
CS 483  
Assignment 4:  Protein Overlap and Surface Studies 
Due dates: Thurs.  Mar. 19.  (Tues. Mar. 17 to get 5 bonus marks). 

Read the questions carefully and please start early!   

Exercise 1:    

Motivation 
In a paper by Shen, Davis, and Sali1 a highly simplified sphere-packing model is used to suggest 

that the optimal size of a globular domain ranges from 117 to 213 residues with an average size 

of 165 residues.  For humans the median length of a protein is 375 residues2 (longer than 213 

because of the formation of multi-domain configurations).    

 

It has been observed that most domains have a residue count that is usually more than 100 if the 

hydrophobic residues are to be properly buried in a hydrophobic core.  An interesting measure to 

assess burial effectiveness was devised by Spassov, Karshikoff, and Ladenstein3 in a 1995 paper. 

The formula: 
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is used to compare the solvent accessible area of the protein in the folded and unfolded states.  

The value of 
n

fSA represents the solvent accessible area of the folded protein with all residues 

removed except for the first n residues.  The value of i

usa represents the solvent accessible area of 

the ith residue when it is in an unfolded peptide.  Values for i

usa  can be found in the Spassov et 

al. paper and have been set up in the following dictionary for your convenience: 

 
areaASAaxa_D = {"ALA": 113.0, "ARG": 241.0, "ASN": 158.0, "ASP": 151.0, 

                "CYS": 140.0, "GLN": 189.0, "GLU": 183.0, "GLY":  85.0, 

                "HIS": 194.0, "ILE": 182.0, "LEU": 180.0, "LYS": 211.0, 

                "MET": 204.0, "PHE": 218.0, "PRO": 143.0, "SER": 122.0, 

                "THR": 146.0, "TRP": 259.0, "TYR": 229.0, "VAL": 160.0} 

 

The goal of this exercise is to plot the values of 
n  versus n to get a curve similar to that seen on 

page 1522 of the paper by Spassov et al.  My version can be seen in Figure 1 on the next page.  

                                                           
1 M. Shen, F.P. Davis, and A. Sali. The optimal size of a globular protein domain: A simple sphere-packing model.  

Chemical Physics Letters, 405 (2005) 224-228. 
2 L. Brocchieri and S. Karlin. Protein length in eukaryotic and prokaryotic proteomes.  Nucleic Acids Research, 33 

(2005) 3390-3400. 
3 V. Z. Spassov, A.D. Karshikoff, and R. Ladenstein. The optimization of protein-solvent interactions: 

Thermostability and the role of hydrophobic and electrostatic interactions. Protein Science, 4 (1995) 1516-1527. 



Since it will not be possible to steadily “build” the protein to get 
n for increasing values of n, 

we will evaluate 
n for the full protein and then calculate 

n for decreasing values of n within a 

loop that deletes the final residue of the chain for each pass through the loop.  You can use 

append to collect the 
n values in a list that is reversed prior to the plotting activity.   

Your script should go through the following steps: 

 

 Fetch the protein and delete all atoms except for those in the chain that is to be processed. 

 Use the areaASAaxa_D dictionary to compute n

uSA  for the entire protein. 

 Use runCommand(“surface”) to put a surface around the entire protein.  The model 

for the surface can be referenced as: chimera.openModels.list()[1] and the 
n

fSA value can be derived as the areaSAS attribute of that model.   

 In each pass through a loop you should delete the final residue and recalculate the new 
n value.  Note: In Chimera, a protein object has a method called deleteResidue.  The 

new value for 
n

fSA can be derived by invoking the update_surface() method of the 

surface model.  Do not execute runCommand(“surface”) again (this is very time 

consuming and unnecessary).  The new value for the denominator can be derived by 

subtracting, from the current value of the denominator, the value of i

usa  that corresponds 

to the residue that was just deleted. 

 When the loop is finished, reverse the list used to collect the ratios and work with a plot 

routine to generate the plot.  You can do the plot by modifying the script on page 372 of 

the text.  Be sure to use aspect = ‘auto’ to avoid getting a plot that has almost no 

height for the y axis. 
 

You should get a plot like this: 

 
Figure 1 



The significance of the plot   

For very low values of n, the ratio is over 0.5 indicating a low level of hydrophobic residue 

burial as indicated by an overall solvent accessibility that is similar to that seen in the unfolded 

state.  As the number of residues increases, there will be enough residues to form a hydrophobic 

core and the ratio drops but eventually approaches an asymptotic value that is approximately 0.2.   

It is worthwhile to point out that the aconitase protein (PDB ID = 6ACN) has four domains:  D1 

(residues 1–201), D2 (202 – 319), D3 (320 – 512), and D4 (537 – 754).   The residues between 

positions 512 and 537 form a linker going from D3 to D4 and it is not considered to be part of a 

domain.  By inspecting the graph you can see that for values of n just beyond the start of a 

domain we get a rise in the 
n  ratio corresponding to a stretch of residues that are not long 

enough to develop a new hydrophobic core.  As n gets larger, a new hydrophobic core develops 

and the curve moves down to values that are closer to 0.2.  The aconitase protein was chosen for 

this study because each of the domains is comprised of a single stretch of residues (the peptide 

chain does not go into another domain and then return to the earlier domain). 

 

Run your script on both 6ACN and 2B3Y.  The latter protein is also an aconitase with domains 

D1 (residues 2–240), D2 (241 – 368), D3 (369 – 592), linker (593 – 654), and D4 (655 – 889). 

 

 

Exercise 2:   

Motivation 
The fusion protein Abelson tyrosine kinase (c-Abl) has been implicated in the development of 

chronic myelogenous leukemia.  Management of the cancer can usually be done by a drug 

therapy that involves inhibition of the c-Abl protein.  The PDB contains several co-

crystallizations of c-Abl with various drugs including imatinib sold under the trade name 

Gleevec.  A very common procedure in drug design research involves the 3D alignment of two 

such protein structures so that we can do a comparison of the inhibitor conformations within the 

binding site.  Because the overlap involves the same protein (only the ligand differs), the 

selection of alpha carbon pairs is relatively straightforward.  Part (a) starts with the easiest case 

involving residues that have consistent position numbers.  In Part (b) we require a sequence 

alignment to get the required alpha carbon pairs. 

 

(a) In this exercise you will be dealing with four PDB files: 

 

2HYY  (ligand:  STI)    Use chain A 

3CS9    (ligand:  NIL)   Use chain A 

2GQG  (ligand:  1N1)   Use chain A 

1FPU   (ligand:  PRC)   Use chain A 

 

During development of the drug, the STI ligand was originally labeled STI-571 and after 

successful drug trials it was named imatinib.  The NIL ligand refers to the drug nilotinib and 

the 1N1 ligand refers to the drug dasatinib.  PRC is a modified version of STI. 

 

 



Your script should go through the following steps: 

 

1. Import the Overlapper class:  
from StructBio.StructureOverlap.overlapper import Overlapper 

2. Fetch the four PDB files (2HYY, 3CS9, 2GQG, 1FPU). 

3. Delete all chains that are not chain A. 

4. Instantiate an Overlapper object for each of the three proteins: 3CS9, 2GQG, 1FPU. 

5. Use the moveToOverlap method to bring each of these protein structures into a 

structural alignment with 2HYY.  The alpha carbon atom pairs that determine the 

overlap will be in the residues with positions in the range [279, 498].  To construct a 

list of pairs for this method, consider using Python’s zip function. 

6. Ask the user for permission to proceed and, when the user responds with the Enter 

key, use the undoMove method to restore the three structures to their original 

positions. 

7. Then repeat Step 5 with the alpha carbon pairs taken from residues in the binding site.  

For your convenience, here is a set containing the residue positions:  
Set([248, 286, 290, 299, 313, 315, 317, 318, 370, 381, 382]) 

Notes:  

 The c-Abl protein presents difficulties for the crystallographer and consequently not 

all of the structure can be accurately determined.  The rather high position numbers in 

Step 5 designate those residues for which the structure has been analyzed across all 

four co-crystallizations. 

 You should notice that the completion of Step 5 does not necessarily give an accurate 

overlap for the binding site (especially for 2GQG which has a stretch of residues with 

a large backbone deviation that can be seen in the overlap with 2HYY).  After Step 7 

you should see the ligands in overlapped conformations that are more related to the 

structure of the binding site. 

 After completion of Step 7 you should be able to work with Chimera’s Model Panel to 

selectively show any subset of the overlapped proteins. 

 After the overlap operations you can get the scene to be centered in the display by 

executing the statement: 
chimera.viewer.viewAll() 

 Please reinstall the StructBio package from the StructuralBioinformatics website.  

The latest version corrects a program bug in the Overlapper class. 

 



(b) In the previous Exercise, the overlap specification required some user knowledge, namely the 

residue range for the overlap and the positions of the residues in the binding site.  In this 

exercise your script will derive this information by means of a sequence alignment.  You will 

be dealing with five PDB files: 

 

2HYY  (ligand:  STI)    Use chain A 

3CS9    (ligand:  NIL)   Use chain A 

2GQG  (ligand:  1N1)   Use chain A 

1FPU   (ligand:  PRC)   Use chain A 

1OPJ    (ligand:  STI)    Use chain A 

 

The last file (1OPJ) uses the same ligand as 2HYY but it also has the MYR ligand which is 

important in c-Abl research.  We did not use 1OPJ in Exercise 1(a) because the position 

numbers of the residues are not the same as those used in the other four files (they are shifted 

by 19 positions).  

 

Your script should do the following: 

 

1. Import the following class definitions: 
from StructBio.StructureOverlap.overlapper import Overlapper  

from StructBio.StructureOverlap.sequencesLocalAlignment import SequencesLocalAlignment 

from StructBio.Utilities.shellNeighbors import Shell 
2. Fetch the five PDB files (2HYY, 3CS9, 2GQG, 1FPU, 1OPJ). 

3. Delete all chains that are not chain A. 

4. Instantiate an Overlapper object for each of the four proteins: 3CS9, 2GQG, 1FPU, 

and 1OPJ. 

5. Use the SequencesLocalAlignment class to get a sequence alignment between 

the “target’ protein 2HYY and each of the other “moving” proteins.  Be careful: the 

instantiation of the SequencesLocalAlignment class requires two lists of 

residues each of which must be a standard residue.  The alignment_L attribute of the 

instantiated object will be a list of pairs each pair being two residues in the alignment. 

6. Use the moveToOverlap method in the Overlapper class to bring each of these 

protein structures into a structural alignment with 2HYY.  The alpha carbon atom 

pairs that determine the overlap should be taken from the list of pairs generated in the 

previous step. 

7. Ask the user for permission to proceed and when the user responds with the Enter key, 

use the undoMove method to restore the four structures to their original positions. 

8. Then repeat Step 6 with the alpha carbon pairs taken from residues in the binding site.  

To get the alpha carbon pairs that determine the overlap, do the following: 

a. Generate a set of residues that are close to the ligand in the target protein. 

b. Generate a set of residues that are close to the ligand in the moving protein. 

c. Filter the alignment pairs created in Step 5 and keep only those pairs that obey 

the following two constraints: The first entry of the pair must be in the set 

generated from Step (a) and the second entry of the pair must be in the set 

generated from Step (b).   

 



Definition of “close to the ligand”: We will say that a residue is close to the ligand if any one 

of its atoms is within 4 Angstroms of some atom in the ligand.  That is, the shortest inter 

atomic distance is less than or equal to 4.  Your script should use a function that returns a list 

of standard residues that are close to a specified ligand.  This can be easily and quickly done 

in O(n) time if you use the Shell class.   

 

Your final result should be the same as that seen in the previous script for Exercise 2(a) with 

the addition of protein 1OPJ (as in the previous Figure).  

 

The next two exercises should give you some experience in Graphical User Interface (GUI) 

development.  For these exercises, you are to imagine that you have a job with a fictitious 

company that we will call TKI Drugs Inc.  To secure research funding, your boss is going to give 

a talk on c-Abl binding sites and she wants to have a Chimera application that can quickly show 

the overlap of any two of the binding sites that we have encountered in Exercise 2(b). 

 

(c) Start by reading pertinent sections in Appendix A of the text: Pages 297-304, Section A.4.3.3, 

Section A.4.3.8, Section A.4.4 and Section A.5.  This should give you enough information to 

generate a dialog window that has the following appearance: 

 

 
 

Note that the two columns of radio buttons are in separate parent frames and so the two 

groups act independently.  For example, a radio button activation in the “red column” will 

affect the currently selected button in that same column but it has no effect on the radio button 

in the “blue column”.  To keep our requirements simple, this exercise will not involve any 

structure overlap (that is the goal of the next exercise).  The script should define a class with 

header:   

 
class TKinhibitors(ModelessDialog): 

 



and the fillInUI method should generate the widgets shown in the previous figure.   For 

now, the callback function can be a simple return statement (or a print statement for 

debugging purposes). 

 

Before the dialog is instantiated in the mainline, do the following: 

 

Fetch the five proteins in the red column, delete everything but chain A and color both 

ribbons and atoms “hot pink”.  The ligands should have a “ball and stick” representation (all 

other atoms are in “stick” representation).  Repeat for the blue column but this time use the 

colour “cornflower blue”.   

 

Note that runCommand can be used to colour the proteins and change the representation of 

atoms.  You can hide a protein using ~display and bring it back with display.  Needed 

information can be found on the Chimera website (download the UCSF Chimera Quick 

Reference Guide pdf).  You should also learn about atom specification.  For example, if p 

contains the protein object, then you can colour the ribbons cornflower blue by using: 

 
runCommand(“color cornflower blue,r #” + str(p.id)) 

 

In this example, p.id is used to get the model number of the protein.  The str function will 

convert this integer to a character string that immediately follows the # sign. 

 

Callback functions for the radio buttons:   

When the dialog is instantiated, start with the radio buttons activated as shown in the previous 

figure (the red 2HYY and the blue 3CS9).  Your script should set up the display so that it is 

consistent with that selection. That is, you should see the red 2HYY and the blue 3CS9 

proteins and no other proteins.  When a different radio button is activated, the display should 

change to be consistent with the radio button selection.  Your callback function for the radio 

buttons should make this happen.  Note that the proteins may be separate or colliding in the 

display depending on the positions defined by the PDB files. 

 

As shown in the previous figure, there are text boxes in the frame at the bottom of the dialog 

window.  The text in these boxes should give the name of the ligand for the selected protein.  

Your script in the radio button callback function should facilitate this as well. 

 

 

(d) In this exercise the call back function should show the proteins as done in the previous 

exercise, but this time with an overlap of the binding site alpha carbon atoms (use a modified 

version of the code developed for exercise 2(b).  The overlap is to be done so as to avoid any 

repositioning of both molecules.  To explain further: Suppose the display is in its initial state 

with the red 2HYY and the blue 3CS9 in the display.  If the user does a click on the blue 

1OPJ, the following events should ensue: 

 The current blue protein 3CS9 is “undisplayed” using ~display in a runCommand. 

 The blue 1OPJ undergoes an undoMove operation in preparation for the overlap that is 

to be done next. 



 The blue 1OPJ protein is overlapped with the current red protein (in this case 2HYY).  

The overlap is done with respect to the binding site alpha carbon atoms, as in Exercise 

2(b). Note that 2HYY should not move.  Consequently, if the two proteins have been 

zoomed or rotated in the display to inspect some particular aspect of the binding site, then 

this positioning in the display will be maintained. 

 The blue 1OPJ can then be displayed to show the overlap. 

 

Naturally, if the user does a click in the red column, then a red protein is moved and the blue 

protein stays where it is.  If you want these steps to be done very rapidly, then it would be 

wise to do as much computation as possible before the dialog is instantiated.  For example: set 

up Overlapper objects for each of the ten proteins, get lists of pairs of alpha carbons for all 

possible overlaps, etc.  The next figure shows a close up view of the overlapped binding sites 

for red 3CS9 and blue 2HYY. Note the overlapping of the red NIL ligand and the blue STI 

ligand. 

 

 
 
 

 

 

Marks: 
Exercise 1: [16] (10 for the calculation + 6 for the plot) 

Exercise 2a: [16] 

Exercise 2b: [12] 

Exercise 2c: [20] 

Exercise 2d: [16] 

 

Total:   80 

 

END OF ASSIGNMENT 4 

 

Note:  Since everybody selected a project from the “Project Requirements” document circulated earlier, it is 

not required that you generate a proposal for your project as part of this assignment (as originally intended).  

However, you should make plans for the project and contact me if there are any design or implementation 

issues. 


