

Lecture Notes I-2 – Examples of Predictors. Nearest Neighbor and Kernel Predictors. Bias and Variance

Marina Meilă
mmp@uwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

January 12, 2026

Reading HTF Ch.: 2.1–5, 2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.6¹, Bach Ch.:

¹Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading

Training and testing error

- ▶ Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K -NN** classifier from \mathcal{D} be f_K
- ▶ How “good” is f_K ?
- ▶ **Training error** = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$

Training and testing error

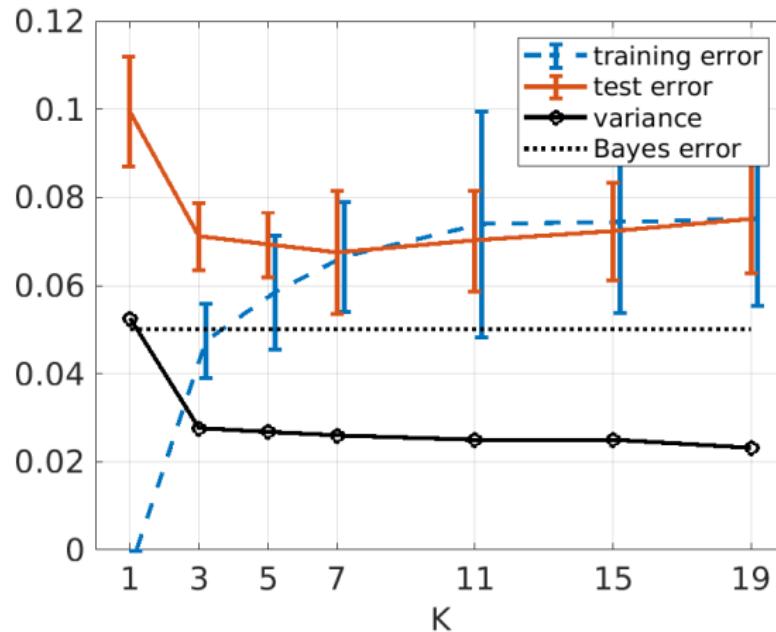
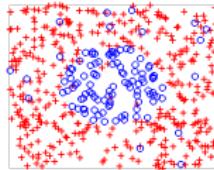
- ▶ Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K -NN** classifier from \mathcal{D} be f_K
- ▶ How "good" is f_K ?
- ▶ **Training error** = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$
- ▶ **Test error** $Pr[f_K(x) \neq y]$

Training and testing error

- ▶ Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K -NN** classifier from \mathcal{D} be f_K
- ▶ How "good" is f_K ?
- ▶ **Training error** = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$
- ▶ **Test error** $Pr[f_K(x) \neq y]$ for new points $(x, y) \sim P_{XY}$

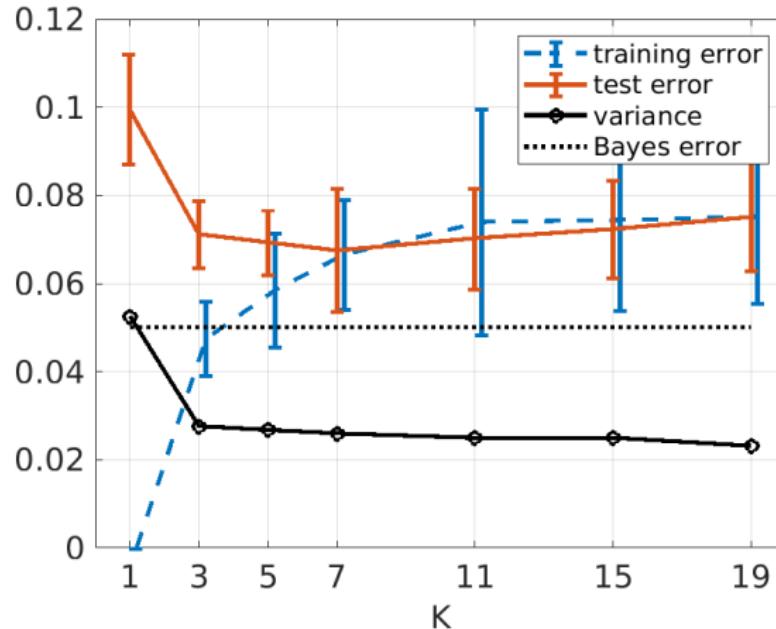
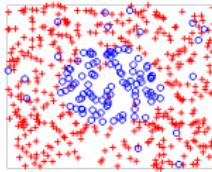
Training and testing error

- ▶ Let $\mathcal{D} = \{(x^1, y^1), (x^2, y^2), \dots (x^n, y^n)\}$ be the **training set** and let the **K -NN classifier** from \mathcal{D} be f_K
- ▶ How “good” is f_K ?
- ▶ **Training error** = $\frac{1}{n} \#(\text{errors of } f_K \text{ on } \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{[f_K(x^i) \neq y^i]}$
- ▶ **Test error** $\Pr[f_K(x) \neq y]$ for new points $(x, y) \sim P_{XY}$
- ▶ We approximate the test error by using a **test set**
 $\mathcal{D}^{\text{test}} = \{(\tilde{x}^1, \tilde{y}^1), (\tilde{x}^2, \tilde{y}^2), \dots (\tilde{x}^{n'}, \tilde{y}^{n'})\}$ from the same P_{XY} .
- ▶ Thus, in practice, **Test error** = $\frac{1}{n'} \#(\text{errors of } f_K \text{ on } \mathcal{D}^{\text{test}}) = \frac{1}{n'} \sum_{i=1}^{n'} \mathbf{1}_{[f_K(\tilde{x}^i) \neq \tilde{y}^i]}$

Training and testing error for K -NN

Ignore the "variance" and "Bayes error" for now

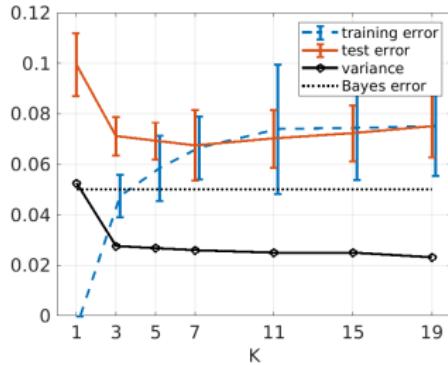
Training and testing error for K -NN



Ignore the "variance" and "Bayes error" for now

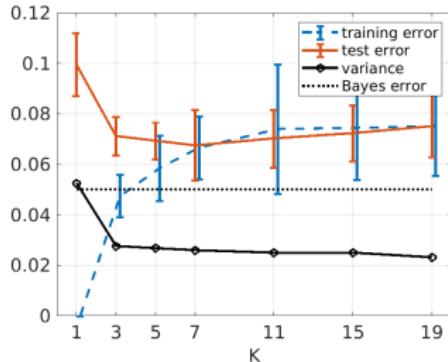
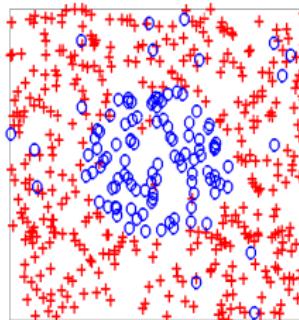
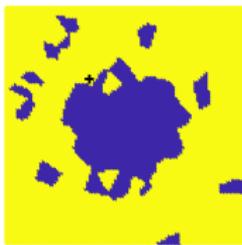
- ▶ So, what's happening? For $K = 1$, training error=0 but test error is large
- ▶ As K increases, test error decreases at first, then increases again

The case $K = 1$: Variance



- $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is **random**

The case $K = 1$: Variance

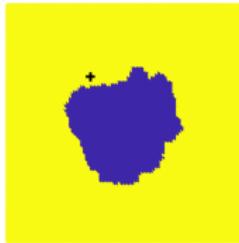
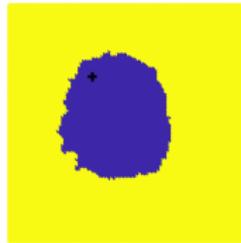


$(K = 1)$

- ▶ $\mathcal{D} \sim P_{XY} \Rightarrow \mathcal{D}$ is **random**
- ▶ Hence any function f_K we estimate from \mathcal{D} is also **random**
- ▶ Formally, for any fixed x , $f_K(x)$ is a **random variable**, hence it has a **variance**.
- ▶ In this course, we do not explicitly calculate the variance, but we want to know what increases or decreases it.

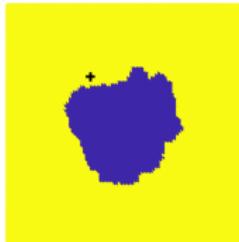
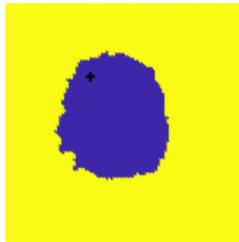
The case of K large: Bias

($K = 11$)



The case of K large: Bias

($K = 11$)



- ▶ **Bias** means to let one's own prior beliefs override the evidence.
- ▶ In data science/ML/statistics **every model/prediction** is a combination of **prior belief** and **data**
- ▶ **prior** = before seeing the data
- ▶ (usually) **prior belief** = prior **knowledge**, e.g. from previous experiments
- ▶ Bias can take many forms – in this course you will encounter several
- ▶ We do not explicitly calculate bias, but we want to identify where it is coming from, and what increases/decreases it
- ▶ One way to look for bias: if a predictor f cannot exactly/accurately predict a training set, “whatever is causing this” is bias.

The Bias-Variance trade-off

- When bias \nearrow , variance \searrow

- When data set size $n \nearrow$, variance \searrow

