training and testing error

▶ Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} be the training set and let the K -NN classifier
from D be fK

▶ How “good” is fK ?
▶ Training error= 1

n
#(errors of fK on D) = 1

n

∑n
i=1 1[fK (x i ) ̸=y i ]

▶ Test error Pr [fK (x) ̸= y ] for new points (x , y) ∼ PXY
▶ We approximate the test error by using a test set

Dtest = {(x̃1, ỹ1), (x̃2, ỹ2), . . . (x̃n
′
, ỹn′ )} from the same PXY .

▶ Thus, in practice, Test error= 1
n
#(errors of fK on Dtest) = 1

n′
∑n′

i=1 1[fK (x̃ i )̸=ỹ i ]
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M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
L
ec

tu
re

I
P
re
d
ic
to
rs
.
N
N

1
/
1
2
/
2
6

3

Training and testing error

▶ Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} be the training set and let the K -NN classifier
from D be fK

▶ How “good” is fK ?
▶ Training error= 1

n
#(errors of fK on D) = 1

n

∑n
i=1 1[fK (x i ) ̸=y i ]

▶ Test error Pr [fK (x) ̸= y ] for new points (x , y) ∼ PXY
▶ We approximate the test error by using a test set
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Training and testing error for K -NN

Ignore the “variance” and “Bayes error” for now

▶ So, what’s happening? For K = 1, training error=0 but test error is large
▶ As K increases, test error decreases at first, then increases again
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The case K = 1: Variance

▶ D ∼ PXY ⇒ D is random

▶ Hence any function fK we estimate from D is also random

▶ Formally, for any fixed x , fK (x) is a random variable, hence it has a variance.
▶ In this course, we do not explicitly calculate the variance, but we want to know what

increases or decreases it.
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The case of K large: Bias

(K = 11)

▶ Bias means to let one’s own prior beliefs override the evidence.
▶ In data science/ML/statistics every model/prediction is a combination of prior belief and

data

▶ prior = before seeing the data
▶ (usually) prior belief = prior knowledge, e.g. from previous experiments

▶ Bias can take many forms – in this course you will encounter several
▶ We do not explicitly calculate bias, but we want to identify where it is coming from, and

what increases/decreases it
▶ One way to look for bias: if a predictor f cannot exactly/accurately predict a training

set,“whatever is causing this” is bias.
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The Bias-Variance trade-off

▶ When bias ↗, variance ↘

▶ When data set size n ↗, variance ↘


