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Prediction problems by the type of output

The Nearest-Neighbor and kernel predictors

Some concepts in Classification

Reading HTF Ch.: 2.3.2 Nearest neighbor, 6.1–3. Kernel regression, 6.6.2 kernel classifiers,,
Murphy Ch.: , Bach Ch.:
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Prediction problems by the type of output

In supervised learning, the problem is predicting the value of an output (or response – typically
in regression, or label – typically in classification) variable Y from the values of some observed
variables called inputs (or predictors, features, attributes) (X1, X2, . . .Xd ) = X . Typically we
will consider that the input X ∈ Rd .

Prediction problems are classified by the type of response
Y ∈ Y:

▶ regression: Y ∈ R
▶ binary classification: Y ∈ {−1,+1}
▶ multiway classification: Y ∈ {y1, . . . ym} a finite set
▶ ranking: Y ∈ Sp the set of permutations of p objects
▶ multilabel classification Y ⊆ {y1, . . . ym} a finite set (i.e. each X can have several labels)
▶ structured prediction Y ∈ ΩV the state space of a graphical model over a set of [discrete]

variables V
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Example (Regression.)

▶ Y is the proportion of high-school students who go to college from a given school in given
year. X are school attributes like class size, amount of funding, curriculum (note that they
aren’t all naturally real valued), median income per family, and other inputs like the state
of the economy, etc. Note also that Y ∈ [0, 1] here.

▶ Y ≥ 0 is the income of a person, and Xj are attributes like education, age, years out of
school, skills, past income, type of employment.
Economic forecasts are another example of regression. Note that in this problem as well as
in the previous, the Y in the previous period, if observed, could be used as a predictor
variable for the next Y . This is typical of structured prediction problems.

▶ Weather prediction is typically a regression problem, as winds, rainfall, temperatures are
continuous-valued variables.

▶ Predicting the box office totals of a movie. What should the inputs be?
▶ Predicting perovskite degradation. Perovskites are a type of crystal considered promising

for the fabrication of solar cells. In standard use, such a material must have a life time Y
of 30 years. How can one predict which material will last that long without waiting for 30
years?
Y is time to degradation, Xj are material composition, experimental conditions, and
measurements of initial values of physical parameters.
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Example ((Anomaly) detection.)

This is a binary classification problem. Y ∈ {normal, abnormal}. For instance, Y could be
“HIV positive” vs “HIV negative” (which could be abbreviated as “+”, “-”) and the inputs X
are concentration of various reagents and lymph cells in the blood.
Anomaly detection is a problem also in artificial systems, as any device may be functioning
normally or not. There are also more general detection problems, where the object detected is
of scientific interest rather than an “alarm”: detecting Gamma-ray bursts in astronomy,
detecting meteorites in Antarctica (a robot collects rocks lying on the ice and determines if the
rock is terrestrial or meteorite). More recently, Artificial Intelligence tasks like detecting
faces/cars/people in images or video streams have become possible.
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Example (Multiway classification.)

Handwritten digit classification: Y ∈ {0, 1, . . . 9} and X=black/white 64× 64 image of the
digit. For example, ZIP codes are being now read automatically off envelopes.
OCR (Optical character recognition). The task is to recognized printed characters
automatically. X is again a B/W digital image, Y ∈ {a− z,A− Z , 0− 9, ”.”, ”, ”, . . .}, or
another character set (e.g. Chinese).

Example (Diagnosis)

Diagnosis is multiway classification + anomaly detection. Y = 0 means “normal/healthy”,
while Y ∈ {1, 2, . . .} enumerates failure modes/diseases.
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Example (Structured prediction.)

Speech recognition. X is a segment of digitally recorded speech, Y is the word corresponding
to it. Note that it is not trivial to segment speech, i.e to separate the speech segment that
corresponds to a given word. These segments have different lengths too (and the length varies
even when the same word is spoken).
The classification problem is to associate to each segment X of speech the corresponding word.
But one notices that the words are not indepedent of other neighboring words. In fact, people
speak in sentences, so it is natural to recognize each word in dependence from the others.
Thus, one imposes a graphical model structure on the words corresponding to an utterance
X 1,X 2, . . .Xm. For instance, the labels Y 1:m could form a chain Y 1 − Y 2 − . . .Ym. Other
more complex graphical models structures can be used too.

Example (Large Language Models (LLM))

LLMs are machines for structured prediction, where the label space Y coincides with the input
space X , e.g., both the input and the output are sequences of English words (called tokens).
The output tokens y1, y2, . . . y t . . . depend on the previous output tokens (the context), as well
as on the entire sequence of input tokens.
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The Nearest-Neighbor predictor

▶ 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x i that is nearest to x in D (in Euclidean distance)

2. assign x the label y i , i.e.

ŷ(x) = y i

▶ K-Nearest Neighbor (with K = 3, 5 or larger)

1. find the K nearest neighbors of x in D: x i1,...iK

2. ▶ for classification f (x) = the most frequent label among the K neighbors
(well suited for multiclass)

▶ for regression f (x) = 1
K

∑
i neighbor of x y i = mean of neighbors’ labels

▶ No parameters to estimate!
▶ No training!
▶ But all data must be stored (also called memory-based learning)
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Kernel regression and classification

▶ Like the K -nearest neighbor but with “smoothed” neighborhoods
▶ The predictor

f (x) =
n∑

i=1

βib(x , x
i )y i (1)

where βi are coefficients

▶ Intuition: center a “bell-shaped” kernel function b on each data point, and obtain the
prediction f (x) as a weighted sum of the values y i , where the weights are βib(x , x

i )
▶ Requirements for a kernel function b(x , x ′)

1. non-negativity
2. symmetry in the arguments x, x′

3. optional: radial symmetry, bounded support, smoothness

▶ A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

b(z) ∝ e−z2/2 (2)

bh(x , x
′) ∝ e

− ||x−x′||2

2h2 with h = the kernel width (3)
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Regression example

A special case in wide use is the Nadaraya-Watson regressor

f (x) =

∑n
i=1 b

(
||x−x i ||

h

)
y i∑n

i=1 b
(

||x−x i ||
h

) . (4)

In this regressor, f (x) is always a convex combination of the y i ’s, and the weigths are
proportional to bh(x , x

i ).
The Nadaraya-Watson regressor is biased if the density of PX varies around x .
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An example: noisy data from a parabola
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Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x .

1. Given query point x
2. Compute kernel bh(x , x

i ) = wi for all i = 1, . . .N

3. Solve weighted regression minβ,β0

∑d
i=1 wi

(
y i − βT x i − β0

)2
to obtain β, β0

( β, β0 depend on x through wi )
4. Calculate f (x) = βT x + β0

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed β = 0
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Kernel binary classifiers

▶ Obtained from Nadaraya-Watson by setting y i to ±1.
▶ Note that the classifier can be written as the difference of two non-negative functions

f (x) ∝
∑
i :y i=1

b

(
||x − x i ||

h

)
−

∑
i :y i=−1

b

(
||x − x i ||

h

)
. (5)
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(Radial) Basis Function predictors

A regressor similar to the kernel predictor is

f (x) =
M∑
i=1

b(x , ξi )βi (6)

The difference is that the “bumps” are not placed on data points, but at a set of M points ξi

to be determined.
The f in (6) is an example of function basis (or basis functions approach to prediction. In this
approach, we choose a set B = {b( ; ξ), ξ ∈ Ξ} called a basis or a dictionary. B is
parametrized by ξ ∈ Ξ; Ξ can be finite or infinite. The elements of B are called basis
functions. The predictor class F is the set of linear combinations of elements of B.

Example

▶ Fourier basis, wavelet bases
▶ spline families
▶ two layer linear output neural networks
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Classifiers with real-valued output

Binary classification

▶ Since y ∈ {±1}, naturally f : X → {±1}
▶ But sometimes we prefer a classifier f : X → R (from a predictor class F of real-valued

functions)
▶ In this case, the prediction ŷ is usually

ŷ = sgn(f (x)) (7)

This is sometimes known as the sign trick.

Examples of real-valued classifiers

▶ Logistic Regression
▶ Naive Bayes

in both of the above, f (x) = P[Y = 1|X = x] ∈ [0, 1]. Hence

ŷ = sgn

(
f (x)−

1

2

)
(8)

▶ Support Vector Machines
▶ Kernel classifiers
▶ Neural Networks

Sign trick

The sign function sgn(y) = y/|y | if y ̸= 0 and 0 iff y = 0 turns a real valued variable Y into a
discrete-valued one.
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Why real valued f ?

▶ for statistical models f (x) = P[Y = 1 |X = x] Example: Logistic regression
▶ for non-statistical models, |f (x)| measures confidence in prediction ŷ , with |f (x)| ≈ 0

meaning low confidence. Example: SVM
▶ if f is differentiable1, the gradient ∇f is used in learning algorithms Examples: Logistic

Regression, neural networks, some forms of linear regression such as Lasso

The margin (assuming y ∈ {±1})
▶ The margin of a classifier f at point x ∈ X is defined as

z = yf (x). (9)

▶ Note that sgn(z) = yŷ .

▶ If z > 0, ŷ = y and f (x) is correct
▶ If z ≫ 0, then f (x) is correct, and classifier has high confidence
▶ If z < 0, then f (x) is incorrect, and |z| measures “how wrong” is f on this x
▶ Note also that z ≈ 0 means that the classification ŷ is not robust, whether correct or not

1and ∇f not 0 almost everywhere
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Real valued multi-way classifiers

▶ We train m classifier f1:m : X → R. Then (typically)

ŷ = argmax
c=1:m

f1:m(x). (10)

▶ ŷ = y means the classifier is correct
▶ the training can be done

▶ independently for each fc , c = 1 : m (e.g. generative classifiers – in Lecture II)
▶ or at the same time (e.g. neural networks, SVM)

▶ The margin is defined as
z(x) = fy −max

c ̸=y
fc (x) (11)

In other words
▶ if ŷ = y (correct), then z = ftrue − fnextbest > 0
▶ if ŷ ̸= y (mistake), then z = ftrue − fŷ < 0 (since fŷ (x) is the max of fc (x))
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Decision regions, decision boundary of a classifier

Let f (x) be a classifier (not necessarily binary)

▶ ŷ(x) takes a finite set of values
▶ The decision region associated with class y = the region in X space where f takes value

y , i.e. Dy = {x ∈ Rd , f (x) = y} = f −1(y).
▶ The boundaries separating the decision regions are called decision boundaries.

▶ For a binary classifier, we have two decision regions, D+ and D−. By convention f (x) = 0
on the decision boundary.

▶ For binary classifier with real valued f (x) (i.e ŷ = sgnf (x)) we define
D+ = {x ∈ Rd , f (x) > 0}, D− = {x ∈ Rd , f (x) < 0} and the decision boundary
{x ∈ Rd , f (x) = 0}
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