

# Lecture Notes IV – Neural Networks, Part 1

Marina Meilă  
`mmp@uwaterloo.ca`

With Thanks to Pascal Poupart & Gautam Kamath  
Cheriton School of Computer Science  
University of Waterloo

February 2, 2026

## A little history

### The single “neuron”

### Two-layer Neural Networks

- Hidden layer options
- Output layer options

### Multi-layer neural networks

**Reading** HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Bach Ch.: –, Deep Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders 14.1, Dive Into Deep Learning 4.1-4.3.

## A little history

### First epoch – can computers mimic the brain?

- ▶ 40's-50's the first mathematical models of the neuron (McCullaugh & Pitts, Hebb)
- ▶ '58 the perceptron (Rosenblatt)
- ▶ First winter '69 "Perceptrons" (Minsky and Papert) – they can only classify linearly separable data (and von Neumann computers steal the show)

### Revival in the 80's-'95 – let's use layers!

- ▶ '82 Hopfield associative net (contents addressable memory)
- ▶ '84 Boltzmann Machine (Ackley, Hinton, Sejnowski)
- ▶ autoencoders
- ▶ '86 backpropagation (Sejnowski, Rosenberg)
- ▶ Reinforcement learning (Shannon, Samuel, Barton, Sutton, Watkins, Tesauro)
- ▶ Second winter cca '95 Statistical learning takes the stage, especially SVM

### Current epoch cca 2005 – more data, more layers

- ▶ Deep learning
- ▶ Generative models
- ▶ Attention
- ▶ LLMs

# Brains vs. Computers

## Computer (von Neumann)

- ▶ Electrical binary signals directed by gates
- ▶ Wiring is fixed
- ▶ Sequential and parallel computation
- ▶ Memory is retrieved by address
- ▶ **Fragile** (if a gate stops working, computer crashes). Also, “no friction” – a single instruction can stop the entire machine/program.

## Brain

- ▶ Electrical signals, units=neurons
- ▶ Wiring is dynamic, changes with brain development, experiences, learning
- ▶ Parallel (and some) sequential computation
- ▶ Memory is distributed
- ▶ **Robust** (when neuron/region dies, brain rewires itself to compensate). **No On/Off master switch**

# Brains vs. Computers

## Computer (von Neumann)

- ▶ Electrical binary signals directed by gates
- ▶ Wiring is fixed
- ▶ Sequential and parallel computation
- ▶ Memory is retrieved by address
- ▶ **Fragile** (if a gate stops working, computer crashes). Also, “no friction” – a single instruction can stop the entire machine/program.

## Brain

- ▶ Electrical signals, units=neurons
- ▶ Wiring is dynamic, changes with brain development, experiences, learning
- ▶ Parallel (and some) sequential computation
- ▶ Memory is distributed
- ▶ **Robust** (when neuron/region dies, brain rewires itself to compensate). **No On/Off master switch**

## Neural network

- ▶ Signals are numbers passed between units
- ▶ Network structure is fixed (and dense) but the learned weights allow “rewiring” during training
- ▶ Parallel (in layer) and sequential (feed forward/backward) computation
- ▶ Memory is distributed (in the weights)
- ▶ **Redundant/robust** (no single neuron can influence the output much)

# (Artificial) Neural Network (nn) unit

- ▶ For each **unit  $i$**

$$y_i \equiv f_i(x) = \phi\left(\sum_j w_{ij}x_j + w_{i0}\right) \quad (1)$$

- ▶ **Weight vector  $w_i$**

- ▶  $w_{ij}$  = strength of the link from unit  $i$  to input  $j$
- ▶  $w_{ij} = 0$ : no link
- ▶  $w_{ij}$  can be positive or negative
- ▶ Sometimes we call the input vector  $x = [x_{1:d}]$  **input units**

- ▶ **activation function  $\phi()$**

- ▶ must be non-linear (otherwise the unit is a linear transformation)
- ▶ wanted: monotonically increasing, differentiable, gradient non-zero <sup>1</sup>

---

<sup>1</sup>More technically:  $\phi$  can be any continuous, bounded and strictly increasing function on  $\mathbb{R}$ .

# (Artificial) Neural Network (nn) unit

- ▶ For each **unit  $i$**

$$y_i \equiv f_i(x) = \phi\left(\sum_j w_{ij}x_j + w_{i0}\right) \quad (1)$$

- ▶ **Weight vector  $w_i$ :**

- ▶  $w_{ij}$  = strength of the link from unit  $i$  to input  $j$
- ▶  $w_{ij} = 0$ : no link
- ▶  $w_{ij}$  can be positive or negative
- ▶ Sometimes we call the input vector  $x = [x_{1:d}]$  **input units**

- ▶ **activation function  $\phi()$**

- ▶ must be non-linear (otherwise the unit is a linear transformation)
- ▶ wanted: monotonically increasing, differentiable, gradient non-zero <sup>1</sup>

Notation  $\phi$  is overloaded

- ▶ When we talk about nn in general:  $\phi$  is any activation function
- ▶ When we do calculations with nn:  $\phi$  is by default the **logistic** function (unless specified otherwise)

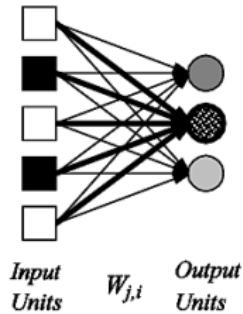
$$\text{logistic or sigmoid function} \quad \phi(u) = \frac{1}{1 + e^{-u}} \quad (2)$$

- ▶ When we do statistics or ML (but not nn):  $\phi$  is the logistic function
- ▶ Exercise: compare  $f_i(x)$  from (1) with  $p(x) = \Pr[y = 1 | x]$  from logistic regression.

<sup>1</sup>More technically:  $\phi$  can be any continuous, bounded and strictly increasing function on  $\mathbb{R}$ .

# Perceptron

- Single layer feed-forward network



# Perceptron weights for OR, AND, XOR

## Two-layer Neural Networks

- We build a **two-layer neural network** in the following way:

$$\begin{array}{lll}
 \text{Inputs} & x_j & j = 1 : d \\
 \text{Bottom layer}^2 & u_i = \phi(w_i^T x) & i = 1 : m, w_i \in \mathbb{R}^d \\
 \text{Top layer} & f = \beta^T u & \beta \in \mathbb{R}^m \\
 \text{Output} & f & \in \mathbb{R}
 \end{array}$$

In other words, the neural network implements the function

$$f(x) = \sum_{i=1}^m \beta_i u_i = \sum_{i=1}^m \beta_i \phi\left(\sum_{j=1}^d w_{ij} x_j\right) \in (-\infty, \infty) \quad (3)$$

Note that this is just a linear combination of logistic functions.

- As we will see shortly, in general,  $f(x)$  can also be non-linear

---

<sup>2</sup>In neural net terminology, each variable  $u_i$  is a **unit**, the bottom layer is **hidden**, while top one is **visible**, and the units in this layer are called hidden/visible units as well. Sometimes the inputs are called **input units**; imagine neurons or individual circuits in place of each  $x, u, y$  variable.

# Activation functions for the hidden layer

For the hidden layer, we have to choose

- ▶ number of units  $m$
- ▶ activation function

Common activation functions

## ▶ Functions that approximate a step function

- ▶ threshold function (or step function) 1 for  $u \geq 0$ , and 0 otherwise (not used)
- ▶ logistic  $\phi$
- ▶ hyperbolic tangent  $\tanh$ , arctangent  $\tan^{-1}$

## ▶ Hinge functions

- ▶ RELU =  $\max(u, 0)$
- ▶ softplus =  $\ln(1 + e^u)$

in practical implementations, these unbounded functions are bounded at a large value  $M$

- ▶ Why hinge functions? Gradient is 1 or 0 (approximately), faster computation!!, and no saturation

## Output layer options

The function from  $u$  to  $y$  is dictated by the type of prediction problem.

| Prediction problem      | Output layer $f$ |                                          |
|-------------------------|------------------|------------------------------------------|
| regression              | linear           | $f = \beta^T u \in \mathbb{R}$           |
| binary classification   | logistic         | $f = \phi(\beta^T u) \in [0, 1]$         |
| multiway classification | softmax          | $f_k = \phi_k(\beta_k^T u) \in [0, 1]^r$ |

- ▶ Regression: **linear** layer as in (3)  $f = \sum_i \beta_i u_i$
- ▶ Classification (binary): **logistic** layer  $f(x) \in [0, 1]$  is interpreted as the probability of the  $+$  class.

$$f(x) = \phi \left( \sum_{j=1}^m \beta_j u_j \right) = \phi \left( \sum_{i=1}^m \beta_i \phi \left( \sum_j w_{ij} x_j \right) \right) \quad (4)$$

- ▶ Multiway classification with  $r$  classes
  - ▶ Output is vector of  $r$  functions  $f_1, \dots, f_r$
  - ▶  $f_k$  is the probability of  $y = k$
  - ▶ (sometimes  $f_k$  can be a “confidence”)
  - ▶ This is done with a **softmax** layer (next page)

## The softmax function

- ▶ logistic  $\phi(z) = \frac{e^z}{1+e^z}$ 
  - ▶ represents the probability that  $y = 1$  in binary classification
  - ▶ in a nn,  $f(x) = \phi(\beta^T u)$ , with  $u \in \mathbb{R}^m$  the activations of the hidden layer
- ▶ The softmax function generalizes the logistic to  $r$  classes  
 $\phi(z) : \mathbb{R}^r \rightarrow (0, 1)^r$

$$\phi_k(z) = \frac{e^{z_k}}{\sum_{j=1}^m e^{z_j}}, \text{ for } k = 1 : r \quad (5)$$

$$\phi(z) = [\phi_1(z) \dots \phi_r(z)] \quad (\text{overload of } \phi) \quad (6)$$

- ▶ Properties of softmax
  - ▶  $\sum_{j=1}^m \phi_j(z) = 1$  for all  $z$
  - ▶ for  $z_k \gg z_j$ ,  $\phi_k(z) \rightarrow 1$ .
  - ▶ derivatives  $\frac{\partial \phi_j}{\partial z_k} = \phi_k \delta_{jk} - \phi_j \phi_k$
- ▶ in a nn, with output activations  $u \in \mathbb{R}^m$ , we train  $r$  weight vectors  $\beta_{1:r}$ , and

$$f_k(x) = \phi_k(\beta_k^T u(x)), \quad \text{for } k = 1 : r \quad (7)$$

## OPTIONAL - Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential family.

- $y \in \mathbb{R}$ ,  $y \sim P_\theta$  with

$$P_\theta(y) = e^{\theta y - \psi(\theta)} \quad (8)$$

- the parameter  $\theta$  is a linear function of  $x \in \mathbb{R}^d$

$$\theta = \beta^T x \quad (9)$$

- We denote  $E_\theta[y] = \mu$ . The function  $g(\mu) = \theta$  that relates the mean parameter to the natural parameter is called the **link function**.

The log-likelihood (w.r.t.  $\beta$ ) is

$$I(\beta) = \ln P_\theta(y|x) = \theta y - \psi(\theta) \quad \text{where } \theta = \beta^T x \quad (10)$$

and the gradient w.r.t.  $\beta$  is therefore

$$\nabla_\beta I = \nabla_\theta I / \nabla_\beta (\beta^T x) = (y - \mu)x \quad (11)$$

This simple expression for the gradient is the generalization of the gradient expression you obtained for the two layer neural network in the homework. [Exercise: This means that the sigmoid function is the *inverse link function* defined above. Find what is the link function that corresponds to the neural network.]

## Multi-layer/Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers. Each layer is a linear combination of the outputs from a previous layer (a multivariate operation), followed by a non-linear transformation via the logistic function  $\phi$ . Let  $x \equiv x^{(0)}, y \equiv x^{(L)}, m_0 = d, m_L = \dim y$  (typically 1) and define the recursion:

$$x_j^{(l)} = \phi \left( \underbrace{(w_j^{(l)})^T x^{(l-1)}}_{z^{(l)}} \right), \text{ for } j = 1 : m_l, l = 1 : L \quad (12)$$

The vector variable  $x^{(l)} \in \mathbb{R}^{m_l}$  is the output of layer  $l$  of the network. As before, the sigmoid of the last layer may be omitted.

## Are multiple layers necessary?

- ▶ 1990's: NO
- ▶ 2000's: YES
- ▶ 2020's: The more the better!
- ▶ A theoretical result

### Theorem (Cybenko, $\approx 1986$ )

Any continuous function from  $[0, 1]^d$  to  $\mathbb{R}$  can be approximated arbitrarily closely by a linear output, two layer neural network defined in (3) with a sufficiently large number of hidden units  $m$ .

- ▶ A practical result



## Deep Learning

Deep learning = multi-layer neural net

- ▶ So, what is new?
  - ▶ small variations in the “units”, e.g. switch stochastically w.p.  $\phi(w^T x^{in})$  (Restricted Boltzmann Machine), Rectified Linear units
  - ▶ training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this when we talk about training predictors)
  - ▶ lots of data
  - ▶ double descent

T.B. EDITED

## Example: Logistic regression

Training = Estimating the parameters by Max Likelihood

### Problem setup

- ▶ Denote  $y_* = (1 - y)/2 \in \{0, 1\}$
- ▶ The likelihood of a data point is  $P_{Y|X}(y|x) = \frac{e^{y_* f(x)}}{1+e^{f(x)}}$
- ▶ The log-likelihood is  $I(\beta; x, y) = y_* f(x) - \ln(1 + e^{f(x)})$
- ▶ Log-likelihood of the data set  $\mathcal{D}$

$$I(\beta; \mathcal{D}) = \frac{1}{n} \sum_{i=1}^n I(\beta; (x^i, y^i)) \quad (13)$$

- ▶ Define the **loss** function

$$L_{\text{log}I}(\beta) = -I(\beta) \quad (14)$$

- ▶ and the optimization criterion

$$J(\beta) = \hat{L}_{\text{log}I} = \frac{1}{n} \sum_{i=1}^n -I(\beta; x^i, y^i) \quad (15)$$

Minimizing  $J$  is maximizing  $I(\beta; \mathcal{D})$

# Logistic regression

- ▶ loss function  $L_{\text{LogI}}$
- ▶ optimization criterion  $J(\beta)$

## Calculating the gradient

►  $\frac{\partial l}{\partial f} = y_* - \frac{1}{1+e^f}$

This is a scalar, and  $\text{sgn} \frac{\partial l}{\partial f} = y$

► We have also  $\frac{\partial f(x)}{\partial \beta} = x$

► Now, the gradient of  $l$  w.r.t the parameter vector  $\beta$  is

$$\frac{\partial l}{\partial \beta} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial \beta} = \left( y_* - \frac{1}{1+e^{-f(x)}} \right) x \quad (16)$$

Interpretation: The infinitesimal change of  $\beta$  to increase log-likelihood for a single data point is along the direction of  $x$ , with the sign of  $y$  **Exercise** Prove that (??) has a unique local optimum.

## Calculating the gradient

►  $\frac{\partial l}{\partial f} = y_* - \frac{1}{1+e^f}$

This is a scalar, and  $\text{sgn} \frac{\partial l}{\partial f} = y$

► We have also  $\frac{\partial f(x)}{\partial \beta} = x$

► Now, the gradient of  $l$  w.r.t the parameter vector  $\beta$  is

$$\frac{\partial l}{\partial \beta} = \frac{\partial l}{\partial f} \frac{\partial f}{\partial \beta} = \left( y_* - \frac{1}{1+e^{-f(x)}} \right) x \quad (16)$$

Interpretation: The infinitesimal change of  $\beta$  to increase log-likelihood for a single data point is along the direction of  $x$ , with the sign of  $y$  **Exercise** Prove that (??) has a unique local optimum.

## Algorithm STEEPEST-DESCENT FOR LOGISTIC REGRESSION

Input  $\beta^0 \in \mathbb{R}^d$  initial point

For  $k = 0, 1, \dots$

1. calculate  $d^k = \frac{1}{n} \sum_{i=1}^n \left( y_*^i - \frac{1}{1+e^{-f(x^i)}} \right) x^i$

2. find  $\eta^k$  by line minimization

3.  $\beta^{k+1} \rightarrow \beta^k - \eta^k d^k$

until stopping condition satisfied

Output  $\beta^{k+1}$

## Example: Backpropagation

- The **Backpropagation** algorithm is steepest descent for neural networks
- Consider a two layer neural network

$$f(x) = \sum_{j=1}^m \beta_j z_j = \sum_{j=1}^m \beta_j \phi\left(\sum_{k=1}^n w_{kj} x_k\right) \quad (17)$$

The parameters are  $\beta$  and  $W = [w_{kj}]_{j=1:m, k=1:n}$

- Let the loss be  $L_{LS}$  the **Least Squares** loss,  $J(\beta, W) = \hat{L}_{LS}(\beta, W)$

**Derivation of the gradient** **Exercise** Derive this

$$\frac{\partial J}{\partial \beta_j} = \frac{1}{n} \sum_i \frac{\partial (y^i - f(x^i))^2}{\partial \beta_j} = \frac{1}{n} \sum_i 2(y^i - f(x^i)) z_j(x^i) \quad (18)$$

$$\begin{aligned} \frac{\partial J}{\partial w_{kj}} &= \frac{1}{n} \sum_i \frac{\partial L_{LS}(y^i, f(x^i))}{\partial z_j(x^i)} \frac{\partial z_j(x^i)}{\partial w_{kj}} = \frac{1}{n} \sum_i \left(2\beta_k(y^i - f(x^i))\right) \underbrace{z_j(x^i)(1 - z_j(x^i)) x_k^i}_{\phi'} \\ &= \frac{\beta_k}{n} \sum_i x_k^i (y^i - f(x^i)) \nabla(\text{logistic regressor}) \end{aligned} \quad (19)$$

In the above we used the identity  $\phi' = \phi(1 - \phi)$  **Exercise** Prove it

**Computational savings**

- when  $f(x^i)$  is computed,  $z_j(x^i)$  are too; they should be “cached” and re-used
- the derivative of  $\phi$  is easily obtained from the  $\phi$  value
- **Exercise** The above gradient formulas can be easily written in matrix-vector form

Backpropagation extends recursively to multi-layer networks. **Exercise** Derive it. **Exercise** Calculate the gradient for the 2-layer neural network with logistic output

## Practical properties of backpropagation

- ▶ Unlike in logistic regression,  $J$  has many local optima even for two layers and simple problems.
- ▶ Hence, initialization is important, and there are no general rules for a good initialization. Even if the neural network works well, we do not know if we are at the optimum.
- ▶ **Saturation** If  $\tilde{z}_j = w_j^T x$  is large in magnitude, then  $z_j = \phi(\tilde{z}_j)$  is near 0 or 1. In either case,  $\phi'(\tilde{z}_j) = z_j(1 - z_j) \approx 0$ . We say that that this sigmoid is **saturated**;  $z_j$  will be virtually insensitive to changes in  $w_j$ <sup>3</sup>  
To avoid saturation at the beginning of the training, one initializes  $W$  with “small” (w.r.t  $\max \|x^i\|$ , random values. **Exercise** Why random and not exactly 0?
- ▶ To speed up training, it is useful to **standardize the input data**<sup>4</sup>  $x^{1:N}$  as a preprocessing step. **Exercise** Note that theoretically shifting and rescaling the data should NOT have any effect.
- ▶  $J$  can have **plateaus**, i.e. regions where  $\nabla J \approx 0$  but that do not contain a local minimum. **Exercise** What can cause plateaus? **Exercise** And what is bad about them?
- ▶ In conclusion, training neural networks by backpropagation is an art: requires experience with the algorithm, careful tuning, repeated restarts, and a long time.

<sup>3</sup>or to changes in previous layers, if this is a multilayer network.

<sup>4</sup>Standardization should NOT include the dummy coordinate  $x^0 \equiv 1$ .