
 

CS483   Assignment #1   

Molecular Visualization and Python 
Due date:  Thursday Jan. 22 at the start of class.   
Hand in on Tuesday Jan. 20 for 5 bonus marks. 

 

General Notes for this and Future Assignments: 

Chimera will be used as a “workbench” for the various assignments in the course.  The primary purpose 

of the Chimera application is to display macromolecules in a way that illustrates various features of 

molecular structure and its relation to biological activity.  There are three ways for users to interact with 

the structure being displayed: 

1. using menu invocations,  

2. typing commands into the command line text box at the bottom of the Chimera window (use 

menu item: Favorites/Command Line), 

3. executing a Python script (start with menu item: Tools/General Controls/IDLE). 

For now, you should assume that all Chimera related questions will require menu invocations and/or 

Python scripts.  You will only use the command line facilities to change the display when execution of a 

Python script cannot accomplish the needed change in the display.  For example, it is recommended that 

your script will set the background colour to white.  This will save printer ink when you print out images 

of the molecular display.  Since your script will typically need to start with a blank display you will also 

want to close the previous session.  This can be done using File/Close Session in the Chimera window.  

However, both the closing of the previous session (if there was one) and the setting of the background can 

be done using the following code which should be at the start of any script: 

import chimera 

from chimera import runCommand 

runCommand(“close session; set bgColor white”) 

 

Handing in assignments: Answers to various questions, well documented Python scripts, and graphics 

(which need not be in colour) should be submitted in paper form so that the TA can provide feedback.  In 

addition to this, each assignment will require that you email the following files to the TA so that they 

can be run or viewed by the TA: 



 any Python script that is part of the answer (send the script via email so that it can be 

executed by the TA, and submit a duplicate of the script as hardcopy so that the TA can 

comment on the script), [Be sure to provide appropriate documentation with the 

script] 

 session files specified by a question, 

 occasionally, a .png colour graphics file will be required if a session file cannot provide 

the needed colour display. 

Students should take care to properly identify all submitted files so that the TA can properly relate any 

file to the appropriate question. 

Purpose of this assignment: 

 Work with macromolecular visualization tools (as a preparatory step you should get familiar with the 

Chimera application and the documentation that is available).  

 Use a Python script that will generate molecular models and then modify their visual display. 

 

Marks:  

1:[5 exercises: 5* 3 = 15],  2:[5],    3:[parts (a) & (b) 7 + 8  = 15],  4:[script: 12 + output: 4 = 16],  5:[script for (a): 

12 + output for (a): 4 + script for (b): 12 + output for (b): 4 = 32].   

The assignment will be marked out of 80.   

 “Warm up” Questions 

1) Do Exercise 1 from Chapter 1 of the text (Section 1.5):  Answers should be submitted as Session 

files (.py).  Send them as email attachments to the TA.  It is expected that all displays will be in 

colour. 

2) Do Exercise 3 from Chapter 1 of the text (Section 1.5).  Include a list of the amino acid names shown 

in the figure. 

Python Scripts 
 

3) Two simple Python scripts: 

(a) Listing residue hydrophobicity values: Get a Python Shell and use it to get a new window in which 

you will write a Python script.  The script should read a PDB file when given the PDB ID of a protein 

(the ID can be a parameter string in the program).  The script should fetch the PDB file and then print (to 

the shell window) a table with a single row for each standard residue in the protein.  A standard residue 

is one of the 20 residues that are typically found in a protein.  Each line should contain the residue type, 

followed by the residue position and chain identifier (the latter two entries separated by a period).  A 

final column should print out the Kyte-Doolittle hydrophobicity for that residue (note that this is an 

attribute for a residue object).  Here is the first output line for the protein with PDB ID = 1QU9: 

 
             SER   2.A  -0.8 

 

Notes: 

 You should use Python output formats to get a consistent format for the lines of output.  

 If “residues” have type “HOH” or if they correspond to ligands then they should be ignored in 

this printout. 



 Some observations related to 1QU9: If you look at the sequence for this protein, you will see that 

it starts with MET, but there are no atom coordinates for this MET residue.  Consequently, it is 

not in the residues list for the protein and your output will start with SER.  
 

 

(b) Colour residues using hydrophobicity values: Chimera has various formats to specify colours in a 

display. See the discussion about color_name at the webpage: 

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/color.html.  One of the formats for specifying a 

colour is by means of an RGB tuple where RGB is an acronym for Red Green Blue.  Here are some 

sample colours and their RGB specifications: 

 

white  (1.000, 1.000, 1.000) 

dodger blue (0.118, 0.565, 1.000) 

orange red (1.000, 0.271, 0.000) 

 

For this exercise you should write a Python function with definition header: 
def residueKDcolour(r) 

where r is a residue object.  The function should return a tuple that specifies a colour corresponding to 

the Kyte-Doolittle hydrophobicity for that residue.  If you consult the webpage at: 

https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/hydrophob.html 

you will notice that kdHydrophobicity ranges from 4.5 (most hydrophobic) down to -4.5 (least 

hydrophobic, in fact, most hydrophilic).  Here are the rules for generation of the color tuple: 
 

 kdHydrophobicity equal to 0.0 should correspond to the color white with a tuple value of (1.000, 

1.000, 1.000). 

 kdHydrophobicity equal to 4.5 should correspond to the color orange red with a tuple value of 

(1.000, 0.271, 0.000). 

 kdHydrophobicity equal to -4.5 should correspond to the color dodge blue with a tuple value of 

(0.118, 0.565, 1.000). 

 kdHydrophobicity in the interval (0.0, 4.5) should produce a colour that is intermediate between 

white and  orange red, in other words,   it should be a linear interpolation between (1.000, 1.000, 

1.000) and (1.000, 0.271, 0.000). 

 kdHydrophobicity in the interval (-4.5, 0.0) should produce a colour that is intermediate between 

dodger blue and  white, in other words,   it should be a linear interpolation between  (0.118, 0.565, 

1.000) and (1.000, 1.000, 1.000).  

 
 

Note: In Python tuples cannot be used like vectors but it is easy to convert tuples to arrays and arrays back 

to tuples.  The array class can be imported from numpy.  

 

To test your function, you will write a mainline script that uses the raw_input function to get a four 

character PDB ID from the user.  Your script will use this string in the 

chimera.openModels.open function call to fetch the protein file.  Then go through all the 

residues in the protein and change the colour of each residue in the display.  The colour is to be derived 

from the residueKDcolour function.  The colour of a residue can be changed by using a 

runCommand invocation. Consider the execution of 

 
runCommand(“color 0.00,1.00,0.00 #0:5”) 

 

This statement will change the colour of the residue at position 5 in model 0 to green.  Notice that the 

colour tuple does not use brackets and there are no spaces among the 3 numbers.  Note also that 5 is the 

position and not the index of the residue.  In the loop that progresses through the residues, your script 

should generate the character string that is used as input for runCommand.  During execution of the 

script you should see all the colour changes being made. 

 

http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/color.html
https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/midas/hydrophob.html


To check whether your script has generated the correct colours you can use raw_input to ask the user for 

permission to execute the final statement which will be: 

 
runCommand("surface") 

 

Chimera will generate a surface around the protein and the colours of the surface will be inherited from 

the colours that you have given the residues.  In another Chimera window you can use the menus to 

fetch the same protein and then invoke the menu item: Presets/Interactive 3 (hydrophobicity surface).  
Your surface should look the same as this surface. So, your program will duplicate existing Chimera 

functionality but it will give you some practise in Python programming and it can provide starting code 

if you want to colour a surface using some other residue property that is different from hydrophobicity. 

 

Test your final script on the protein with PDB ID 1MBN.  This is sperm whale myoglobin.  If your 

surface colours are correct you will see that the porphyrin ring is embedded in binding site that is very 

hydrophobic. 

 

 

4) Cysteine bridges: It is very common in Structural Bioinformatics to simply collect statistics related 

to some protein property or functionality.  Write a script that starts by reading a text file containing a 

list of PDB identifiers each with a chain ID suffix.  The first line in the input file will contain some 

descriptive text that identifies the content for the user and should be printed out by the script just 

before the output described below (it is otherwise ignored).  Here is a short sample file: 

 
 Venoms 

1F8UB 

1A3FA 

1ND1A 

4E0VA 

1POBA 

1POCA 

1WQ8A 

3GBOA 

3C05A 

3C05B 

1FCQA 

1BQYA 

1ATLA 

1SEGA 

1KUGA 

1FASA 

1QNXA 

4AEIA 

1XT3A 

2F9RA 

1NXBA 

1DTXA 

1UOSA 

1UOSB 

2H8UA 

1ANSA 

3VC0A 
 

Use the following statements to get the path name of the input file: 



 
import tkFileDialog 

filePathName = tkFileDialog.askopenfilename() 

 

While reading this file the script should fetch each protein and then process the residues in the indicated 

chain.  When all the chains have been accessed and processed the script should print out the following 

information using an output format of your own choosing (making sure that all the output is properly 

described). 

 

 Total number of protein chains processed. 

 Total number of standard residues processed in the specified chains. 

 Percentage of the chains containing at least one CYS residue. 

 Percentage of the chains containing at least one CYS residue that is involved in the formation of a 

disulphide bridge. 

 Percentage of the chains containing at least one CYS residue that is involved in the formation of a 

disulphide bridge AND at least one other CYS residue that is not involved in a disulphide bridge. 

 Percentage of residues (considering all the chains) that are CYS residues. 

 Percentage of residues (considering all the chains) that are CYS residues involved in the formation 

of a disulphide bridge. 

 

When printing a percentage use only 2 decimal places of accuracy (%6.2f). 

 

 Run the script using the first 1000 entries from PDBselect. (http://bioinfo.mni.th-mh.de/pdbselect/) which I 

have extracted and set up in the data file PDBselect1000.  During debugging of your code you might 

want to deal with a much smaller input file.  Caution: it will take quite a lot of time to fetch these files… 

 

Run the script again on the list of venoms presented above and note the increase in the percentage of 

disulphide bridging.  This is typical of animal venoms which are usually small proteins that use cysteine 

bridges to enhance both their stability and the rigidity of a particular conformational shape. The last entry 

3VC0 is a venom protein that comes from the Inland Taipan found in Australia 

(http://en.wikipedia.org/wiki/Inland_taipan).  Its neurotoxin venom is estimated to be 50 times more 

powerful than cobra venom and typically causes a very quick death. 

 

5) Side chain H-bonds:   

a) You can use Chimera to display hydrogen bonds.  For example, after fetching the PDB file 1RKI 

you can use the menu invocation: Tools/Structure Analysis/FindHBond to get a dialog 

window that allows you generate the display of all the hydrogen bonds.  To simplify the display, 

you should perform Select/Residue/all nonstandard followed by Actions/AtomsBonds/delete 

to eliminate hydrogen bonds involving water molecules and various ligands.  You will see 

several hydrogen bonds that are responsible for the formation of secondary structure (both 

helices and beta sheets).  If you invoke the menu item Actions/AtomsBonds/show you will 

notice that there are several other hydrogen bonds that involve atoms in the side chains (not in 

the back bone).   

 

Python statements to get hydrogen bonds is fairly easy.  Consider the statements: 

 
import FindHBond 

hb_L = FindHBond.findHBonds([prot], distSlop = 0.4, angleSlop = 

20.0) 

 

The list hb_L is a list of 2-tuples. The first entry in a 2-tuple is an atom object representing the 

hydrogen bond donor and the second entry is an atom object representing the acceptor.  After 

http://bioinfo.mni.th-mh.de/pdbselect/


executing these statements you can extract the tuples that meet the requirements described in the 

next paragraph.  Note that execution of these statements will get the list of H bonds but the 

display is not affected. 

 

The script for this exercise should ask the user for a PDB ID.  It will then fetch that protein and 

print out a list of atom pairs such that the first atom of the pair is a hydrogen bond donor and the 

second atom is a hydrogen bond acceptor with the restriction that we will ignore a pair if either 

atom is in a nonstandard residue or if both atoms are in a backbone.  Atoms should be specified 

by residue name, residue position, chain ID and atom name.  Separate the atom specifications 

with four dashes. For example, here are the first few lines that I got in the processing of 1RKI: 
 

ARG 19.A NH2  ----  GLU 15.A OE2 
ARG 95.A NH2  ----  ILE 69.A O 

ARG 96.A NH2  ----  GLU 72.A OE2 

ARG 95.B NH1  ----  ASP 71.B OD1 

ARG 96.B NH1  ----  GLU 72.B OE2 
 

 

b) For this exercise, we are interested in collecting statistics that will help us to understand how 

often we can expect to see hydrogen bonds involving atoms in sidechains.  Near the start of your 

script you should declare three dictionaries: 

 
resTypeCount_D = {} 

donorAtomCount_D = {} 

acptrAtomCount_D = {} 

 

After this, the script will read a file that contains a list of PDB identifiers each followed by a 

chain ID suffix (same type of input as in Exercise 4 above).   We will refer to the chain selected 

by this suffix as the designated chain. 
 

Use the following statements to get the path name of the input file: 

 
 import tkFileDialog 

 filePathName = tkFileDialog.askopenfilename() 

 

While reading this file the script should fetch each protein in the list and for each protein it will compute a 

list of hydrogen bonds meeting the same constraints as described in Part (a).  We will refer to this list as 

the sidechain HBond list.   We now describe the significance of the dictionaries: 

 

For resTypeCount_D a key will be a residue type (for example, “ASN”) and the final value 

corresponding to the key will be the number of these residues that have been encountered while 

going through all the designated chains.  The count does not include residues in the other chains.  

You should end up with 20 entries in this dictionary. 

 

For donorAtomCount_D a key will be a string representing the donor atom name specified as 

the residue type followed by the atom name separated by a space, for example: “ARG NH2”.  

After processing all the designated chains, the final value corresponding to a key will be the 

number of times such a donor atom appears on the donor side of a pair in the sidechain HBond 

list.  Your script should ignore any donor atom that is not in the designated chain.   

 

For acptrAtomCount_D a key will be a string representing the acceptor atom name specified 

as the residue type followed by the atom name separated by a space, for example: “GLU OE2”.  



After processing all the designated chains, the final value corresponding to a key will be the 

number of times such an acceptor atom appears on the acceptor side of a pair in the sidechain 

HBond list.  Your script should ignore any acceptor atom that is not in the designated chain. 

 

Some examples (assuming the designated chain is “A”):  

The sidechain HBond list entry: ARG 95.A NH2  ----  ILE 69.A O  would cause an 

increment of the value for the key ARG NH2 in the donorAtomCount_D dictionary and an 

increment of the value for the key ILE O in the acptrAtomCount_D dictionary.  Now 

suppose the hydrogen bond is between chains: 

The sidechain HBond list entry: ARG 85.A NH2  ----  ILE 59.B O  would cause an 

increment of the value for the key ARG NH2 in the donorAtomCount_D dictionary but the 

value for the key ILE O in the acptrAtomCount_D dictionary is not incremented because this 

acceptor is not in the designated chain.  Note that an entry in the HBond list such as: 

ARG 96.B NH1  ----  GLU 72.B OE2  would be ignored since both donor and 

acceptor are not in the designated chain. 

 

After all the chains have been processed print out three tables with the following titles: 

 

Amino Acid Percentages 

This table will have 20 rows.  Each row has two entries: the residue type (for example, “ASN”) 

followed by the frequency of that residue in all the designated chains expressed as a percentage.  

Note: you will have to calculate the total number of residues that are in all the designated 

chains. The rows should be ordered alphabetically with respect to the residue type. 

 

Donor Atom Percentages 

This table will have a row for each donor atom encountered.  Each row has two entries: the 

donor atom name (for example: “ARG NH2”) followed by the frequency of that donor 

expressed as a percentage of the total number of times its residue is in the designated chains.  

For example, the percentage for donor “ARG NH2” is calculated as:  

donorAtomCount_D[“ARG NH2”]*100.0/resTypeCount_D[“ARG”].  

 

Acceptor Atom Percentages 

This table will have a row for each acceptor atom encountered.  Each row has two entries: the 

acceptor atom name (for example: “GLU OE2”) followed by the frequency of that acceptor 

expressed as a percentage of the total number of times its residue is in the designated chains.  

For example, the percentage for acceptor “GLU OE2” is calculated as:  

acptrAtomCount_D[“GLU OE2”]*100.0/resTypeCount_D[“GLU”].  

 

All percentages should have 4 decimal precision (%7.4f). 

 

Test your code using the input file PDBselectDimerList.txt. 
 

 

Start early.  This is NOT an assignment that can be done the night before the due date! 

 

 


