

CS 480/680 Tutorial 2 - Stats and Probability Review

Jan 23, 2026
Gavin Deane

Exercise 1: Conditional Probability and Bayes' Rule

We review conditional probability and Bayes' rule through a medical testing example.

A person may or may not have a certain disease, and a diagnostic test is used to detect it. The test is imperfect.

We define the following random variables:

- $x \in \{0, 1\}$ represents the disease status:
 - $x = 0$: the person does *not* have the disease
 - $x = 1$: the person *has* the disease
- $y \in \{0, 1\}$ represents the test outcome:
 - $y = 0$: the test result is *negative*
 - $y = 1$: the test result is *positive*

The test has the following known properties:

- $P(y = 0 | x = 0) = 0.90$
- $P(y = 1 | x = 1) = 0.99$

For each of the following cases, compute the posterior probability

$$P(x = 1 | y = 1),$$

that is, the probability that the person has the disease given that the test result is positive.

- (a) $P(x = 1) = 10^{-3}$
- (b) $P(x = 1) = 10^{-2}$
- (c) $P(x = 1) = 10^{-1}$

Exercise 2: Likelihood and Log-Likelihood

In this exercise, we review the concepts of likelihood and log-likelihood for common probability distributions used in machine learning.

Exercise 2(a): Coin Flip Model

Let x_1, x_2, \dots, x_n be independent and identically distributed (i.i.d.) random variables such that

$$x_i \sim \text{Bernoulli}(p),$$

where $x_i \in \{0, 1\}$ and $p \in (0, 1)$ is an unknown parameter.

- (i) Write down the likelihood function $P(x_{1:n} | p)$.
- (ii) Derive the log-likelihood function $\log P(x_{1:n} | p)$.
- (iii) Express the log-likelihood in terms of the total number of observed successes ($x_i = 1$ means success) $\sum_{i=1}^n x_i$.

Exercise 2(b): Gaussian Model

Let x_1, x_2, \dots, x_n be independent and identically distributed random variables such that

$$x_i \sim \mathcal{N}(\mu, \sigma^2),$$

where $\mu \in \mathbb{R}$ is the mean and $\sigma^2 > 0$ is the variance.

- (i) Write down the likelihood function $P(x_{1:n} | \mu, \sigma^2)$.
- (ii) Derive the log-likelihood function $\log P(x_{1:n} | \mu, \sigma^2)$.
- (iii) Identify which terms of the log-likelihood depend on μ .

Exercise 3: Squared Error Minimization

Consider the following optimization problem:

$$\min_{a \in \mathbb{R}} \sum_{i=1}^n (x^i - a)^2,$$

where x^1, x^2, \dots, x^n are real-valued data points.

- (i) Compute the value of a that minimizes the objective.
- (ii) Interpret the solution in terms of the given data.
- (iii) Briefly explain how this optimization problem relates to parameter estimation in probabilistic models.

Optional Exercise: Central Limit Theorem

Let x_1, x_2, \dots, x_n be independent and identically distributed random variables with finite mean and variance.

- (i) State the Central Limit Theorem in your own words.
- (ii) Explain why the Central Limit Theorem helps justify the use of Gaussian models in machine learning.