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= e%. di)’((ax)



The Chain Rule: Definition

Given a composite function y = f(g(x)), let u = g(x). The
derivative of y with respect to x is:

dy dy du

dx du dx
In prime notation, this is expressed as:

(fog)(x)="f(g(x)-&'(x)

Note: This rule allows us to decompose complex gradients into a product
of simpler local derivatives.



Exercises

Find the derivative f/(x) for the following functions:

1. f(x) = (x — a)?
2. f(x) = (g(x) — a)
3. f(x) =In(g(x))



What is a Vector?

A vector x € RY is an ordered list of d real numbers.
> In ML, we typically represent vectors as column vectors:

X1
X2
X =

Xd

» Geometric View: A point in d-dimensional space or an arrow
from the origin (0,...,0) to that point.

» Data View: A feature vector representing one sample (e.g.,
X] = age, xp = income).



A norm ||x|| measures the “length” or “size” of a vector.

1. Ly Norm (Manhattan): Sum of absolute values.
Ixlls = I
i=1

2. Ly Norm (Euclidean): Standard distance from origin.

3. Lo Norm (Max): The largest absolute component.

Il = ma |5



Dot Product and Orthogonality

» Dot Product: For x,y € RY, the dot product is:

d
xTy = 3" xiyi = |Ix|l2llyl|2 cos 6
=1

» Orthogonality: Two vectors are orthogonal (x L y) if:
xy=0

This means they are perpendicular to each other (6 = 90°).



Hyperplanes

A hyperplane in R? is a set of points defined by:
H={x:w'x=b}

where w € R? is the normal vector (perpendicular to the plane)
and b € R is the bias.

Key Properties:
» If b =0, the hyperplane passes through the origin.
> If b= 0, the hyperplane is shifted away from the origin.

» The vector w determines the orientation of the hyperplane.



Halfspaces

A hyperplane divides the space R? into two halfspaces.

An closed halfspace is defined as:

S={x:w'x> b}

» In Machine Learning, we often use this for binary
classification:
» Class1: wx—b>0
> Class2: w'x— b <0

T

» The hyperplane w' x = b acts as the decision boundary.



What is a Matrix?

A matrix A € R™*" is a rectangular array of real numbers with m
rows and n columns:

alil ap ... din

dni ano e don
A=

dmli adm2 ... dmn

In Machine Learning:
» Often, a matrix represents a dataset X € R4 where:

> Each row x;' is a data sample (e.g., one person).
» Each column is a feature (e.g., height, weight).

. AT T_ .
> Transpose: A" swaps rows and columns (a; = aji).



Matrix-Vector Product

Given A € R™" and x € R", the product y = Ax results in
y € R™.

Two ways to view the product:

1. Row View: Each y; is the dot product of the i-th row of A
with x:

i = a,-T,x

)

2. Column View (Linear Combination): y is a weighted sum
of the columns of A:

Ax = Xx1a.1 +Xxea.2 + -+ Xpa. p

This view is crucial for understanding concepts like span and column
space.



Matrix-Matrix Product

Given A € R™*" and B € R"*P, their product C = AB is an
m X p matrix.

The element at row / and column j is:
n
cj =Y aibi
k=1

Important Properties:

» Dimension Match: Inner dimensions must agree:
(mx n) x (nxp).

» Non-commutative: In general, AB # BA.
> Associative: A(BC) = (AB)C.
» Distributive: A(B+ C) = AB + AC.



The Gradient

For a scalar-valued function f : RY — R, the gradient Vf(x) is
the vector of all first-order partial derivatives:

of

or
ot
Vf(x)= | 72| e rd
of
Oxy
Key Intuitions:
» The gradient points in the direction of the steepest ascent.

» In ML, we use —Vf(x) to perform Gradient Descent.



The Jacobian

When we have a vector-valued function f : R” — R™, its derivative
is represented by the Jacobian matrix J € R™*":

of of,

o [Pe o B
X | o O
oxy OXn

» The i-th row of the Jacobian is the transpose of the gradient
of the i-th component function: Vf(x)".

» It describes how every component of the output changes with
respect to every component of the input.



The Hessian matrix V2f(x) contains the second-order partial
derivatives of a scalar function f : RY — R:
ir; O%f
Ox: Ox10x2
2 1
of oy | o
aX,' 8XJ Ox20x1 8)(22

Hyj =

» Symmetry: If the second derivatives are continuous, H is
symmetric (H=HT).

» Curvature: While the gradient tells us the direction of slope,
the Hessian tells us the curvature (how the slope is
changing).



Multivariate Chain Rule

Suppose y = g(x) and z = f(y). To find the derivative of the
composition f(g(x)) with respect to x:

In Matrix Form:
0z B 0z @

ﬁ_ﬁy'ax

» This is a matrix multiplication of two Jacobians!

» Dimensions: If x € R",y € R¥,z € R™, then:
JCOITIp - Jf X Jg
—— =

~—
mxn mxk  kxn

» This is exactly how Backpropagation works in Deep
Learning.
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Multivariate Chain Rule: Exercise 1

Problem: Find V£ (x) for f(x) = ||Ax — b||3, where A € R™*" and
beR™.

Solution: Let u= Ax —b. Then f = |[ul3 =u'u.

» By the chain rule: Vyf = (%)Tvuf
> We know: Vyu(u'u) = 2u and % =A

Substituting these back in:

Vf(x) = AT (2u)
=2AT(Ax —b)



Multivariate Chain Rule: Exercise 2
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Multivariate Chain Rule: Exercise 2

_IxI3

Problem: Find Vf(x) for f(x) =e™ 2 .

Solution: Let g(x) = —3||x/[3 = —3x'x. Then f = es().
» We know from scalar calculus: %eg = 8.
» We know from vector calculus: Vy (—%xTx) = —X.

Applying the chain rule:



A subspace V of R" is a subset that is closed under linear
combinations. For any u,v € V and ¢, d € R:

cu+dveV

Key Properties:
» Every subspace must contain the zero vector 0.
» Common examples: A line or a plane passing through the
origin.
» The span of a set of vectors {vi,..., vk} is the smallest
subspace containing them.



Basis and Orthogonal Basis

A basis for a subspace V is a set of vectors {bq,...,by} that:
1. Are linearly independent.

2. Span the subspace V.

Orthogonal and Orthonormal Basis:

» Orthogonal Basis: A basis where every pair of vectors is
orthogonal (b, b; = 0 for i # j).

» Orthonormal Basis: An orthogonal basis where every vector
has unit length (||bj|l2 = 1).

Why it matters: Any vector v € V can be uniquely written as:
v = c1by + coboy + -+ - + by

If the basis is orthonormal, the coefficients are simple dot products:
T
Ci=V b,'.



Orthogonal Matrices

A square matrix @ € R"™" is orthogonal if its columns are
orthonormal:

QTQ=QQ" =1
This implies Q! = QT.
Properties:
» Preserves Length: ||Qx||2 = [|x||2 for any vector x.

> Preserves Angles: (Qx)'(Qy) =x'y.

» Geometry: Geometrically, multiplying by Q represents a
rotation or reflection of the coordinate system.



Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose:

A=AT or a;=a;

Common Examples in ML:
» Covariance Matrix: ¥ = E[(x — u)(x — p) "], which
describes the spread of data.

» Hessian Matrix: H, the matrix of second-order partial
derivatives (as discussed).



Positive (Semi-)Definite Matrices

A symmetric matrix A € R"*" is Positive Semi-Definite (PSD),
denoted A > 0, if for all x € R™

x " Ax >0

It is Positive Definite (PD), denoted A > 0, if x" Ax > 0 for all
x # 0.
Why this matters for ML:

» Convexity: If the Hessian of a function is PSD everywhere,
the function is convex.

» Local Minima: At a critical point (Vf = 0), if the Hessian is
PD, the point is a strict local minimum.

» Variance: Covariance matrices are always PSD.



Eigenvalues and Eigenvectors

For a square matrix A € R"*", a non-zero vector v is an
eigenvector if:

Av = dv
where A € R (or C) is the corresponding eigenvalue.

Intuition:
» Multiplying v by A only scales the vector; it does not change
its direction.
» The eigenvalue A tells us the scaling factor.



Symmetric Matrices: Spectral Theorem

Symmetric matrices (A = AT) have special properties that are
fundamental to Machine Learning:

1. Real Eigenvalues: All eigenvalues A1,..., A\, are real
numbers (\; € R).
2. Orthogonal Eigenvectors: Eigenvectors corresponding to
distinct eigenvalues are orthogonal.
» We can always find an orthonormal basis of eigenvectors for
R".

Eigendecomposition: Every symmetric matrix can be factored as:
A=QAQ"T

where @ is an orthogonal matrix of eigenvectors and A is a
diagonal matrix of eigenvalues.



Eigenvalues and Definiteness

We can characterize the definiteness of a symmetric matrix A
entirely by its eigenvalues:

» Positive Definite (A - 0): All A\; > 0.
» Positive Semi-Definite (A = 0): All \; > 0.

» Indefinite: Has both positive and negative eigenvalues.
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Exercise: Eigenvalues of AB and BA

Problem: Let A€ R™*" and B € R™™.If A # 0 is an eigenvalue
of AB, prove that it is also an eigenvalue of BA.

Proof: By definition, if A is an eigenvalue of AB, there exists a
non-zero eigenvector v € R such that:

(AB)v = \v (1)
Multiply both sides on the left by B:

B(AB)v = B(\v) = (BA)(Bv) = A(Bv) (2)

Observe that Bv # 0 (why?)



