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Motivation

 One of the goals of structural bioinformatics is 
to aid the biochemist in modeling molecular 
functionality on a computer.

 Notice the change in experimental setting:
in vivo in vitro in silico

 Although reaction mechanisms are essentially 
the final statement in characterizing molecular 
interactions, there is often a need to track 
conformational changes and other geometric 
aspects of the molecules.
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Introduction

 The geometry of molecules deals with computations 
related to bond length and inter-atomic distances in 
general, bond angles, and dihedral angles.

 More complicated calculations deal with the construction of 
molecular surfaces and quantities such as charge 
densities.

 These are calculations related to a static molecule.

 In more dynamic setting we may attempt to 
evaluate these quantities as they change with time 
due to flexibility of the molecule.

 Modeling the flexibility is itself a big challenge. 
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Given Atomic Coordinates

 We start with the assumption that we know 
the positions of atoms in 3D space.

 We then develop the formulae that give us 
various other measurements.

 bond length, bond angles, dihedral angles.

 In some applications you are given the inter-
atomic distances and need to derive the 
coordinates.



3

Protein Geometry 5

Distance Between Atoms

 If the position of atoms in 3-space is given by 
(x, y, z) coordinates then we can use the 

standard Pythagorean calculation of distance.

 If atom a has coordinates (ax, ay, az)
T and atom b

has coordinates (bx, by, bz)
T the distance between a

and b is given by:

 This is the same as the norm calculation: 

       
22 2

,
x x y y z z

d a b a b a b a b     

   
T

.a b a b a b   
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Bond Angle

 Consider two atoms (vectors a and b) bonded 
to a third atom represented by vector c.  

 We calculate the bond angle at c by first
calculating .

 Recall that an inner product 
of normalized vectors can be 
viewed as the cosine of the 
angle between these vectors.

 In this case:

 So:
c

a

b

 cos ,u v u v 

.u a c v b c   

   
T

cos .
a c b c

a c b c


 


 

cos


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Dihedral Angles (1)

 Consider atoms in the protein backbone:



 Going from residue to residue:

 Corresponding bond lengths do not change much.

 For example: Ni – Cai has approximately the same bond 
length as Nj – Caj.

 Similarly, corresponding bond angles tend to be the 
same.

 You cannot make this same statement for dihedral 
angles.

1 1 1 2 2 2 3 3 3 4
N  C  C  N  C  C  N  C  C  N  a a a

Cai-1

Cai

Ni
Hi

Ci-1 Oi-1

Cbi

Ci

Oi

Ni+1

Hi+1

Protein Geometry 8

Dihedral Angles (2)

 Dihedral angles are due 
to a “swivel” action 
around a single bond.

 For example, we could 
keep all bond angles 
constant while moving Ni

relative to Ni+1 swiveling 
around the Ci - Cai bond.

 So, while a bond angle is 
determined by 3 atoms a 
dihedral angle is defined 
by 4 atoms.

Cb carbon in
Residue i.

?
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Cai-1

Cai

Ni

Hi

Ci-1 Oi-1

Cbi

Ci

Oi

Ni+1

Hi+1
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Dihedral Angles (3)

 The alpha carbon PHI 
dihedral angle is the 
angle between two 
planes:

Ci-1 Ci

Ni

Cai

Unit normal of

Ni, Cai, Ci plane.

dihedral

Unit normal of

Ci-1, Ni, Cai plane.



Protein Geometry 10

Ni Ni+1

Cai

Ci

Unit normal of
Cai, Ci, Ni+1 plane.

dihedral

Unit normal of
Ni, Cai, Ci plane.

Dihedral Angles (4)

Oi

Ni+1

 The alpha carbon PSI 
dihedral angle is the 
angle between two 
planes:



Cai-1

Cai

Ni
Hi

Ci-1 Oi-1

Cbi

Ci

Oi

Ni+1

Hi+1
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Dihedral Angles (5)

 So, given three points in a plane, we have to know 
how a unit normal to that plane is calculated.

 This is done by calculating a cross product.

 Suppose we have two vectors u and v.

 The cross product is a vector that is perpendicular to both 
u and v and it has a magnitude that is equal to the area of 

the parallelogram spanned by the vectors.

 It can be shown that this is:  

     1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3

det .

i j k

u v u u u u v u v i u v u v j u v u v k

v v v

 
 

       
 
  

The next slides show this.
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Dihedral Angles (6)

 If the magnitude of the normal is the area of the 
parallelogram defined by u and v then its magnitude 

is given by the formula: 
where     is the angle 
between u and v.

 Then we can write:



sinu h u v 

v

u

h


 

 

 

2 2 2 2 22 2

22 2

22 2 T

sin 1 cos

cos

u v u v u v

u v u v

u v u v

 



   

 

 
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Dihedral Angles (7)

 Continuing:

 We can now apply Lagrange’s Identity to see that the last 
expression is actually: 

 Now note that: 

     

2

2

1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3

det

i j k

u u u u v u v i u v u v j u v u v k

v v v

 
 

     
 
  

 

2
3 3 3

22 2 2 T 2 2

1 1 1

k k k k

k k k

u v u v u v u v u v

  

    
        

    
    
  

 
2 3

2

1 1

.
i j j i

i j i

u v u v

  

 
 
 
 
To prove this you can simply 

expand both expressions 
(tedious).

(A proof of the general case can be found at:
http://en.wikipedia.org/wiki/Lagrange's_identity)

is the same as this last sum.
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Dihedral Angles (8)

 Recall: The cross product is a vector that is perpendicular to both u and 

v and it has a magnitude that is equal to the area of the parallelogram 

spanned by the vectors.

 So far we have shown that working with this definition we get 
a vector that has a magnitude given by

 Is the vector defined by this 
determinant perpendicular to both u and v?

 Yes.  If you calculate the inner product of this vector with u or v you 

get 0. For example:

1 2 3

1 2 3

det .

i j k

u u u

v v v

 
 
 
  

T

2 3 3 2 1

3 1 1 3 2

1 2 2 1 3

0.

u v u v u

u v u v u

u v u v u

   
   

 
   
      

http://en.wikipedia.org/wiki/Lagrange's_identity
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Dihedral Angles (9)

 Recall: The cross product is a vector that is perpendicular to both u and v and it 

has a magnitude that is equal to the area of the parallelogram spanned by the 
vectors.

 So far our determinant based calculation for the cross product has given the 
correct magnitude and we have the “perpendicular to both u and v”
requirement.  BUT which of these is correct?  (They both show a vector 
perpendicular to both u and v).

 For            we use the “right-hand rule” that is also seen in the usual 3D 
Euclidean coordinate system:  If the fingers of the right hand curl around the 

normal going in the direction from u to v then the thumb points in the 

direction assigned to         .   
So the first diagram is for           while the next diagram is for         .

v

u



v

u



u v

u v
u v

x

z
y

u v v u
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Dihedral Angles (10)

 One last vector algebra issue:

 The cross product evaluated using the 
determinant does not necessarily have a unit 
length. 

 Recall that our dihedral angle calculation requires 
vectors that are unit normal.

 In such a situation, we will have to normalize:

 Given          we calculate:  u v

.
u v

u v




Back to proteins
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Dihedral Angles (11)

 Suppose we are calculating the PHI dihedral.

 Start with the calculation of  

     

1 2 3

1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

det

.

i j k

u v u u u

v v v

u v u v i u v u v j u v u v k

 
 

  
 
  

    

We let  u = Ni – Ci-1

and      v = Cai – Ni.

For simplicity, we will 
just use the atom 
names to label vectors 
that are their coordinates.

Dividing this by its norm will give the 
unit normal (call it n(Ci-1, Ni, Cai)).

Ci-1 Ci

Ni

Cai

Unit normal of
Ni, Cai, Ci plane.

PHI dihedral

Unit normal of
Ci-1, Ni, Cai plane.
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Dihedral Angles (12)

 Calculating the PHI dihedral (continued):

 Then calculate the other unit normal: 

     

1 2 3

1 2 3

2 3 3 2 3 1 1 3 1 2 2 1

det

.

i j k

v w v v v

w w w

v w v w i v w v w j v w v w k

 
 

  
 
  

    

We let  v = Cai – Ni

and    w = Ci – Cai.

Then use:

Ci-1
Ci

Ni

Cai

Unit normal of
Ni, Cai, Ci plane.

PHI dihedral

Unit normal of
Ci-1, Ni, Cai plane.

Dividing this by its norm will give the 
unit normal (call it n( Ni, Cai,Ci,)).
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Dihedral Angles (13)

 Finally with both unit normals computed we 
can get the value of PHI for this alpha carbon 
using the arccos() function:

 Sign of the dihedral angle:
 By convention, a dihedral angle is assumed to be 

in the range

 Since the calculation of arccos() may lead to an 
angle in the range          we 
typically have to adjust the sign.  

      1 1
, , , arccos , , , , .

i i i i i i i i i i
C N C C n C N C n N C C  a a a

 
  

 , . 

 0,

(See next slide)
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Dihedral Angles (14)

 To derive the sign of a dihedral angle:

 We look along the bond lying in the intersection of 
the two planes (be sure to look in the increasing i

direction). 

dihedral

Consider the unit normal of the plane
defined by the first three atoms.
Compute its inner product with the vector 
going from the third atom to the last atom.

If this inner product is positive (as in the 
diagram) then the sign of the dihedral angle
is positive, otherwise it is negative.
In the case of PHI this computation is:

   1
, , .

i i i i i
n C N C C Ca a


 
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Dihedral Angles (15)

 Positive Dihedrals:           Negative Dihedrals:

In both cases we are looking down along the central bond in the increasing 
i direction.

Projection of the unit normal is 
in the same direction as the 
last bond.

Projection of the unit normal is 
in the direction opposite to the 
last bond.

+

4

1

2&3
Atom
numbers -

1

4

2&3
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Dihedral Angles (16)

 What about PSI dihedrals?

 Follow the same analysis but this time compute:

 In other words, all the previous computations work to get 
PSI if you do the following substitutions:

      1 1
, , , arccos , , , , .

i i i i i i i i i i
N C C N n N C C n C C N  a a a

 
  

1

1
.

i i

i i

i i

i i

C N

N C

C C

C N

a

a












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Ramachandran Plots  (1)

 It was noted in the early 1960’s that steric collisions 
prohibit certain combinations of the phi and psi angles 
on either side of a given alpha carbon atom.  

 An observed combination of phi/psi angles is often 
represented by a single point in a two dimensional plot that 
has a horizontal axis for phi ranging over values  (i.e. -180 
to +180 degrees) and a vertical axis for psi ranging over the 
same values.  

 A collection of many such points can be used to record the 
observed phi/psi combinations corresponding to a set of 
alpha carbon atoms.  

 This type of scatter plot is called a Ramachandran plot.
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Ramachandran Plots (2)

 This figure is derived from 
a Ramachandran scatter 
plot of 121,870 phi/psi 
combinations using 463 

protein structures.

24

Procheck  
“background” plot

A - Core alpha       L - Core left-handed alpha   

a - Allowed alpha    l - Allowed left-handed alpha   

~a - Generous alpha  ~l - Generous left-handed alpha   

B - Core beta        p - Allowed epsilon   

b - Allowed beta    ~p - Generous epsilon   

~b - Generous beta

Note the 
“wrap-around”
continuity.
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Ramachandran Plots (3)

 Procedure for generating this pixilated figure:  

 The area of the original scatter plot was subdivided 
into square “pixels” each having a side of length    .  

 The entire plot is covered with 362 = 1296 pixels.  

 A pixel was given a dark color and characterized as “core” 
if it covered at least 100 points in the scatter plot.  

 A pixel was given a color of medium intensity and 
characterized as “allowed” if it was not a core pixel but 
covered at least 8 points in the scatter plot.  
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Ramachandran Plots (4)

Procedure (continued):

 Pixels in the “generous” region are made by extending an 
allowed region with a border area of width     .  

 The generous region is given a color that is lighter than an 
allowed region.  

 Any pixel that is not core, allowed, or generous is given the 
lightest color or simply left as white.  

 So, the darker areas correspond to regions of the 
plot where the density of points is highest and other 
colors represent regions of lower density.  

 White regions or those with the lightest color are used to 
denote areas of the plot where there is the least likelihood 
of observing a point, for example,         and           .

26

20

90  90  
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PROCHECK

 PROCHECK checks the 
stereo-chemical quality 
of a protein structure.
 Here the Ramachandran 

scatter plot for 1A4Y is 
superimposed over the 
background distribution 
discussed earlier.

 PROCHECK software can be 
used to detect the existence 
of any anomalous dihedral 
angles.
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Plots for Individual Residues (1)

 Ramachandran plots 
may be restricted to 
the phi/psi angles 
corresponding to a 
particular amino 
acid.

 Because glycine has 
less chance of a 
steric collision, its 
plot is different.
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Plots for Individual Residues (2)

 Proline and the pre-proline 
alpha carbon are also 
unusual:
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The 42 Proline AAs of 1A4Y.

Note how 
Phe is 
veering
away from 
Pro. a a


