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Quiz Review

Problem: Compute the derivative of f (x) = eax , where a ∈ R.

Solution: Using the property d
du e

u = eu and the chain rule:

f ′(x) =
d

dx
(eax)

= eax · d

dx
(ax)

= a · eax
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The Chain Rule: Definition

Given a composite function y = f (g(x)), let u = g(x). The
derivative of y with respect to x is:

dy

dx
=

dy

du
· du
dx

In prime notation, this is expressed as:

(f ◦ g)′(x) = f ′(g(x)) · g ′(x)

Note: This rule allows us to decompose complex gradients into a product
of simpler local derivatives.



Exercises

Find the derivative f ′(x) for the following functions:

1. f (x) = (x − a)2

2. f (x) = (g(x)− a)2

3. f (x) = ln(g(x))

4. f (x) = e−
x2

2



What is a Vector?

A vector x ∈ Rd is an ordered list of d real numbers.

▶ In ML, we typically represent vectors as column vectors:

x =


x1
x2
...
xd


▶ Geometric View: A point in d-dimensional space or an arrow

from the origin (0, . . . , 0) to that point.

▶ Data View: A feature vector representing one sample (e.g.,
x1 = age, x2 = income).



Vector Norms

A norm ∥x∥ measures the “length” or “size” of a vector.

1. L1 Norm (Manhattan): Sum of absolute values.

∥x∥1 =
d∑

i=1

|xi |

2. L2 Norm (Euclidean): Standard distance from origin.

∥x∥2 =

√√√√ d∑
i=1

x2i =
√
x⊤x

3. L∞ Norm (Max): The largest absolute component.

∥x∥∞ = max
i

|xi |



Dot Product and Orthogonality

▶ Dot Product: For x, y ∈ Rd , the dot product is:

x⊤y =
d∑

i=1

xiyi = ∥x∥2∥y∥2 cos θ

▶ Orthogonality: Two vectors are orthogonal (x ⊥ y) if:

x⊤y = 0

This means they are perpendicular to each other (θ = 90◦).



Hyperplanes

A hyperplane in Rd is a set of points defined by:

H = {x : w⊤x = b}

where w ∈ Rd is the normal vector (perpendicular to the plane)
and b ∈ R is the bias.

Key Properties:

▶ If b = 0, the hyperplane passes through the origin.

▶ If b ̸= 0, the hyperplane is shifted away from the origin.

▶ The vector w determines the orientation of the hyperplane.



Halfspaces

A hyperplane divides the space Rd into two halfspaces.

An closed halfspace is defined as:

S = {x : w⊤x ≥ b}

▶ In Machine Learning, we often use this for binary
classification:
▶ Class 1: w⊤x− b ≥ 0
▶ Class 2: w⊤x− b < 0

▶ The hyperplane w⊤x = b acts as the decision boundary.



What is a Matrix?

A matrix A ∈ Rm×n is a rectangular array of real numbers with m
rows and n columns:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


In Machine Learning:
▶ Often, a matrix represents a dataset X ∈ Rn×d , where:

▶ Each row x⊤i is a data sample (e.g., one person).
▶ Each column is a feature (e.g., height, weight).

▶ Transpose: A⊤ swaps rows and columns (a⊤ij = aji ).



Matrix-Vector Product

Given A ∈ Rm×n and x ∈ Rn, the product y = Ax results in
y ∈ Rm.

Two ways to view the product:

1. Row View: Each yi is the dot product of the i-th row of A
with x:

yi = a⊤i ,·x

2. Column View (Linear Combination): y is a weighted sum
of the columns of A:

Ax = x1a·,1 + x2a·,2 + · · ·+ xna·,n

This view is crucial for understanding concepts like span and column
space.



Matrix-Matrix Product

Given A ∈ Rm×n and B ∈ Rn×p, their product C = AB is an
m × p matrix.

The element at row i and column j is:

cij =
n∑

k=1

aikbkj

Important Properties:

▶ Dimension Match: Inner dimensions must agree:
(m × n)× (n × p).

▶ Non-commutative: In general, AB ̸= BA.

▶ Associative: A(BC ) = (AB)C .

▶ Distributive: A(B + C ) = AB + AC .



The Gradient

For a scalar-valued function f : Rd → R, the gradient ∇f (x) is
the vector of all first-order partial derivatives:

∇f (x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xd

 ∈ Rd

Key Intuitions:

▶ The gradient points in the direction of the steepest ascent.

▶ In ML, we use −∇f (x) to perform Gradient Descent.



The Jacobian

When we have a vector-valued function f : Rn → Rm, its derivative
is represented by the Jacobian matrix J ∈ Rm×n:

J =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn


▶ The i-th row of the Jacobian is the transpose of the gradient

of the i-th component function: ∇fi (x)
⊤.

▶ It describes how every component of the output changes with
respect to every component of the input.



The Hessian

The Hessian matrix ∇2f (x) contains the second-order partial
derivatives of a scalar function f : Rd → R:

Hij =
∂2f

∂xi∂xj
=⇒ H =


∂2f
∂x21

∂2f
∂x1∂x2

. . .

∂2f
∂x2∂x1

∂2f
∂x22

. . .

...
...

. . .


▶ Symmetry: If the second derivatives are continuous, H is

symmetric (H = H⊤).

▶ Curvature: While the gradient tells us the direction of slope,
the Hessian tells us the curvature (how the slope is
changing).



Multivariate Chain Rule

Suppose y = g(x) and z = f(y). To find the derivative of the
composition f(g(x)) with respect to x:

In Matrix Form:
∂z

∂x
=

∂z

∂y
· ∂y
∂x

▶ This is a matrix multiplication of two Jacobians!

▶ Dimensions: If x ∈ Rn, y ∈ Rk , z ∈ Rm, then:

Jcomp︸ ︷︷ ︸
m×n

= Jf︸︷︷︸
m×k

× Jg︸︷︷︸
k×n

▶ This is exactly how Backpropagation works in Deep
Learning.



Multivariate Chain Rule: Exercise 1

Problem: Find ∇f (x) for f (x) = ∥Ax− b∥22, where A ∈ Rm×n and
b ∈ Rm.

Solution: Let u = Ax− b. Then f = ∥u∥22 = u⊤u.

▶ By the chain rule: ∇xf =
(
∂u
∂x

)⊤∇uf

▶ We know: ∇u(u⊤u) = 2u and ∂u
∂x = A

Substituting these back in:

∇f (x) = A⊤(2u)

= 2A⊤(Ax− b)
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Multivariate Chain Rule: Exercise 2

Problem: Find ∇f (x) for f (x) = e−
∥x∥22
2 .

Solution: Let g(x) = −1
2∥x∥

2
2 = −1

2x
⊤x. Then f = eg(x).

▶ We know from scalar calculus: d
dg e

g = eg .

▶ We know from vector calculus: ∇x

(
−1

2x
⊤x

)
= −x.

Applying the chain rule:

∇f (x) = eg(x) · ∇xg(x)

= e−
∥x∥22
2 · (−x)

= −xe−
∥x∥22
2
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Subspaces

A subspace V of Rn is a subset that is closed under linear
combinations. For any u, v ∈ V and c, d ∈ R:

cu+ dv ∈ V

Key Properties:

▶ Every subspace must contain the zero vector 0.

▶ Common examples: A line or a plane passing through the
origin.

▶ The span of a set of vectors {v1, . . . , vk} is the smallest
subspace containing them.



Basis and Orthogonal Basis

A basis for a subspace V is a set of vectors {b1, . . . ,bk} that:

1. Are linearly independent.

2. Span the subspace V.

Orthogonal and Orthonormal Basis:

▶ Orthogonal Basis: A basis where every pair of vectors is
orthogonal (b⊤i bj = 0 for i ̸= j).

▶ Orthonormal Basis: An orthogonal basis where every vector
has unit length (∥bi∥2 = 1).

Why it matters: Any vector v ∈ V can be uniquely written as:

v = c1b1 + c2b2 + · · ·+ ckbk

If the basis is orthonormal, the coefficients are simple dot products:
ci = v⊤bi .



Orthogonal Matrices

A square matrix Q ∈ Rn×n is orthogonal if its columns are
orthonormal:

Q⊤Q = QQ⊤ = I

This implies Q−1 = Q⊤.

Properties:

▶ Preserves Length: ∥Qx∥2 = ∥x∥2 for any vector x.

▶ Preserves Angles: (Qx)⊤(Qy) = x⊤y.

▶ Geometry: Geometrically, multiplying by Q represents a
rotation or reflection of the coordinate system.



Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose:

A = A⊤ or aij = aji

Common Examples in ML:

▶ Covariance Matrix: Σ = E[(x− µ)(x− µ)⊤], which
describes the spread of data.

▶ Hessian Matrix: H, the matrix of second-order partial
derivatives (as discussed).



Positive (Semi-)Definite Matrices

A symmetric matrix A ∈ Rn×n is Positive Semi-Definite (PSD),
denoted A ⪰ 0, if for all x ∈ Rn:

x⊤Ax ≥ 0

It is Positive Definite (PD), denoted A ≻ 0, if x⊤Ax > 0 for all
x ̸= 0.

Why this matters for ML:

▶ Convexity: If the Hessian of a function is PSD everywhere,
the function is convex.

▶ Local Minima: At a critical point (∇f = 0), if the Hessian is
PD, the point is a strict local minimum.

▶ Variance: Covariance matrices are always PSD.



Eigenvalues and Eigenvectors

For a square matrix A ∈ Rn×n, a non-zero vector v is an
eigenvector if:

Av = λv

where λ ∈ R (or C) is the corresponding eigenvalue.

Intuition:

▶ Multiplying v by A only scales the vector; it does not change
its direction.

▶ The eigenvalue λ tells us the scaling factor.



Symmetric Matrices: Spectral Theorem

Symmetric matrices (A = A⊤) have special properties that are
fundamental to Machine Learning:

1. Real Eigenvalues: All eigenvalues λ1, . . . , λn are real
numbers (λi ∈ R).

2. Orthogonal Eigenvectors: Eigenvectors corresponding to
distinct eigenvalues are orthogonal.
▶ We can always find an orthonormal basis of eigenvectors for

Rn.

Eigendecomposition: Every symmetric matrix can be factored as:

A = QΛQ⊤

where Q is an orthogonal matrix of eigenvectors and Λ is a
diagonal matrix of eigenvalues.



Eigenvalues and Definiteness

We can characterize the definiteness of a symmetric matrix A
entirely by its eigenvalues:

▶ Positive Definite (A ≻ 0): All λi > 0.

▶ Positive Semi-Definite (A ⪰ 0): All λi ≥ 0.

▶ Indefinite: Has both positive and negative eigenvalues.



Exercise: Eigenvalues of AB and BA

Problem: Let A ∈ Rm×n and B ∈ Rn×m. If λ ̸= 0 is an eigenvalue
of AB, prove that it is also an eigenvalue of BA.

Proof: By definition, if λ is an eigenvalue of AB, there exists a
non-zero eigenvector v ∈ Rm such that:

(AB)v = λv (1)

Multiply both sides on the left by B:

B(AB)v = B(λv) =⇒ (BA)(Bv) = λ(Bv) (2)

Observe that Bv ̸= 0 (why?)
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