Lecture Notes |V — Neural Networks, Part 1

Marina Meila
mmpQuwaterloo.ca

With Thanks to Pascal Poupart & Gautam Kamath
Cheriton School of Computer Science
University of Waterloo

February 2, 2026

5
2
8
z
T
3
E
|
2
°
i
8
5
=
&
g
<
3
°
3
8
g
S
8
2
&
4]

Marina Meila

A little history

The single “neuron”

Two-layer Neural Networks
Hidden layer options
Output layer options

Multi-layer neural networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Bach Ch.: —, Deep
Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders
14.1, Dive Into Deep Learning 4.1-4.3.

£
5
z
8
2
K]
3
=
i
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
3
g
3
4]
=
%
2
=
5
2

£
5
z
8
2
K]
3
=
i
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
3
g
3
4]
=
%
2
=
5
2

A little history

vvyy

vVyVvVYYVYY

vvyvyy

First epoch — can computers mimic the brain?

40's-50's the first mathematical models of the neuron (McCullaugh & Pitts, Hebb)
'58 the perceptron (Rosenblatt)

First winter '69 “Perceptrons” (Minsky and Papert) — they can only classify linearly
separable data (and von Neumann computers steal the show)

Revival in the 80’s-'95 — let’s use layers!

'82 Hopfield associative net (contents adressable memory)

'84 Boltzmann Machine (Ackley, Hinton, Sejnowski)

autoencoders

'86 backpropagation (Sejnowski, Rosenberg)

Reinforcement learning (Shannon, Samuel, Barton, Sutton, Watkins, Tesauro)
Second winter cca '95 Statistical learning takes the stage, especially SVM

Current epoch cca 2005 — more data, more layers
Deep learning

Generative models

Attention

LLMs

Brains vs. Computers

Computer (von Neumann)

Electrical binary signals directed by gates

Wiring is fixed

Sequential and parallel computation

Memory is retrieved by address

Fragile (if a gate stops working, computer crashes). Also, “no friction” — a single
instruction can stop the entire machine/program.

vyVYYVYY

Brain

Electrical signals, units=neurons

Wiring is dynamic, changes with brain development, experiences, learning

Parallel (and some) sequential computation

Memory is distributed

Robust (when neuron/region dies, brain rewires itself to compensate). No On/Off master
switch

VVyVYVYYVYY

£
5
z
8
2
K]
3
=
i
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
3
g
3
4]
=
%
2
=
5
2

£
5
z
8
2
K]
3
=
i
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
3
g
3
4]
=
%
2
=
5
2

Brains vs. Computers

VVyVYVYYVYY vyVYYVYY

v

vy

vy

Computer (von Neumann)

Electrical binary signals directed by gates

Wiring is fixed

Sequential and parallel computation

Memory is retrieved by address

Fragile (if a gate stops working, computer crashes). Also, “no friction” — a single
instruction can stop the entire machine/program.

Brain

Electrical signals, units=neurons

Wiring is dynamic, changes with brain development, experiences, learning

Parallel (and some) sequential computation

Memory is distributed

Robust (when neuron/region dies, brain rewires itself to compensate). No On/Off master
switch

Neural network

Signals are numbers passed between units

Network structure is fixed (and dense) but the learned weights allow “rewiring” during
training

Parallel (in layer) and sequential (feed forward/backward) computation

Memory is distributed (in the weights)

Redundant/robust (no single neuron can influence the output much

5
2
8
z
E
3
E
|
2
°
i
8
5
=
&
g
<
3
°
3
8
g
S
8
2
&
4]

Marina Meila

(Artificial) Neural Network (nn) unit

» For each unit /

vi = fi(x) = (> wixj + wio)
7

> Weigth vector w;
> wj; = strength of the link from unit / to input j
» w; = 0: no link
» wj; can be positive or negative
» Sometimes we call the input vector x = [xi.¢4] input units
» activation function ¢()
» must be non-linear (otherwise the unit is a linear transformation)
» wanted: monotonically increasing, differentiable, gradient non-zero !

IMore technically: ¢ can be any continuous, bounded and strictly increasing function on R.

1)

(Artificial) Neural Network (nn) unit

» For each unit /

yi = fi(x) = ¢(>_ wyxj + wio) (1)
j

> Weigth vector w;
> wj; = strength of the link from unit / to input j
» w; = 0: no link
» wj; can be positive or negative
» Sometimes we call the input vector x = [xi.¢4] input units

» activation function ¢()
» must be non-linear (otherwise the unit is a linear transformation)
» wanted: monotonically increasing, differentiable, gradient non-zero !

Notation ¢ is overloaded

»> When we talk about nn in general: ¢ is any activation function
» When we do calculations with nn: ¢ is by default the logistic function (unless specified

otherwise)

1
logistic or sigmoid function ¢(u) = Trev (2)
py

» When we do statistics or ML (but not nn): ¢ is the logistic function

» Exercise: compare fi(x) from (1) with p(x) = Pr[y = 1| x] from logistic regression.

£
5
z
8
2
K]
3
=
i
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
3
g
3
4]
=
%
2
=
5
2

IMore technically: ¢ can be any continuous, bounded and strictly increasing function on R.

£
5
z
8
2
K]
3
=
|
2
o
i
i
3
=
&
g
<
3
s
8
8
<
S
8
g
3
4]
=
%
2
=
5
2

Perceptron

* Single layer feed-forward network

[UNIVERSITY OF

%S WATERLOO

CSABWEB0 Winter 2023 - Lecture 8 - Pascal Poupart PAGE 14

Perceptron weights for OR, AND, XOR

1 SYIOMIB [EANBN — A 24M1937 0Z0Z JSIA 080/08VSD Bl euley

Two-layer Neural Networks

» We build a two-layer neural network in the following way:

Inputs Xj j=1:d

Bottom layer> u; = ¢(w;'x) i=1:m, w; €R?
Top layer f=8"u B eR™

Output f eR

In other words, the neural network implements the function

m m d
Fx) = D Biu = Y Bis(D>_ wjx;) € (—o0,00) 3)
i=1

i=1 j=1

Note that this is just a linear combination of logistic functions.
> As we will see shortly, in general, f(x) can also be non-linear

£
5
z
£
z
T
H]
=
|
=
m
g
g
g
=
g
g
]
]
<
8
g
3
S
g
g
3
8

Marina Meila

2n neural net terminology, each variable u; is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, u, y variable.

H
Z
]
2
T
H
=
i
=
)
g
8
&
=
&
g
&
5
3
8
8
g
S
8
2
3
<]
=
K3
s
14
5
=

Activation functions for the hidden layer

For the hidden layer, we have to choose

» number of units m
» activation function

Common activation functions

» Functions that approximate a step function

» threshold function (or step function) 1 for u > 0, and 0 otherwise (not used)

P logistic ¢

» hyperbolic tangent tanh, arctangent tan™
» Hinge functions

» RELU = max(u, 0)

» softplus = In(1 + €")

in practical implementations, these unbounded functions are bounded at a large value M
» Why hinge functions? Gradient is 1 or 0 (approximately), faster computation!!, and no saturation

1

Output layer options

The function from u to y is dictated by the type of predction problem.

Prediction problem Output layer f

regression linear f=p3Tu eR
binary classification logistic f=¢(B"uv) €[0,1]
multiway classification softmax fi = qSk(B[u) e [0,1]"

> Regression: linear layer as in (3) f = >, Biu;
» Classification (binary): logistic layer f(x) € [0, 1] is interpreted as the probability of the +
class.

Fx) = o[D Biui | = ¢ (D B> wix) 4)
=1 p 7

» Multiway classification with r classes

Output is vector of r functions fi,...f,

f is the probability of y = k

(sometimes f; can be a “confidence”)

This is done with a softmax layer (next page)

\AAA

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

The softmax function

> logistic ¢(z) = 1_7_%
P represents the probability that y = 1 in binary classification
> inann, f(x) = $(87 u), with u € R™ the activations of the hidden layer

» The softmax function generalizes the logistic to r classes
¢(z) : R" = (0,1)"

 fork=1 5
z) = ————,fork=1:r

#k(2) ST e (5)
3 #(z) = [$1(2) ... ¢r(2)](overload of) (6)
H
E » Properties of softmax
i > S di(z) = 1forall z
° > for z > zj, ¢i(z) — 1.
g » derivatives 22 = ¢uljk — djdx
% » in a nn, with output activations u € R™, we train r weight vectors S;.,, and
é
fi(x) = ou(Blu(x)), fork=1:r ©)

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

OPTIONAL - Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly.

> yeR, y ~ Py with
Po(y) = e®r—+® (8)

» the parameter 6 is a linear function of x € R?

0 = BTx (9)

»> We denote Ey[y] = pu. The function g(u) = 6 that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. 8) is
I(8) = InPy(y|x) = 0y —(0) where § = 87x (10)
and the gradient w.r.t. 3 is therefore
Vsl = VoIVa(8Tx) = (v — u)x (11)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]

Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let
x=xO y=xO mg=d, m =dimy (typically 1) and define the recursion:

XN = (Wj"))Tx(’*” Jforj=1l:m,l=1:L (12)
———
2()

The vector variable x(!) € R™ is the ouput of layer /| of the network. As before, the sigmoid of
the last layer may be omitted.

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

Are multiple layers necessary?

> 1990’s: NO
» 2000’s: YES
» 2020’s: The more the better!

» A theoretical result

Theorem (Cybenko,~1986)

Any continuous function from [0, l]d to R can be approximated arbitrarily closely by a linear
output, two layer neural network defined in (3) with a sufficiently large number of hidden units
m.

> A practical result

9 0BREAKTHROUGH
=221 TECHNOLOGIES 2013

Deep Learning

Deep learning = multi-layer neural net
» So, what is new?

> small variations in the “units’, e.g. switch stochastically w.p. ¢(w’ x™) (Restricted Bolzmann
Machine), Rectified Linear units

» training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this
when we talk about training predictors)

» lots of data

» double descent

£
H
Z
]
2
3
2
|
=
]
g
]
3
=
&
g
]
]
S
2
3
g
S
2
2
3
8
2
o
s
s
&
s

T.B. EDITED

1 SO [EInaN — Al 21297 9Z0T 49U 089/08VSD EIIPIN eutely

Example: Logistic regression

Training = Estimating the parameters by Max Likelihood

Problem setup

Minimizing J is maximizing /(3; D)

> Denote y. = (1 —y)/2 € {0,1}

> The likelihood of a data point is Py x(y|x) = ffef,(&))

> The log-likelihood is /(8; x, y) = y«f(x) — In(1 +)

> Log-likelihood of the data set D

10 o

i 18:D) = => 1B (x',¥") (13)
: i
é » Define the loss function
2 Liogi(B) = —1(B) (14)
§ » and the optmization criterion
; - 1 P
g JB) = Liog = = —1(Bix"y") (15)
§

Logistic regression

> loss function Ljeg
» optimization criterion J(5)

£
H
Z
]
2
3
2
]
=
A
g
8
3
=
&
g
]
]
S
2
3
g
S
2
2
3
8
2
o
s
s
&
s

Calculating the gradlent

o]
> of — Yx 1+ef

ol
This is a scalar, and sgng; =y

» We have also %(X) =

» Now, the gradient of / w.r.t the parameter vector 3 is
ol ol of 1
— = —— = (y*—i)x (16)
ap of 9B 14 e flx)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y Exercise Prove that (??) has a unique local

optimum.

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

Calculating the gradient
1

ol _ _
> of — Yx 1+ef
(o ol _
This is a scalar, and sgng; =y

» We have also %(X) =

» Now, the gradient of / w.r.t the parameter vector 3 is
ol ol of 1
— = —— = (y*—i)x (16)
ap of 9B 14 e flx)

Interpretation: The infinitezimal change of 3 to increase log-likelihood for a single data
point is along the direction of x, with the sign of y Exercise Prove that (??) has a unique local
optimum.

Algorithm STEEPEST-DESCENT FOR LOGISTIC REGRESSION

Input B° € R? initial point
For k =0,1,...
k 1 n i 1 i
1. caleulate d* = - >, (y,’ﬁ — m) NG
2. find n* by line minimization
3. /BkJrl — Bk _ ﬂkdk
until stopping condition satisfied
Dutput Bk+1

Marina Meila €S480/680 Winter 2026: Lecture IV — Neural Networks 1

Example: Backpropagation

» The Backpropagation algorithm is steepest descent for neural networks
» Consider a two layer neural network

Fx) = D> Bz = > Bio(>_ wigx) (17)
j=1 j=1 k=1

The parameters are 3 and W = [wyj]j=1:m k=1:n
» Let the loss be L;s the Least Squares loss, J(8, W) = [,_5(5, W)

Derivation of the gradient Exercise Derive this

oJ A(y' — f(x)z
aﬂJ nZ agji 22 y' = F(x))zi(x') (18)
aLis(y', f(x) 0z(x') _ 1 i i i Y i
awkj = Z el we = ;Z(zmy — F())) 561 = 7(x)) 5
¢/
= & xi(y" = f(x"))V(logistic regressor) (19)

i

In the above we used the identity ¢’ = ¢(1 — ¢) Exercise Prove it
Computational savings
> when f(x') is computed, z;j(x') are too; they should be “cached” and re-used
> the derivative of ¢ is easily obtained from the ¢ value
P Exercise The above gradient formulas can be easilty written in matrix-vector form
Backpropagatlon extends recurswely to multi-layer networks. Exercise Derive it. Exercise Calculate

e T T T o T

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

Practical properties of backpropagation

» Unlike in logistic regression, J has many local optima even for two layers and simple
problems.

» Hence, initialization is important, and there are no general rules for a good initialization.
Even if the neural network works well, we do not know if we are at the optimum.

» Saturation If Z; = Wij is large in magnitude, then z; = ¢(Z;) is near 0 or 1. In either
case, ¢'(Zj) = zj(1 — z;) = 0. We say that that this sigmoid is saturated; z; will be
virtually insensitive to changes in w;3
To avoid saturation at the beginning of the training, one initializes W with “small” (w.r.t
max ||x'||, random values. Exercise Why random and not exactly 07

» To speed up training, it is useful to standardize the input data*® x'N as a preprocessing
step. Exercise Note that theoretically shifting and rescaling the data should NOT have any effect.

» J can have plateaus, i.e. regions where VJ = 0 but that do not contain a local minimum.
Exercise What can cause plateaus? Exercise And what is bad about them?

1N

» In conclusion, training neural networks by backpropagation is an art: requires experience
with the algorithm, careful tuning, repeated restarts, and a long time.

¢
H
Z
]
2
3
2
]
2
¢
g
g
K
=
&
g
H
]
S
g
g
<
S
g
2
3
4
2
o
s
H
]
s

3or to changes in previous layers, if this is a multilayer network.
“#Standardization should NOT include the dummy coordinate x° = 1.

	A little history
	The single ``neuron''
	Two-layer Neural Networks
	Hidden layer options
	Output layer options

	Multi-layer neural networks

