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Classification and regression tree(s) (CART)

Learnin a CART

Predicting with a CART

Some issues with CART

Reading HTF Ch.: 9.2 CART, Murphy Ch.: 16.2.1–4 CART, Bach Ch.:
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Classification and regression trees (CART)

▶ A classification tree or (decision tree) is built recursively by splitting the data with
hyperplanes parallel to the coordinate axes.
▶ At each split, try to separate + examples from − examples as well as possible.
▶ Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.

▶ Classification trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split)

▶ A regression tree uses the same principle for regression
here we try to obtain regions where the outputs are nearly the same



M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
C
A
R
T

1
/
2
7
/
2
6

4

Classification Tree (Decision Tree)
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Regression Tree
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Hierarchical partitions

▶ a hierarchical partition T of Rd is a set of regions {Rq}, so that Rd =
⋃

q Rq and between
any two Rq ,Rq′ we have either

Rq ∩ Rq′ = ∅, or Rq ⊂ Rq′ or Rq′ ⊂ Rq . (1)

(we include the boundariy between 2 regions Rq ,Rq′ arbitrarily in a single one of them)
▶ In a CART, the partitions are usually chosen to be axis-aligned, i.e.

Rq = {x | ± xj1” > ”τ1, ±xj2” > ”τ2, . . .± xjl ” > ”τl} where ” > ” stands for one of > or

≥, so that the union of all regions covers Rd .
▶ The number of inequalities l defining the region is called the level of the region.
▶ Rq is a leaf of T iff there is no other Rq′ included in it.

Example (A hierarchical partition with 3 levels over R2)
Level 1: R1 = {x | x2 > 3},

R2 = {x | x2 ≤ 3}
Level 2: R3 = {x | x2 > 3, x1 ≥ −2},

R4 = {x | x2 > 3, x1 < −2},
R5 = {x | x2 ≤ 3, x1 > 0},
R6 = {x | x2 ≤ 3, x1 ≤ 0}

Level 3: R7 = {x | x2 > 3, x1 ≥ −2, x1 < 4},
R8 = {x | x2 > 3, x1 ≥ 4},
R9 = {x | x2 < 3, x1 ≥ 1}
R10 = {x | x2 ≤ 3, x1 ≤ 0, x2 > −1},
R11 = {x | x2 ≤ −1, x1 ≤ 0},
R12 = {x | x2 < 3, x1 > 0, x1 < 1}

The leaves are R4,R7, . . . R12. Not all leaves are at the same level; for example R4 is at level 2.
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Some advantages of CART

▶ Natural and easy to interpret (if small)
▶ Can approximate any function (with enough leaves)
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“Learning” a CART

A standard algorithm for building a decision tree works recursively in top-down fashion.

Input Training set D of size n
Initialize with a tree with only one region, that contains all the data

1.Repeat until all leaves are pure (or until desired purity is attained in all leaves)
2. Find the “optimal” split over all leaves Rq and all possible splits of Rq .

“Optimal” is defined in terms on purity (e.g split the least pure leaf, find the split that
makes one of the new leaves pure)

3. Perform the “optimal” split and add the two new leaves to the tree

This is a greedy algorithm. Sometimes, trees obtained this way are pruned back to smaller sizes.
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Purity

▶ Natural ways to set yq based on the data, once the partition T has been fixed:

▶ denote Yq = {y i | x i ∈ Rq, i = 1 : N} the set of labels at a leaf Rq
▶ Regression yq = average of Yq
▶ Classification yq = majority label of Yq

▶ a leaf Rq is pure if all labels are the same, i.e. if |Yq | = 1
▶ criteria for the (im)purity of a leaf Rq

▶ Regression impurity = sample variance of Yq
▶ Classification let pq be the frequency of yq in Yq

impurity =

 Misclassification error 1 − pq
Gini pq(1 − pq)
Entropy pq ln pq + (1 − pq) ln(1 − pq)

(2)

These measures generalize naturally to the multiclass setting.
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Predicting with a CART

Given new x
1. Find the unique leaf R(x) so that x ∈ R(x)
2. Predict ŷ based on the data in this leaf

▶ Regression
Predict ŷ(x) = average{y i with x i ∈ R(x)}

▶ Classification
Predict ŷ(x) = majority{y i with x i ∈ R(x)}
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A decision tree over D is not unique

Same dataset D, two different trees. Both classify the sample D perfectly.
T1 T2 differences of T1, T2

But they produce different decision regions.
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