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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing LLS
Linear regresssion as maximizing likelihood

Linear Classifiers
Linear Discriminant Analysis (LDA)
OPTIONAL – QDA (Quadratic Discriminant Analysis)
Logistic Regression
OPTIONAL – The Perceptron algorithm

Reading HTF Ch.: 2.1–5,2.9, 7.1–4 bias-variance tradeoff, Murphy Ch.: 1., 8.61, Bach Ch.:

1Neither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading
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Linear predictors

▶ Linear predictors for regression
f (x) = βT x (1)

where Y ∈ R, X ∈ Rd and β ∈ Rd is a vector of parameters.
Hence, the model class is F = {β ∈ Rd} the set of all linear functions over Rd .

▶ Linear predictors for classification

ŷ(x) = sgn(βT x) (2)

i.e. the decision boundary is linear



M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
P
re
d
ic
ti
o
n
C
o
n
ce

p
ts

1
/
1
2
/
2
6

4



M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
P
re
d
ic
ti
o
n
C
o
n
ce

p
ts

1
/
1
2
/
2
6

5

Transforming categorical inputs into real values

▶ if Xj takes two values (e.g “yes”, “no”), map it to {±1} or {0, 1} ⊂ R.
▶ discrete multivariate inputs

▶ Let Xj take values in Ωj = {0, . . . r − 1}.
▶ One defines the r − 1 binary variables X̃jk = 1[]Xj = k, k = 1 : r − 1. The variable Xj is replaced

with X̃jk , k = 1 : r − 1
▶ the parameter βj with r − 1 parameters βj1 . . . βj, r − 1 representing the coefficients of

X̃j1, . . . X̃j,r−1.

This substitution is widely used to parametrize any function of a discrete variable as a linear function

Example: The demographic variable Race takes values in { African, Asian, Caucasian, . . .}; the
corresponding parameters in the model will be β̂Asian, β̂Caucasian, . . ..
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The intercept as a slope

▶ Sometimes we like f to have an intercept f (x) = βT x + β0, with x , β ∈ Rd . Such a
function is affine, not linear, and not homogeneous. Here is a trick to get the best of both
worlds.

▶ Add a dummy input x0 ≡ 1 to x . Then its coefficient β0 is the intercept.

x̃ ←


x0
x1
. . .
xd

 ∈ Rd+1 β̃ ←


β0

β1

. . .
βd

 ∈ Rd+1 f (x) = β̃T x̃ (3)

▶ in classification, β0 is called threshold or bias term
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The linear predictor as classifier

The linear predictor can be used for [binary] classification with the sign trick from Lecture I.

f (x) = sgnβT x (4)

Later in the course we will see a natural way to use real-valued predictors for multi-way
classification.
What is the meaning of the β parameter for (4)?
In the following lectures we will see three possible “interpretations” for β, which correspond
three different ways to construct a linear classifier for a problem.



M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
P
re
d
ic
ti
o
n
C
o
n
ce

p
ts

1
/
1
2
/
2
6

8

How good is a regressor? Measuring the “Error”

▶ Prediction error for y i : e i = y i − f (x i )
▶ “Error” of f on D

▶ ′′Err ′′ = 1
n

∑n
i=1 e

i X
▶ ′′Err ′′ = 1

n

∑n
i=1 |e

i | ?
▶ . . . norms!

▶ Let e = [e1 e2 . . . en].
▶ e is a vector in Rn. 1

n

∑n
i=1 |e i | =

1
n
∥e∥1

▶ But we can use other norms, e.g. 1
n
∥e∥2, 1

n
∥e∥∞.

▶ Formally, ′′Err ′′ as above is called loss function.
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y , ŷ) = the cost of predicting ŷ when the actual outcome is y

As usually ŷ = f (x) or sgnf (x), we will typically abuse notation and write L(y , f (x)).

▶ For Regression
▶ Least-Squares L2 Loss LLS (y , f (x)) = 1

n ∥e∥
2
2

▶ L1 Loss LLS (y , f (x)) = 1
n ∥e∥1

▶ Statistical losses. . .
▶ For Classification

▶ Misclassification Error (0-1 Loss) L01 = 1
n

∑n
i=1 1[yi ̸=ŷ i ]

▶ Statistical losses. . .
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Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

L01(y , f (x)) = 1[y ̸=f (x)] =

{
1 if y ̸= f (x)
0 if y = f (x)

(5)

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f (x) : + −
true :+ 0 100

− 1 0

In general, when there are p classes, the matrix L = [Lkl ] defines the loss, with Lkl being the
cost of misclassifying as l an example whose true class is k.
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Training set loss and expected loss

▶ Training set loss
▶ Objective of prediction = to minimize loss on future data,

minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f ∈ F (6)

We call L(f ) above expected loss.

Example (Misclassification error L01(f ))

L01(f ) = probability of making an error on future data.

L01(f ) = P[Yf (X ) < 0] = EPXY
[1[Yf (X )<0]] (7)

▶ Therefore, in training we use the traing set loss.
▶ . . . we approximate data distribution PXY by the sample D.
▶ The empirical loss (or empirical error or training error) is the average loss on D

L̂(f ) =
1

n

n∑
i=1

1[y i f (x i )<0] (8)

▶ And we approximate L(f ) the expected loss by a different data set Dtest from the same
PXY .

▶ The size of Dtest is n′, not necessarily equal to n.
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Training set loss and expected loss
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minimize L(f ) = EP(X ,Y )[L(Y , f (X )] over f ∈ F (6)
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▶ Problem: how to lear a linear predictor from data?
▶ Now: examples of what one can do
▶ Later lectures: larger view of the estimation problem for predictors
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(Linear) least squares regression

▶ define data matrix or (transpose) design matrix

X =


(x1)T

(x2)T

. . .
(x i )T

. . .
(xn)T

 ∈ RN×n and Y =


y1

y2

. . .
yn

 , E =


ε1

ε2

. . .
εd

 ∈ Rd

▶ Then we can write
Y = Xβ + E

▶ The solution β̂ is chosen to minimize the sum of the squared errors∑d
i=1(ε

i )2 =
∑d

i=1(y
i − βT x i )2 = ||E ||2

β̂ = argmin
β∈Rd

d∑
i=1

(y i − βT xi )
2

▶ This optimization problem is called a least squares problem. Its solution is

β̂ = (XTX)−1XTY (8)

▶ Underlying statistical model y = βT x + ε, ε ∼ N(0, σ2) (and i.i.d. sampling of
(x1:N , y1:N) of course).

Then β̂ from (8) is the Maximum Likelihood (ML) estimator of the parameter β.
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The statistical view of Machine Learning: Likelihood

▶ What is random? the noise ϵ1:n

▶ Express noise as function of (x1:n, y1:n)

ϵi = y i − β0 − βT x i ∼ N(0, σ2) (9)

▶ Likelihood

▶ Let p0,σ2 (ϵ) = 1
σ
√

2π
e
− ϵ2

2σ2 = N(ϵ; 0, σ2)

▶ Then

L(β0, β1:d , σ
2) =

n∏
i=1

p0,σ2 (ϵi ) (10)

=
n∏

i=1

1

σ
√
2π

e
− (ϵi )2

2σ2 (11)

=
n∏

i=1

1

σ
√
2π

e
− (yi−β0−βT xi )2

2σ2 (12)

▶ log-likelihood

l(β0, β1:d , σ
2) = (13)

=
n∑

i=1

{
−
1

2
lnσ2 −

1

2
ln(2π)−

1

2

(
y i − β0 − βT x i

)2 1

2σ2

}
(14)

= −
n

2
lnσ2 −

1

2
ln(2π) + constant−

1

2σ2

n∑
i=1

(
y i − β0 − βT x i

)2
(15)
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Maximizing the log-likelihood w.r.t β

▶ For simplicity, let β0 = 0; hence y i = βT x i + ϵi

▶ log-likelihood

l(β1:d , σ
2) = −

n

2
lnσ2 −

1

2σ2

n∑
i=1

(
y i − β0 − βT x i

)2
+ constant (16)

▶ For any σ2,

argmax
β

l(σ2, β) = argmin
β

n∑
i=1

(
y i − β0 − βT x i

)2
(17)

a Least Squares Problem

▶ In matrix form minβ ∥y − Xβ∥2
▶ Solution

βML = (XTX)−1XT y (18)

with (XTX)−1XT ≡ X† the pseudoinverse of X
▶ βML is linear in y !
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Linear Discriminant Analysis (LDA)

Fitting a linear predictor for classification, first approach. (We are in the binary classification case)

▶ Assume each class is generated by a Normal distribution

PX|Y (x|+) = N (x ;µ+,Σ+), PX|Y (x|−) = N (x ;µ−,Σ−) and PY (1) = p

▶ Given x , what is the probability it came from class + ?

PY |X (+|x) =
PY (1)PX|Y (x|+)

PY (1)PX|Y (x|+) + PY (−)PX|Y (x| +−)
and PY |X (−|x) = 1−PY |X (+|x) (19)

This formula is true whether the distributions PX|Y are normal or not.
▶ We assign x to the class with maximum posterior probability.

ŷ(x) = argmax
y∈{±1

PY |X (y |x) (20)

This too, holds true whether the distributions PX|Y are normal or not.
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LDA – continued

Now we specialize to the case of normal class distribution. We assume in addition that
Σ+ = Σ− = K−1.

▶ Decision rule: ŷ = 1 iff PY |X (+|x) > PY |X (−|x)
▶ or equivalently iff

0 ≤ f (x) = ln
PY |X (+|x)
PY |X (−|x)

(21)

= ln
p

1− p
−

1

2

[
xTKx − 2µT

+Kx + µT
+Kµ+

]
−
1

2

[
xTKx − 2µT

−Kx + µT
−Kµ−

]
(22)

= [K(µ+ − µ−)]T x + ln
p

1− p
+

µT
−Kµ− − µT

+Kµ+

2
(23)

= βT x + β0 (24)

▶ The above is a linear expression in x , hence this classifier is called (Fisher’s) Linear
Discriminant

▶ Note that if we change the variables to x ←
√
Kx , µ± ←

√
Kµ±, and if we shift the

origin to
µ++µ−

2
(24) becomes

2µT
+x + ln

p

1− p
(25)

This has a geometric interpretation
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LDA Algorithm

LDA Algorithm

Train
1. Estimate µ+ from data {(x i , y i ), y i = +1}
2. Estimate µ− from data {(x i , y i ), y i = −1}
3. Estimate Σ jointly for both classes, calculate K = Σ−1. Exercise Derive the formula for this

estimate, in the Max Likelihood setting

4. Estimate p = |{(x i , y i ), y i = +1}|/n.
Predict Now apply (24) to classify new data x
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OPTIONAL – QDA (Quadratic Discriminant Analysis)

▶ If we do not assume Σ+ = Σ− then (21) is a quadratic function of x Exercise Plot the curve

f (x) = 0 in (21) for various data sets in two dimensions. What kind of curves do you observe? Can the

decision region be bounded?

f (x) =

= ln
p

1− p
− 1

2
ln |Σ+|+ 1

2
ln |Σ−| (26)

−
1

2

[
xTΣ−1

+ x − 2µT
+Σ

−1
+ x + µT

+Σ
−1
+ µ+

]
(27)

+
1

2

[
xTΣ−1

− x − 2µT
−Σ−1

− x + µT
−Σ−1

− µ−
]

(28)

=

[
ln

p

1− p
− 1

2
ln |Σ+|+ 1

2
ln |Σ−| − 1

2
µT
+Σ

−1
+ µ+ + 1

2
µT
−Σ−1

− µ−

]
(29)

+
[
µT
+Σ

−1
+ − µT

−Σ−1
−

]
x︸ ︷︷ ︸

linear

−
1

2
xT

[
Σ−1

+ − Σ−1
−

]
x︸ ︷︷ ︸

quadratic

(30)
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Logistic Regression

Fitting a linear predictor for classification, another approach.

Let f (x) = βT x model the log odds of class 1

f (X ) =
P(Y = 1|X )

P(Y = −1|X )
(31)

Then
▶ ŷ = 1 iff P(Y = 1|X ) > P(Y = −1|X )

▶ just like in the previous case! so what’s the difference?

▶ Answer: We don’t assume each class is Gaussian, so we are in a more general situation than LDA
▶ What is p(x) = P(Y = 1|X = x) under our linear model?

ln
p

1− p
= f ,

p

1− p
= e f , p =

ef

1 + e f
1− p =

1

1 + e f
(32)

▶ Note that we can put the last two formulas together as

P[ y | x ] =
1

1 + e−yf (x)
= ϕ(yf (x)) (33)

▶ where ϕ(z) = 1
1+e−z is the logistic function
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Estimating the parameters by Max Likelihood

▶ The likelihood of a data point is P(y |x) = ϕ(yf (x))
▶ The log-likelihood for a single pair (x , y) is l(β; (x , y)) = − ln(1 + e−yf (x))
▶ Log-likelihood of the data set D

l(β;D) =
1

n

n∑
i=1

l(β; (x i , y i )) =
1

n

n∑
i=1

ln(1 + e−y i f (x i )) (34)

▶ The optimal β maximizes l(β;D). It is the value of β that sets the gradient ∇l(β;D) = 0.
▶ Unfortunately, this maximization problem does not have a closed form solution!

We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
β of the classifier.
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The gradient of l(β;D)

▶ For a single data point l(β; (x , y)) = − ln(1 + e−yf (x)) = ϕ(yf (x))
▶ First calculate

∂f

∂β
=

∂

∂β
(βT x) = x (35)

▶ Then, note ϕ′ = ϕ(1− ϕ),
▶ Putting them together

∂l

∂f
=

∂ lnϕ(yf )

∂f
=

yϕ(yf )(1− ϕ(yf )

ϕ(yf )
= y(1− ϕ(yf )) (36)

▶ Finally
∂l

∂β
=

∂l

∂f

∂f

∂β
= (1− ϕ(yf ))yx (37)

▶ The gradient of the log-likelihood of the dataset D is now

∂l(β;D)
∂β

=
1

n

n∑
i=1

1− ϕ(ey
i f (x i ))︸ ︷︷ ︸

P(yi |x i ,β)

 yix
i (38)

▶ Interpretation: The infinitezimal change of β to increase log-likelihood for a single data
point is along the direction of x , with the sign of y
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OPTIONAL – The Perceptron algorithm

Fitting a linear predictor for classification, third approach.
Define f (x) = βT x and find β that classifies all the data correctly (when possible).
Perceptron Algorithm

Input labeled training set D
Initialize β = 0, for all i , x i → x i

||x i || (normalize the inputs)

Repeat until no more mistakes
for i = 1 : N
1. if sgn(βT x i ) ̸= y i (a mistake)

β ← β + y ix i

(Other variants exist)
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The perceptron algorithm and linearly separable data

▶ D is linearly separable iff there is a β∗ so that sgnβT
∗ x i = y i for all i = 1, . . . N.

If one such β∗ exists, then there are an infinity of them

Theorem
Let D be a linearly separable data set, and define

γ = min
i

|βT
∗ x i |

||β∗||||x i ||
. (39)

Then, the number of mistakes made by the Perceptron algorithm is at most 1/γ2.

▶ Note that if we scale the examples to have norm 1, then γ is the minimum distance to the
hyperplane βT

∗ x = 0 in the data set.

Exercise Show that if D is linearly separable, the scaling x i → xi

||xi ||
leaves it linearly separable.

▶ If D is not linearly separable, the algorithm oscillates indefinitely.
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