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Linear predictors generalities

Loss functions

Least squares linear regression
Linear regresssion as minimizing L;s
Linear regresssion as maximizing likelihood

Linear Classifiers
Linear Discriminant Analysis (LDA)
OPTIONAL — QDA (Quadratic Discriminant Analysis)
Logistic Regression
OPTIONAL — The PERCEPTRON algorithm

Reading HTF Ch.: 2.1-5,2.9, 7.1-4 bias-variance tradeoff, Murphy Ch.: 1., 8.6%, Bach Ch.:

2
§
g
5
o
2
2
2
3
o
&
&
g
&
5
3
8
8
g
S
8
2
3
<]
=
K3
s
]
5
=

INeither textbook is close to these notes except in a few places; take them as alternative perspectives or related reading



Linear predictors

» Linear predictors for regression

f(x) = BTx (1)

where Y € R, X € RY and B € RY is a vector of parameters.
Hence, the model class is F = {8 € R?} the set of all linear functions over RY.
» Linear predictors for classification

9(x) = sgn(87x) )

i.e. the decision boundary is linear
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Transforming categorical inputs into real values

> if X; takes two values (e.g “yes”, “no"), map it to {1} or {0,1} C R.
» discrete multivariate inputs
P Let X; take values in Q; = {0,...r — 1}.
P One defines the r — 1 binary variables )~(_,vk = 1[]Xj =k, k =1:r — 1. The variable X; is replaced
with Xj, k=1:r—1
» the parameter 3; with r — 1 parameters S3j1 ... 3j, r — 1 representing the coefficients of
Xity oo Xjr—1.
This substitution is widely used to parametrize any function of a discrete variable as a linear function
Example: The demographic variable Race takes values in { African, Asian, Caucasian, ...}; the

corresponding parameters in the model will be Sasian, BCaucasian, - - -
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The intercept as a slope

> Sometimes we like f to have an intercept f(x) = BT x + Bo, with x, 8 € RY. Such a
function is affine, not linear, and not homogeneous. Here is a trick to get the best of both
worlds.

» Add a dummy input xg = 1 to x. Then its coefficient Sy is the intercept.

X0 Bo
e | | ert G| P er Fx) = BT 3)
Xd Bd

» in classification, [y is called threshold or bias term
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The linear predictor as classifier

The linear predictor can be used for [binary] classification with the sign trick from Lecture I.

f(x) = sgnB’x (4)

Later in the course we will see a natural way to use real-valued predictors for multi-way
classification.

What is the meaning of the 8 parameter for (4)7

In the following lectures we will see three possible “interpretations” for 3, which correspond
three different ways to construct a linear classifier for a problem.



How good is a regressor? Measuring the “Error”
> Prediction error for y': e = y — f(x')
» “Error” of f on D
> YEr’ = 130 e X
> VEr' = 130 le'] ?

» . ..norms!
> Lete = [el e? ... e"]. )
> eisa vector in R". 1570 |ef| = Lje||y

» But we can use other norms, e.g. %HGHQ, %||e||o<,.
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How good is a regressor? Measuring the
> Prediction error for y': e = y — f(x')
» “Error" of f on D
> Ep — 1 nle/X
’ //Err// — ,17 n L |EV| 7
» . ..norms!
> Lete = [el &2 ... e”].
> eisa vector in R". 1570 |ef| = Lje||y

» But we can use other norms, e.g. %HGHQ, ;||e||oo.

» Formally, ""Err'’ as above is called loss function.

“Error”



Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y,9) = the cost of predicting § when the actual outcome is y

As usually § = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).
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Loss functions

The loss function represents the cost of error in a prediction problem. We denote it by L, where

L(y,9) = the cost of predicting § when the actual outcome is y

As usually § = f(x) or sgnf(x), we will typically abuse notation and write L(y, f(x)).
» For Regression
» Least-Squares L, Loss Lis(y, f(x)) = %HeHg
> Ly Loss Lis(y, f(x)) = llellx
P Statistical losses. . .
» For Classification
. e _ 1y oo
» Misclassification Error (0-1 Loss) Loy = D l[y,#,]
P Statistical losses. . .

2
§
2
5
o
2
2
2
3
o
&
&
g
&
5
3
8
8
g
S
8
2
3
<]
2
K
s
]
5
=




-
g
g
]
S
S
K]
5
2
[
&
]
g
8
8
s
H
8
<
3
8
2
&
<]
=
%
b3
s
8
b3

Loss functions for classification

For classification, a natural loss function is the misclassification error (also called 0-1 loss)

Loa(y, f(x)) = 1z = { (1) Eii;gg ®

Sometimes different errors have different costs. For instance, classifying a HIV+ patient as
negative (a false negative error) incurs a much higher cost than classifying a normal patient as
HIV+ (false positive error). This is expressed by asymmetric misclassification costs. For
instance, assume that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f): |+ -
true:+ | 0 100
— 11 0

In general, when there are p classes, the matrix L = [Ly] defines the loss, with Ly being the
cost of misclassifying as / an example whose true class is k.



2
§
2
H
o
S
2
g
[
=
I
g
B
5
s
2
g
g
5
8
S
&
8
3
Kl
s
=
5
s

Training set loss and expected loss

» Training set loss
» Objective of prediction = to minimize loss on future data,

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F
We call L(f) above expected loss.

Example (Misclassification error Lg1(f))

Lo1(f) = probability of making an error on future data.

Loi(f) = P[Yf(X) <0] = Epy [Ljvr(x)<all

(6)

™



Training set loss and expected loss

» Training set loss
Objective of prediction = to minimize loss on future data,

v

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F (6)

We call L(f) above expected loss.

L(f) cannot be minimized or even computed directly, because we don't know the data
distribution Pxy .

Therefore, in training we use the traing set loss.

.. we approximate data distribution Pxy by the sample D.

The empirical loss (or empirical error or training error) is the average loss on D

\4

v

vy

L(f) Z lyifxiy<o] )
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Training set loss and expected loss

» Training set loss
» Objective of prediction = to minimize loss on future data,

minimize L(f) = Ep(x,v)[L(Y, f(X)] overf € F (6)

We call L(f) above expected loss.
» Therefore, in training we use the traing set loss.
... we approximate data distribution Pxy by the sample D.
The empirical loss (or empirical error or training error) is the average loss on D

vy

. 1<
L(f) = ;Zlyf(xf)@] )
i=1

> And we approximate L(f) the expected loss by a different data set D%t from the same

» The size of D't is n’, not necessarily equal to n.
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» Problem: how to lear a linear predictor from data?
> Now: examples of what one can do
» Later lectures: larger view of the estimation problem for predictors
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(Linear) least squares regression

» define data matrix or (transpose) design matrix

M
)T vl el
2 2
X = | iy ERV and Y = | Y |, E=|° |er?
y" ed
COM

» Then we can write

Y = XB+E
> Thj solution ﬁA iZ chosen to minimize the sum of the squared errors
() = = BTX)? = IE|P?
d
3 — argmin i 8T x.)?
e (v B xi)

i=1
» This optimization problem is called a least squares problem. Its solution is

B = (XTX)"xTy (8)
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» Underlying statistical model y = 87x +¢, &~ N(0,02) (and i.i.d. sampling of
(XN, yBNY of course).
Then 3 from (8) is the Maximum Likelihood (ML) estimator of the parameter 3.




The statistical view of Machine Learning: Likelihood
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The statistical view of Machine Learning: Likelihood

» What is random? the noise 1"

> Express noise as function of (x1", y1i")

=y —B—-p"x ~ N0 9)
> Likelihood
&2
> Let py ,2(€) = a\}ﬂe_%? = N(¢0,02)
» Then
n .
; L(Bo, Br:ar0®) = [ ]Pos2(€) (10)
i=1
[[ e (1)
g = J—— 20
& i1 c 27
?: n 1 _(yi—B —BTxi)z
= ——e 202 (12)
z i1 oV 2r
i > log-likelihood
1(Bo, Bra,0%) = (13)
g n
1, 5, 1 1/, N
s — I P P i — J R
Z{ 5 Ino 5 In(27) 5 (y Bo— B X) 202} (14)

i=1
1 1 X 2
n. 5 2N [ i n T iS4




Maximizing the log-likelihood w.r.t g8

» For simplicity, let 8o = 0; hence y’ = 87 x/ 4 ¢
> log-likelihood
n 1 < 2
I(B1:4,0%) = —=Ino? — — ( By — Txf> constant 16
(Br.d,0%) Fnet =253 ;:1 y' —po—8 + (16)

» For any o2,
n
. N2
argmax /(02, 8) = argmin E (y‘ — Bo — 5Tx’) (17)
B B P
i=1

a Least Squares Problem

> In matrix form ming ||y — X3
> Solution
6ML _ (XTX)—ley (18)
with (XTX)~1XT = XT the pseudoinverse of X
» BML is |inear in y!
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Linear Discriminant Analysis (LDA)
Fitting a linear predictor for classification, first approach. (We are in the binary classification case)
P Assume each class is generated by a Normal distribution

Pxiy(x|+) = N(xpy, T4),  Pxjy(x|=) =N(x;p—,X_) and Py(1) =p

P Given x, what is the probability it came from class + ?
Py (1)Px vy (x]+)
Py (1)Px |y (x]+) + Py (=)Px v (x| + —)

This formula is true whether the distributions Px |y are normal or not.
P> We assign x to the class with maximum posterior probability.

y(x) = argmax Py x(y|x) (20)
ye{+1

Py x(+|x) = and Py x(—|x) = 1=Pyx(+[x) (19)

This too, holds true whether the distributions Px|y are normal or not.



-
5
g
S
S
g
el
g
I
=
&
g
]
8
°
2
8
g
S
8
g
&
S
=
]
b3
[
&
b3

LDA — continued
Now we specialize to the case of normal class distribution. We assume in addition that
Y =Y =K1l

> Decision rule: § = 1 iff Py|x(+[x) > Py|x(—[x)

> or equivalently iff

P —+|x
0 < f(x) = |nM
Py x(=[x)
P 117 T T
= Inl_p—i[x KX—2;L+KX+[L+K/J,+]

,% [XTKX — 2,uI Kx + ,LLI K,u,]

TKu_ —u’'K
= [K(/H—M—)]TX-Hnlfp—i-}L " 2“+ e

= BTx+ 8

» The above is a linear expression in x, hence this classifier is called (Fisher’s) Linear
Discriminant
» Note that if we change the variables to x +— VKx, p+ < vV Kpu+, and if we shift the

origin to W% (24) becomes

2u1x+ In I P

This has a geometric interpretation

(21)

(22)

(23)

(24)

(25)



LDA Algorithm
LDA Algorithm

Train o '
1. Estimate p4 from data {(x',y'), y' = +1}
2. Estimate p— from data {(x',y'), y' = —1}

3. Estimate ¥ jointly for both classes, calculate K = ¥ ~!. Exercise Derive the formula for this
estimate, in the Max leellhood setting

4. Estimate p = |{(x,y"), y' = +1}|/n.

fredict Now apply (24) to classify new data x
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OPTIONAL - QDA (Quadratic Discriminant Analysis)

» If we do not assume X = ¥ _ then (21) is a quadratic function of x Exercise Plot the curve
f(x) = 0 in (21) for various data sets in two dimensions. What kind of curves do you observe? Can the
decision region be bounded?

f(x) =
= |In 1 FIn|Zi |+ Zin|z_| (26)
1
- 5[ Tix—ouls x4l u+] (27)
1
+ E[Tz L —ouTs- x+uIz:1u_] (28)
P
- [|n1_p—%|n\z+|+;|n|>: — Iy + ST T (29)
+ [;Jz*l— Tzf}x—fx [): ! }:71]x (30)
D > -

linear quadratic
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Logistic Regression

Fitting a linear predictor for classification, another approach.

Let | f(x) = BT x | model the log odds of class 1

P(Y = 1|X)

FX) = By =—1x)

Then
> y=1iff P(Y =1|X) > P(Y = —-1|X)

P just like in the previous case! so what's the difference?

(31)
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Logistic Regression

Fitting a linear predictor for classification, another approach.

Let | f( BT x | model the log odds of class 1
P(Y =1|X
fx) = S =1X) (31)
P(Y = —1|X)

Then
> y=1iff P(Y =1|X) > P(Y = —-1|X)
P just like in the previous case! so what's the difference?
» Answer: We don’t assume each class is Gaussian, so we are in a more general situation than LDA
» What is p(x) = P(Y = 1|X = x) under our linear model?
p P ¢ e 1

In =f, — =, = 1—p = —— 32
1—p P 14 ef P 14 ef (32)

P> Note that we can put the last two formulas together as
1

Pyixl = 1 e=m

= ¢(yf(x)) (33)

P> where ¢(z) = He%z is the logistic function



Estimating the parameters by Max Likelihood

\4

The likelihood of a data point is P(y|x) = ¢(yf(x))

> The log-likelihood for a single pair (x,y) is /(3; (x,y)) = — In(1 + e=¥ ()
> Log-likelihood of the data set D

1 n . 3 1 n . .

(B;D) = =3 1B (x',y)) = =D In(1+e ")) (34)
n 4 n 4
i=1 i=1

> The optimal 8 maximizes /(3; D). It is the value of 3 that sets the gradient V/(3; D) = 0.
» Unfortunately, this maximization problem does not have a closed form solution!

We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
B of the classifier.
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The gradient of /(3; D)

> For a single data point /(3; (x,y)) = — In(1 + e Y X)) = ¢(yf(x))
» First calculate of 5

or 0 Ty _
55 = 5380 = x
> Then, note ¢’ = ¢(1 — @),
» Putting them together
al _ 3lng(yf) _ yo(yf)(1 — @(yf)

oF = ar = TR = v eb)

> Finally

ol ol of
95 ofop (1= B(yf))yx

» The gradient of the log-likelihood of the dataset D is now

al(B; D) 1 4 B TF(x1) v,
o5 = n; 1= (e ")) | yix

P(yilx',8)

(35)

(36)

(37)

(38)



The gradient of /(3; D)

> For a single data point /(8; (x,y)) = — In(1 + e~ (%)) = ¢(yf(x))
» First calculate of

9 g
= = 35
55 = 9587 = x (35)
> Then, note ¢’ = ¢(1 — @),

» Putting them together

oI _ Olng(yf) _ yo(yf)(1 — o(yf)

= = = = y(1- f 36
o= o y(1 - 8(yF)) (36)
£ > Finally
ol ol of
Y — = —— = (1- f 37
25— of 0P (1 — @(yf))yx (37)
i » The gradient of the log-likelihood of the dataset D is now
§
o M RG] 2 (38)
. ap n ——

P(yilx',8)

» Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y




Fitting a linear predictor for classification, third approach.
Define f(x) = 87 x and find 3 that classifies all the data correctly (when possible).
PERCEPTRON Algorithm

Input labeled training set D

i

Initialize 3 = 0, for all i, x' — ﬁ (normalize the inputs)
Repeat until no more mistakes
fori=1:N
1. ifsgn(BTx)) # y' (2 mistake)
B« B+y'X

(Other variants exist)

-
g
g
]
S
S
K]
5
2
[
&
]
g
8
8
s
H
8
<
3
8
2
&
<]
=
%
b3
s
8
b3




-
5
g
S
S
g
el
g
I
=
&
g
]
8
°
2
8
g
S
8
g
&
S
=
]
b3
[
&
b3

The perceptron algorithm and linearly separable data

> D is linearly separable iff there is a B, so that sgn8]x' =y’ forall i=1,...

If one such B. exists, then there are an infinity of them

Theorem
Let D be a linearly separable data set, and define
o [BIX]
Y = min —————.
i {18« 11X1]

N.

(39)

Then, the number of mistakes made by the PERCEPTRON algorithm is at most 1/~2.

» Note that if we scale the examples to have norm 1, then y is the minimum distance to the

hyperplane 8] x = 0 in the data set.
i
1> |

» If D is not linearly separable, the algorithm oscillates indefinitely.

Exercise Show that if D is linearly separable, the scaling x =

leaves it linearly separable.
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