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A little history

The single “neuron”

Two-layer Neural Networks
Hidden layer options
Output layer options

Multi-layer neural networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Bach Ch.: –, Deep
Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders
14.1, Dive Into Deep Learning 4.1-4.3.



M
ar
in
a
M
ei
la
|
C
S
4
8
0
/
6
8
0
W

in
te
r
2
0
2
6
:
L
ec

tu
re

IV
–
N
eu

ra
l
N
et
w
o
rk
s
1

1
/
2
7
/
2
6

3

A little history

First epoch – can computers mimic the brain?
▶ 40’s-50’s the first mathematical models of the neuron (McCullaugh & Pitts, Hebb)
▶ ’58 the perceptron (Rosenblatt)
▶ First winter ’69 “Perceptrons” (Minsky and Papert) – they can only classify linearly

separable data (and von Neumann computers steal the show)

Revival in the 80’s-’95 – let’s use layers!
▶ ’82 Hopfield associative net (contents adressable memory)
▶ ’84 Boltzmann Machine (Ackley, Hinton, Sejnowski)
▶ autoencoders
▶ ’86 backpropagation (Sejnowski, Rosenberg)
▶ Reinforcement learning (Shannon, Samuel, Barton, Sutton, Watkins, Tesauro)
▶ Second winter cca ’95 Statistical learning takes the stage, especially SVM

Current epoch cca 2005 – more data, more layers
▶ Deep learning
▶ Generative models
▶ Attention
▶ LLMs
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Brains vs. Computers

Computer (von Neumann)
▶ Electrical binary signals directed by gates
▶ Wiring is fixed
▶ Sequential and parallel computation
▶ Memory is retrieved by address
▶ Fragile (if a gate stops working, computer crashes). Also, “no friction” – a single

instruction can stop the entire machine/program.

▶ Brain
▶ Electrical signals, units=neurons
▶ Wiring is dynamic, changes with brain development, experiences, learning
▶ Parallel (and some) sequential computation
▶ Memory is distributed
▶ Robust (when neuron/region dies, brain rewires itself to compensate). No On/Off master

switch

▶ Neural network
▶ Signals are numbers passed between units
▶ Network structure is fixed (and dense) but the learned weights allow “rewiring” during

training
▶ Parallel (in layer) and sequential (feed forward/backward) computation
▶ Memory is distributed (in the weights)
▶ Redundant/robust (no single neuron can influence the output much
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(Artificial) Neural Network (nn) unit

▶ For each unit i
yi ≡ fi (x) = ϕ(

∑
j

wijxj + wi0) (1)

▶ Weigth vector wi
▶ wij = strength of the link from unit i to input j
▶ wij = 0: no link
▶ wij can be positive or negative
▶ Sometimes we call the input vector x = [x1:d ] input units

▶ activation function ϕ()
▶ must be non-linear (otherwise the unit is a linear transformation)
▶ wanted: monotonically increasing, differentiable, gradient non-zero 1

Notation ϕ is overloaded

▶ When we talk about nn in general: ϕ is any activation function
▶ When we do calculations with nn: ϕ is by default the logistic function (unless specified

otherwise)

logistic or sigmoid function ϕ(u) =
1

1 + e−u
(2)

▶ When we do statistics or ML (but not nn): ϕ is the logistic function

▶ Exercise: compare fi (x) from (1) with p(x) = Pr [y = 1 | x] from logistic regression.

1More technically: ϕ can be any continuous, bounded and strictly increasing function on R.
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Perceptron weights for OR, AND, XOR
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Two-layer Neural Networks

▶ We build a two-layer neural network in the following way:
Inputs xj j = 1 : d
Bottom layer2 ui = ϕ(wT

i x) i = 1 : m, wi ∈ Rd

Top layer f = βTu β ∈ Rm

Output f ∈ R
In other words, the neural network implements the function

f (x) =
m∑
i=1

βiui =
m∑
i=1

βiϕ(
d∑

j=1

wijxj ) ∈ (−∞,∞) (3)

Note that this is just a linear combination of logistic functions.
▶ As we will see shortly, in general, f (x) can also be non-linear

2In neural net terminology, each variable ui is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, u, y variable.
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Activation functions for the hidden layer

For the hidden layer, we have to choose

▶ number of units m
▶ activation function

Common activation functions
▶ Functions that approximate a step function

▶ threshold function (or step function) 1 for u ≥ 0, and 0 otherwise (not used)
▶ logistic ϕ
▶ hyperbolic tangent tanh, arctangent tan−1

▶ Hinge functions
▶ RELU = max(u, 0)
▶ softplus = ln(1 + eu)

in practical implementations, these unbounded functions are bounded at a large value M
▶ Why hinge functions? Gradient is 1 or 0 (approximately), faster computation!!, and no saturation
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Output layer options

The function from u to y is dictated by the type of predction problem.

Prediction problem Output layer f
regression linear f = βTu ∈ R
binary classification logistic f = ϕ(βTu) ∈ [0, 1]
multiway classification softmax fk = ϕk (β

T
k u) ∈ [0, 1]r

▶ Regression: linear layer as in (3) f =
∑

i βiui
▶ Classification (binary): logistic layer f (x) ∈ [0, 1] is interpreted as the probability of the +

class.

f (x) = ϕ

 m∑
j=1

βiui

 = ϕ

 m∑
i=1

βjϕ(
∑
j

wijxj )

 (4)

▶ Multiway classification with r classes
▶ Output is vector of r functions f1, . . . fr
▶ fk is the probability of y = k
▶ (sometimes fk can be a “confidence”)
▶ This is done with a softmax layer (next page)
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The softmax function

▶ logistic ϕ(z) = ez

1+ez

▶ represents the probability that y = 1 in binary classification
▶ in a nn, f (x) = ϕ(βT u), with u ∈ Rm the activations of the hidden layer

▶ The softmax function generalizes the logistic to r classes
ϕ(z) : Rr → (0, 1)r

ϕk (z) =
ezk∑m
j=1 e

zj
, for k = 1 : r (5)

ϕ(z) = [ϕ1(z) . . . ϕr (z) ]( overload of ϕ) (6)

▶ Properties of softmax
▶ ∑m

j=1 ϕj (z) = 1 for all z
▶ for zk ≫ zj , ϕk (z) → 1.

▶ derivatives
∂ϕj
∂zk

= ϕkδjk − ϕjϕk

▶ in a nn, with output activations u ∈ Rm, we train r weight vectors β1:r , and

fk (x) = ϕk (β
T
k u(x)), for k = 1 : r (7)
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OPTIONAL - Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly.

▶ y ∈ R, y ∼ Pθ with
Pθ(y) = eθy−ψ(θ) (8)

▶ the parameter θ is a linear function of x ∈ Rd

θ = βT x (9)

▶ We denote Eθ[y ] = µ. The function g(µ) = θ that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. β) is

l(β) = lnPθ(y |x) = θy − ψ(θ) where θ = βT x (10)

and the gradient w.r.t. β is therefore

∇β l = ∇θ l∇β(βT x) = (y − µ)x (11)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]
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Multi-layer/Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.
Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ϕ. Let
x ≡ x(0), y ≡ x(L), m0 = d ,mL = dim y (typically 1) and define the recursion:

x
(l)
j = ϕ

(w
(l)
j )T x(l−l)︸ ︷︷ ︸

z(l)

 , for j = 1 : ml , l = 1 : L (12)

The vector variable x(l) ∈ Rml is the ouput of layer l of the network. As before, the sigmoid of
the last layer may be omitted.
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Are multiple layers necessary?

▶ 1990’s: NO
▶ 2000’s: YES
▶ 2020’s: The more the better!

▶ A theoretical result

Theorem (Cybenko,≈1986)

Any continuous function from [0, 1]d to R can be approximated arbitrarily closely by a linear
output, two layer neural network defined in (3) with a sufficiently large number of hidden units
m.

▶ A practical result

Deep Learning
Deep learning = multi-layer neural net

▶ So, what is new?
▶ small variations in the “units”, e.g. switch stochastically w.p. ϕ(wT x in) (Restricted Bolzmann

Machine), Rectified Linear units
▶ training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this

when we talk about training predictors)
▶ lots of data
▶ double descent
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T.B. EDITED
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Example: Logistic regression

Training = Estimating the parameters by Max Likelihood

Problem setup
▶ Denote y∗ = (1− y)/2 ∈ {0, 1}
▶ The likelihood of a data point is PY |X (y |x) = ey∗ f (x)

1+ef (x)

▶ The log-likelihood is l(β; x , y) = y∗f (x)− ln(1 + ef (x))
▶ Log-likelihood of the data set D

l(β;D) =
1

n

n∑
i=1

l(β; (x i , y i )) (13)

▶ Define the loss function
Llogl (β) = −l(β) (14)

▶ and the optmization criterion

J(β) = L̂logl =
1

n

n∑
i=1

−l(β; x i , y i ) (15)

Minimizing J is maximizing l(β;D)
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Logistic regression

▶ loss function Llogl
▶ optimization criterion J(β)
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Calculating the gradient
▶ ∂l

∂f
= y∗ − 1

1+ef

This is a scalar, and sgn ∂l
∂f

= y

▶ We have also ∂f (x)
∂β

= x
▶ Now, the gradient of l w.r.t the parameter vector β is

∂l

∂β
=

∂l

∂f

∂f

∂β
=

(
y∗ −

1

1 + e−f (x)

)
x (16)

Interpretation: The infinitezimal change of β to increase log-likelihood for a single data
point is along the direction of x , with the sign of y Exercise Prove that (??) has a unique local

optimum.

Algorithm Steepest-Descent for Logistic Regression

Input β0 ∈ Rd initial point
For k = 0, 1, . . .

1. calculate dk = 1
n

∑n
i=1

(
y i
∗ − 1

1+e−f (xi )

)
x i

2. find ηk by line minimization
3. βk+1 → βk − ηkdk

until stopping condition satisfied
Output βk+1
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Example: Backpropagation

▶ The Backpropagation algorithm is steepest descent for neural networks
▶ Consider a two layer neural network

f (x) =
m∑
j=1

βjzj =
m∑
j=1

βjϕ(
n∑

k=1

wkjxk ) (17)

The parameters are β and W = [wkj ]j=1:m,k=1:n

▶ Let the loss be LLS the Least Squares loss, J(β,W ) = L̂LS (β,W )

Derivation of the gradient Exercise Derive this

∂J

∂βj
=

1

n

∑
i

∂(y i − f (x i ))2

∂βj
=

1

n

∑
i

2(y i − f (x i ))zj (x
i ) (18)

∂J

∂wkj
=

1

n

∑
i

∂LLS (y
i , f (x i ))

∂zj (x i )

∂zj (x
i )

∂wkj
=

1

n

∑
i

(
2βk (y

i − f (x i ))
)
zj (x

i )(1− zj (x
i ))︸ ︷︷ ︸

ϕ′

x ik

=
βk

n

∑
i

x ik (y
i − f (x i ))∇(logistic regressor) (19)

In the above we used the identity ϕ′ = ϕ(1− ϕ) Exercise Prove it

Computational savings
▶ when f (x i ) is computed, zj (x

i ) are too; they should be “cached” and re-used
▶ the derivative of ϕ is easily obtained from the ϕ value
▶ Exercise The above gradient formulas can be easilty written in matrix-vector form

Backpropagation extends recursively to multi-layer networks. Exercise Derive it. Exercise Calculate

the gradient for the 2 layer neural network with logistic output.
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Practical properties of backpropagation

▶ Unlike in logistic regression, J has many local optima even for two layers and simple
problems.

▶ Hence, initialization is important, and there are no general rules for a good initialization.
Even if the neural network works well, we do not know if we are at the optimum.

▶ Saturation If z̃j = wT
j x is large in magnitude, then zj = ϕ(z̃j ) is near 0 or 1. In either

case, ϕ′(z̃j ) = zj (1− zj ) ≈ 0. We say that that this sigmoid is saturated; zj will be
virtually insensitive to changes in wj

3

To avoid saturation at the beginning of the training, one initializes W with “small” (w.r.t
max ||x i ||, random values. Exercise Why random and not exactly 0?

▶ To speed up training, it is useful to standardize the input data4 x1:N as a preprocessing
step. Exercise Note that theoretically shifting and rescaling the data should NOT have any effect.

▶ J can have plateaus, i.e. regions where ∇J ≈ 0 but that do not contain a local minimum.
Exercise What can cause plateaus? Exercise And what is bad about them?

▶ In conclusion, training neural networks by backpropagation is an art: requires experience
with the algorithm, careful tuning, repeated restarts, and a long time.

3or to changes in previous layers, if this is a multilayer network.
4Standardization should NOT include the dummy coordinate x0 ≡ 1.
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