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Motivation (1)

 As mentioned several times, we want to know 

more about protein function by assessing protein 

structure.

 Similar structure often implies similar function.

 A frequent concern is whether two proteins have 

the same or very similar structure.

 An assessment of this can be done by attempting 

to superimpose the two proteins in 3D space.

 The proteins may have the same residues or they 

may be very similar (homologs, for example).
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Motivation (2)

 Recap: A frequent concern is whether two proteins have the same or 

very similar structure.

 There are various applications:

 The proteins may have the same sequence but 

differ in conformation.

• The difference might be due to a different energy state 

or may be due to a change in conformation when a 

ligand is present in a binding site.

 The proteins may have almost the same 

sequence; there are minor variations.

• For example, a mutation has caused some amino acid 

to change.  What is the effect on conformation?
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Motivation (3)

 Recap: A frequent concern is whether two proteins have the same or 

very similar structure.

 Applications (continued):

 The proteins may have more extensive 

differences in their sequences but it is possible 

that they nonetheless show a lot of similarity in 

conformation.

• The question is “How similar are these conformations?”.

 The proteins may have considerable differences in 

their sequences but it is possible that they share 

similar structure in various regions.

• We would want to compare these similar regions.
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Motivation (4)

 The possibility of similar structure despite differences 

in sequence is not surprising since it has been 

observed that:

Structure is more conserved than sequence.

 Ultimately, it is protein functionality that is most important.

 Evolutionary processes do not read sequences. 
• Evolutionary processes will tend to “observe functionality” (as 

determined by structure) rather than observing sequence.

• They essentially use the “duck test” on protein function:

"If it walks like a duck and quacks like a duck, it must be a duck".
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Introduction 

 Our strategy in these applications is to do a 

structural alignment or overlap of the proteins in 

the 3D space.

 In our case, this will involve modifying the 

coordinates of atoms so that:

 One protein is moved (translated) in the space 

so that the centroids of the two proteins coincide.

 An optimal rotation is then done to get the 

maximal amount of overlap.

• That is, the maximal structural alignment.
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Structure Alignment (1)

 There are three possible cases to consider 

based on assumptions about molecular flexibility 

and sequence similarity:

 Case 1: Same Sequence | Rigid Proteins

 Find the translation and rotation that minimizes 

the RMSD of the two proteins.

 Case 2: Different Sequence | Rigid Proteins

 First find the matching amino acid pairs that are to 

be brought into 3D alignment.

 Then translate and rotate to maximally align these 

amino acid pairs in the 3D space.
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Structure Alignment (2)

 Case 3: Different Sequence | Flexible Proteins

 This is more difficult.

 We get the matching amino acids as in Case 2.

 Then try to get the translation and rotation that 

will give a maximal structure alignment with 

some conformational changes allowed.

• We try to limit the amount of conformational change or 

at least go from one energy minimum to another.

• Some researchers try to find “hinges” in the more 

flexible regions of the protein.

The case of same sequence and flexibility is not considered since, trivially, the

proteins are simply assumed to be capable of full overlap.
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Alignment for Structural Comparison

 Case 1 is often employed to see how the same 

proteins may have different conformations due to 

the presence of ligands.  

• Translation and rotation is necessary just to get an 

alignment of all protein regions outside the binding site.

 Note how three files for HIV protease may have 

different coordinates for the same atoms:
ATOM  1  N   PRO A   1     -12.600  38.218   3.719

ATOM  2  CA  PRO A   1     -12.444  38.367   2.244

ATOM  1  N   PRO A   1       0.421  40.709  18.682

ATOM  2  CA  PRO A   1      -0.422  39.511  18.905

ATOM  1  N   PRO A   1      29.101  40.309   5.484  

ATOM  2  CA  PRO A   1      30.105  39.343   4.986

1MSN




1EBW




PDB

IDs

The PDB does not put proteins in any “standard” orientation.

1IZI
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Simple Structural Alignment (1)

 We will consider structural overlap of rigid 

proteins (dealing with flexibility is much more difficult).

 We will deal with Case 2.

• Different sequence | Rigid proteins

• Note that Case 1 is just a special case of Case 2.

 Recall the objectives:

1. First find the matching amino acid pairs that are to 

be brought into alignment.

2. Then translate and rotate to maximally align these 

amino acid pairs.
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Simple Structural Alignment (2)

 Matching amino acids

 The objective is to find a correspondence or 
matching between 3D features.
• Not easy if the proteins are not similar.

• Trivial if we have the same sequence.

 Strategies for matching:
1. Use a sequence alignment and so derive the matching.

2. Specify a matching for particular amino acid pairs 
when it is determined that their 3D structures should be 
in structural alignment.
• May require special biological expertise.

• Both of these strategies must contend with the issue of 
how we deal with the amino acids that do not match.
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Simple Structural Alignment (3)

 Before discussing how we will use the matching, 

let us formalize the problem:

 We will assume that we are trying to overlap the 

proteins in the 3D space (i.e. superimpose them) 

by having the          (alpha carbons) of matching 

residues overlap as much as possible.

 We are given two sequences of alpha carbon 3D 

coordinates:

where |P| and |Q| are the number of residues in protein P

and protein Q respectively.

     
1 1

P Q
i i

i i
P p Q q

 
 

C
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Simple Structural Alignment (4)

 In the Case 1 scenario we would have |P| = |Q|.

We could then specify the problem as follows:

 Find a 3D rotation matrix R and a translation vector T

such that when R and T operate on all the       

coordinates of P we end up with a new set of alpha 

carbon coordinates:

that are as close as possible to the     

coordinates of Q.

• What do we mean by “as close as possible”?

  
1

P
i

transformed
i

P Rp T


 

C

C
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Simple Structural Alignment (5)

 “As close as possible”:

 Our measure of success will be to minimize the 

sum of squares of norms that measure the 

distance between matching alpha carbons.

• This is minimizing in the Least Squares sense:

After the minimum E is calculated, we evaluate the Root 

Mean Square Deviation to see how well we have done:

   
2

1

1
( , ) .

2

P
i i

transformed

i

E P Q Rp T q


  
Find R and T that 

will minimize E.

   
2

1

1
( , ) .

P
i i

transformed

i

RMSD P Q Rp T q
P 
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Simple Structural Alignment (6)

 Dealing with overlap when

 When the proteins have different lengths we will 
have to decide which pairs of residues contribute 
to the calculation of E in the previous slide. 

• Recall that this is our Case 2.

 Some definitions:

 An equivalence is a set of pairs 

indicating the correspondence between the 
amino acids in P and Q.

               1 1 2 2, , , , , ,N Np q p q p q
    

.P Q
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Simple Structural Alignment (7)

 Dealing with overlap when                (continued).

 An alignment M for P and Q is an equivalence 

such that

and 

 We extract the alpha carbons from each list in 

the alignment:

 These become the alpha carbons that are used 

in the least squares sum to be minimized.

1 2 N    

P Q

1 2 .N    

        
        

1 2

1 2

, , ,

, , ,

N

N

M P p p p

M Q q q q
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Simple Structural Alignment (8)

 Dealing with overlap when                (continued).

 In summary, we do Case 2 by minimizing

• Recall that Case 1 is just:

• RMSD changes:

P Q

       
2

1

1
( , ) .

2

i i

N

transformed

i

E M P M Q Rp T q
 



  

.i i i i   

   
2

1

1
( , ) .i i

N

transformed

i

RMSD P Q Rp T q
N
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Deriving the R and T Transforms (1)

 We start by defining the centroids of the alpha 

carbons used in the superimposition.

• Let:

• Then let:

• We will now consider x(i) and y(i) i = 1, 2,…, N to be 

the coordinates of the matching alpha carbons in 

proteins P and Q respectively.

       

1 1

1 1
.i i

N N
c c

i i

p p q q
N N

 

 

  

           
.i ii c i c

x p p y q q
 

   

Centroid for P Centroid for Q
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Deriving the R and T Transforms (2)

 Why did we let                                                    ?

• We have essentially translated the entire protein so 

that its centroid is at the origin.  In other words:

 If we now use these new coordinates in the 

computation of the centroids we see that they 

are at the origin.

• In fact:

• This is also true for the y(i).

• In summary:                    and

          

   

1 1 1 1

0.

i i

N N N N
i c c

i i i i

c c

x p p p p

Np Np

 

   

   

  

   

 

1

0.
N

i

i

y




           i ii c i c
x p p y q q

 
   

 

1

0
N

i

i

x
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Deriving the R and T Transforms (3)

 So, working with our new coordinate system, we 

see that we want to find R and T to minimize:

 Expanding this we get:

         

           
             

   

T

1

T
T

1

T2
T T

1

2
T

1

1

2

1

2

1

2

1
.

2

N
i i i i

i

N
i i i i

i

N
i i i i i i

i

N
i i

i

E Rx T y Rx T y

Rx y T Rx y T

Rx y Rx y T T Rx y T T

Rx y T T









    

    

       
  

   
  









   
2

1

1
.

2

N
i i

i

E Rx T y


  

Because of the previous slide

(centroids at origin) both these

terms become zero in the sum!
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Deriving the R and T Transforms (4)

 Under these conditions (centroids at origin) we 

have just seen that:

 If we wish to get a minimum E it is clear that we 

want T = 0 since this will zero out the

• Note that we could also get this result by computing 

and setting this to zero.

 So, finally, we see that we want to find the 

rotation matrix R

that will minimize:

   
2 2

1

1
.

2

N
i i

i

E Rx y T


   
  



2
.T

E
T

T






   
2

1

1
.

2

N
i i

i

E Rx y


 

Now we see why centroids

at the origin are beneficial!
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Rotation Matrices

 To find the 3D rotation matrix R that will minimize 

we need to know more about rotation matrices.

 Over the next few slides we discover the 

important attributes of such matrices.

   
2

1

1

2

N
i i

i

E Rx y


 



12

Protein Structure Overlap 23

A Rotation Matrix in 2D (1)

 We now derive a matrix that transforms a point 

(u1, u2) in the (x1, x2) plane so that its vector is 

rotated by an angle of

• The final position of (u1, u2) after rotation will be (v1, v2).

• We assume that the distance of (u1, u2) from the origin 

is r.   With these assumptions we can write:

.

1x

2x

 1 2,u u



 1 2,v v

r
 

 

1

2

1

2

cos

sin

cos

sin

u r

u r

v r

v r





 

 





 

 

 

 
1

2

1 1 2

2 1 2

cos cos sin sin

cos sin sin cos

cos sin
.

sin cos

v r

v r

v u u

v u u
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A Rotation Matrix in 2D (2)

 These last equations:

can be written in matrix form as:

 Note that 
• In fact, the columns of this rotation matrix are orthonormal:

1 1 2

2 1 2

cos sin

sin cos

v u u

v u u

 

 

 

 

1 1 1

2 2 2

cos sin
.

sin cos

v u u
R

v u u


 

 

      
       
      

T .R R I  

   

   

2 2sin cos 1 1,2

cos sin cos sin 0 .

i i

i j

C C i

C C i j
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A Rotation Matrix in 2D (3)

 The equation                is an important property of 

the rotation matrix.

 Consider the norm       of a vector u in the (x1, x2) plane.

• When a rotation transformation is applied to u we get

• Calculating the norm of v: 

• So, the property                means that the transformation 

matrix does not change the length of a vector.

• Length is “invariant” under this transformation.

TR R I  

u

.v R u

 
2 2TT T T T .v v v R u R u u R R u u u u       

TR R I  
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A Rotation Matrix in 2D (4)

 Angles between vectors are preserved when the 

transformation        is applied to both vectors:

 Suppose we have two vectors u(i) and u(j) that are 

both subject to the transformation      .

• After the transformation we get

• We compare the angle between u(i) and u(j) with the 

angle between the transform images v(i) and v(j): 

R

 i
u

 j
u

 i
v

 j
v

u

v

       
.

i i j j
v R u v R u  

   

   

   

   

   

   

TT T

T

cos

cos .

i ji j

v i j i j

i j

ui j

u R R uv v

v v v v

u u

u u

 



 

 
So the angle 

is preserved.

R
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A Rotation Matrix in 2D (5)

 A reasonable comment on the last slide would 

be: “Well, it is obvious that angles are preserved 

because both vectors move through an angle 

theta.”

• This is true.  However, the important point is that we 

showed preservation of the angles by using an 

argument that relied only on the property 

• No mention was made about the sin, cos structure of  the 

transformation matrix.

• Consequently, we can simply state that R is a rotation 

matrix as long as RTR = I.

• It will preserve both lengths and angles when used as a 

transformation matrix.  

T .R R I  
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Rotation Matrices in 3D  (1)

 We could develop the 3D version of the       matrix.

 This is more of a challenge because in our 3D 

space, a rotation matrix is defined by three angles.

• Think of the roll, pitch, and yaw angles that specify the 

angular position of an aircraft. 

• The 3 by 3 rotation matrix for 3D space is quite 

complicated with lots of sines and cosines…

 However, to pursue our objective of maximal 

overlap of proteins we do not really need to know 

the explicit angles of rotation.

• A “generic” rotation matrix will do.

R
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Rotation Matrices in 3D  (2)

 What do we mean by generic?

• As long as the rotation matrix R satisfies the rule that 

RTR = I we will be guaranteed that both lengths and 

angles are preserved since the equations for these 

properties are the same in 3D as they are in 2D 

except for the change in dimension.

 There is one more issue:

• The generic rotation matrix could preserve lengths 

and angles while introducing a mirror image reflection.

• We must avoid this if we are to maintain the chirality of 

our rotated molecule.

• We will address this issue later.
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Max. Overlap & Lagrange Multipliers

 Recall: our earlier objective was to get maximum 

structural overlap by minimizing E, where  

 We now realize that we want to find the matrix R

that will minimize E but it must be subject to the 

rotation constraint that RTR = I.

• Lagrange multipliers can take care of this.

• But before we derive a Lagrangian, there is still another 

simplification that can be made:

   
2

1

1
.

2

N
i i

i

E Rx y
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Restating the Problem

 Note that since RTR = I we can write:

             

         

                

            
        

T2

1 1

T TT

1

T T T TT T

1

2 2
T TT

1

2 2
T

1 1

1 1

2 2

1

2

1

2

1

2

1
.

2

N N
i i i i i i

i i

N
i i i i

i

N
i i i i i i i i

i

N
i i i i i i

i

N N
i i i i

i i

E Rx y Rx y Rx y

x R y Rx y

x R Rx x R y y Rx y y

x x R y y Rx y

x y y Rx

 







 

    

  

   

   

  

 







 

Both of these are equal 

to the inner product of 

y(i) and Rx(i).

So we can minimize E by

maximizing this last sum!Independent of R.
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Formulating the Lagrangian (1)

 The last slide tells us that we want to maximize

where R is the 3 by 3 matrix:

subject to RTR = I a 

constraint that we 

will rewrite as:

• Since                and                  there are nine of these 

constraints.

   T

1

N

H y Rx
 

 


1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

r r r

R r r r

r r r

 
 

  
 
 

3

1

0 if

1 if .
r r  

  


 


 


  




1,2,3  1,2,3 
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Formulating the Lagrangian (2)

 The Lagrangian will be G = H – F where:

and

 Recall how multiple constraints are set up in a Lagrangian: 

Use a linear combination of all the constraints.

• The       represent the 9 Lagrange multipliers.

• We have chosen to index them with     and 

• Useful later when representing the equations in matrix form.

• Note that the constraint does not change when we 

interchange        and         

• This symmetry implies 

3 3 3

1 1 1

1
.

2
F r r   

   
  

 
  

  
   

   
 





 .

 .

. 

  

   T

1

N

H y Rx
 

 



Protein Structure Overlap 34

Solving for R (1)

 How does H depend on the components of R?

• We fully expand

• is just a 3D vector:

• So:

   T

1

.
N

H y Rx
 

 



 

 

 

 

3

1

1

3

2

1

3

3

1

r x

Rx r x

r x






 















 
 
 
 

  
 
 
 
  







   
3 3

1 1 1

.
N

H y r x
 

  
    

 

 
Rx
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Solving for R (2)

 We will need to take the partial derivatives of G

with respect to all 9 components of the R matrix.

• First working with H:

• To  simplify our

equations we set:

• There will be nine of these      values, all derived from the input 

data.

       
3 3

1 1 1 1

.
N N

i jj j

i i

H
y r x y x

r r

   

  
      

  
  

   
   

Only the term with          

and          contributes.

j 

i 

       T

1 1

.
N N

j

i j iy x c C y x
   

  

   
j

ic
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Solving for R (3)

 The partial derivatives of F are a bit more 

complicated since the R matrix entries appear in a 

quadratic fashion:

• We have to apply the product rule when taking 

derivatives.

3 3 3

1 1 1

3 3 3

1 1 1

1

2

1 1
.

2 2

j j

i i

j j

i j i i

F
r r

r r

r r r

   

   
  

   

 
  

 

  

  

  

   
   

    

  

 

  

r r 

 

j i   j

i









Change this index to     and then use    .j

j
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Solving for R (4)

 Finally, since the Lagrangian is G = H – F :

• By considering these variables to be

entries in arrays R,    , and C we can

rewrite this last equation as:

0
j j j

i i i

G H F

r r r

  
   

  

   
3

1 1

, .
N

j j

i j i iy x c r i j
  


 


 

    1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

  

   

  

 
 

  
 
 

1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

r r r

R r r r

r r r

 
 

  
 
 

1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

c c c

C c c c

c c c

 
 

  
 
 

Notation:



.C R

Protein Structure Overlap 38

Solving for R (5)

 From the previous slide:

• We know C.  How do we solve for     and then R? 

• We have used the equation RTR = I to do various 

simplifications before we created the Lagrangian but 

this constraint has not yet been used as a constraint 

for the Lagrangian analysis itself.

• So, note:

• Since CTC is a square symmetric matrix, we can do an 

eigen-decomposition:

• If we can use this to find an appropriate     then we set  

and we are done.

.C R



T T T T .C C R R    

T T 2 T.C C VS V   


1R C
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Optimal Proper Rotations  (1)

 What is meant by an “appropriate”     ?

 Selection of     must be made with due attention 
to two issues that have not yet been addressed:

1. The rotation matrix must not introduce a 
reflection that changes chirality.
• Preservation of angles and lengths will still allow this!

2. Although we wanted to minimize E, there is 
nothing in the Lagrange strategy that guarantees 
this.  The procedure could also lead to an R that 
maximizes E!
• The Lagrange strategy only gets you critical rotations 

that produce extreme values of E.




Protein Structure Overlap 40

Optimal Proper Rotations  (2)

 To ensure a proper rotation we insist that the 

determinant of the rotation matrix is +1, that is: 

det(R) = 1.

 To be sure that E is minimized by our choice of R

we must look more deeply into the quantity

to see how its value is determined by choice of R.

 In particular, the construction of      will involve the 

determination of signs of the square roots of the 

three entries on the diagonal matrix within VS2VT.

   T

1

N

H y Rx
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Optimal Proper Rotations  (3)

 A very elegant strategy for the computation of R

starts with the singular value decomposition of C:

• Our SVD theory tells us that we can write: 

where 

• It is easy to show that:

with

• Since                 we can write:

T T T 2 TC USV C C VS V    

  T

1 1 2 2 3 3diag , ,V s s s V   

 2 2 2 2

1 2 3diag , , .S s s s

R C 

 

 

1 T 1 1 1 T

1 1 2 2 3 3

T

1 2 3

diag , ,

diag , ,

R C USV V s s s V

U V

   

  

    



1 1,2,3.i i   
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Optimal Proper Rotations  (4)

 So

 Now we put this into our H quantity:

   T T

1 2 3diag , , .C USV R U V    

         

                 

                 

           

T T T

1 2 3

1 1

3 3
T T

1 1 1 1

3 3
T T

1 1 1 1

3 3
T T T

1 1 1

diag , ,

.

N N

N N
k k k k

k k

k k

N N
k k k k

k k

k k

N
k k k k

k k

k k

H y Rx y U V x

y u v x y u v x

u y x v u y x v

u y x v u Cv

   

 

   

 

   

 

 



  

 

 

 

 

   

   

  

 

   

   

 
  

 

 

 

 

  

Last two 

slides 

explain

this: 

Dot

products
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Optimal Proper Rotations  (5)

 The SVD of C tells us that

and so we get a very concise value for H:

 Recall: E was minimized when H was maximized, 

so the best E occurs when  

• This gives us:

   k k

kCv u s

       
3 3 3

T T

1 1 1

.
k k k k

k k k k k

k k k

H u Cv u u s s  
  

    

1 1,2,3.i i   

  T T

1 2 3diag , , .R U V UV   
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Optimal Proper Rotations  (6)

 Our previous line:

 So are we finally done?

 Not quite.  Remember that we stated that we must 

have: det(R) = 1.

• It is possible that the matrix C has a singular value 
decomposition that leads to det(UVT) = -1.

• This is called an improper rotation and it introduces a reflection.

• We can get still get a proper rotation by defining R as:

T.R UV

  Tdiag 1,1,-1 .R U V
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Optimal Proper Rotations  (7)

 Our previous line:

 Why does this work?

• The determinant of R has changed sign because the 
determinant of the diagonal matrix now has value -1.

• So it is a proper rotation.

• But the value of H is now s1 + s2 - s3 and so it is not as 

large as s1 + s2 + s3.

• So we have somewhat compromised E to get a proper rotation.

• NOTE:  to get the minimal E under these circumstance 

we make sure that s3 is the smallest of the three values.

• That is to say, we are assuming s1, s2, s3  are in descending order.

  Tdiag 1,1,-1 .R U V
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Summary (1)

 Steps for 3D alignment of proteins P and Q:

1. Determine the subsequences of alpha carbons to be 

used in the 3D alignment:

2. Calculate centroids p(c) and q(c).

3. Shift the proteins so that centroids are at the origin.  
We are then working with x(i) and y(i) coordinate sets.

4. Calculate the C matrix and compute its SVD.

This gives C = USVT.
If necessary reorder the singular values so that s1 > s2 > s3.

        
        

1 2

1 2

, , ,

, , ,

N

N

M P p p p

M Q q q q
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Summary (2)

 Steps for 3D alignment (continued):

5. Compute the rotation matrix

6. Check to see if det(R) = 1.

If this determinant is negative then we must redefine 

the rotation matrix to be

7. Apply the rotation matrix to the x(i) coordinates.

T.R UV

  Tdiag 1,1,-1 .R U V
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U diag V
T

Alternate Representation (1)

 Here is a useful matrix manipulation.

• This is in the linear algebra review notes, but we now 

make a special note of it.

 Given three matrices: 

• U dimension m x l, with columns u(k) k = 1, 2, …, l

• V dimension n x l,  with columns v(k) k = 1, 2, …, l and

• the diagonal matrix diag(d1, d2, …, dl)

then the m x n matrix Udiag(d1, d2, …, dl)V
T can be 

written as:

     TT

1 2

1

diag , , , .
l

k k

l k

k

U d d d V d u v
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U diag V
T

Alternate Representation (2)

     TT

1 2

1

diag , , , .
l

k k

l k

k

U d d d V d u v




     

 

 

 

1 T

2 T
1 2

1 2

T

L.H.S
l

l

l

v

v
d u d u d u

v

 
 
     
 
 
 

Matrix: ith row is:  
1,2, , .

k

k id u k l

Matrix:  jth column is:
 T

1,2, , .
k

jv k l

Product of these has entry at 

row i and column j equal to:

   T

1

.
l

k k

k i j

k

d u v




R.H.S. is a sum of 

matrices such that 

entry at row i and 

column j is equal 

to:

Calculation of the RMSD

 We can compute the squared distance between 

each rotated x(i) point and its corresponding y(i)

point:  

• Then we can compute the Root Mean Square Deviation 

for the set of corresponding points:

Protein Structure Overlap

50

     
2

2i i i
d Rx y 

 

 2

1RMSD ,

N
i

i

d

P Q
N




 

 

 

RMSD ,  close to zero   and  identical

1Å < RMSD ,  <  3Å   and  very similar

3Å < RMSD ,   and  have little or no similarity.

P Q P Q

P Q P Q

P Q P Q







These comments are 

applied only to the 

atoms in the 

alignment.
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RMSD Issues (1)

 The significance of the RMSD may vary with 

protein length.  

• For example: It has been observed that two lengthy 

proteins P and Q (say 500 residues in length) with a 

vague evolutionary relationship may produce an RMSD

that is over 4 Å while two shorter proteins (say 100

residues in length) may produce an RMSD that is less 

than 3 Å even though they have the same evolutionary 

distance between them.
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RMSD Issues (2)

 The best structural alignment is not always 

achieved by the lowest RSMD.  

• Consider the figure below:  

• Suppose we have “2D molecules” P, Q, and R and we wish to 

use an RMSD calculation to determine which one of Q or R is 

most similar to P.  

• The overlap of P and Q may be almost exact because the 

corresponding atoms have a similar physical alignment.  

• The overlap of P and R has a higher RMSD but the overall 

shape of R is more like P (both are simple “turns”).  

52
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Showing Structural Alignment

 A structural 

alignment 

of 1MBN 

and 1JEB:
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Dealing with Weaker 

Sequence Similarity

 The problem of similarity evaluation becomes 

much more of a challenge when a local 

sequence alignment becomes sketchy, for 

example, when the two proteins have a distant 

evolutionary relationship.  

 Since we know that structure is more conserved 

than sequence, it is reasonable to strive for 

algorithms that determine structural alignment 

with little or no help from a preliminary sequence 

alignment.

Protein Structure Overlap 54



28

Low Sequence Similarity

 Complicating Issues:

1. Lengthy sequences of mismatches
• Mismatches may reside in loop regions while the 

hydrophobic core contains residues that show a higher 

percentage of matches in the sequence alignment.  

• It may be reasonable to simply remove the loop region 

from consideration and try to maximize the overlap of 

atoms in the hydrophobic core.

2. Presence of gaps in the alignment
• Gaps in the sequence alignment pose a difficult 

problem because they indicate a break in continuity of 

the structural alignment.  
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Strategies for 

Low Sequence Similarity

 There are various strategies that can be 

employed:

 By breaking up a protein

into fragments we can try 

to derive separate structural 

alignments of fragments 

on either side of a gap.

 We can redefine the pairs of atoms that are to be 

put into maximal overlap.
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STAMP  (1)

 This structural alignment algorithm is due to 

Russell and Barton (1992):

1. Perform a local sequence alignment of P and Q to 

get a set of atom pairs that will be used to define 

the overlap function.  

Work with alpha carbons from a sequence of aligned positions with no gaps.

2. Derive the translation and rotation matrices that 

ensure maximum overlap for this set of atom 

pairs.
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STAMP  (2)

 Continued:

3. Construct a distance matrix D with axes 

corresponding to residue positions in each 

protein and cell D(i, j) holding the distance 

between alpha carbon i in protein P and alpha 

carbon j in protein Q.

4. Compute a similarity matrix for P and Q by 

subtracting all values in D from the largest 

distance in D.

5. Use dynamic programming to compute a high 

score path through the matrix.
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STAMP  (3)

 The optimal path defines a new alignment for P

and Q.

 Continue with Steps 2, 3, 4, and 5, repeating until 

convergence is reached (when there is no change 

in the path computed in Step 5).

 Several variations of this algorithm can be easily 

developed.  

 For example, in the dynamic programming step 

we might alter the recursion so that more weight 

is given to the part of an alignment that 

corresponds to helix or strand regions.
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Algorithms Comparing 

Intramolecular Relationships (1)

 If the proteins P and Q have primary sequences 

that are the same or very similar, then the basic 

superposition algorithm using a rotation matrix can 

be used for the structure comparison.  

 If the structures are very similar then this strategy 

still works well, even with low sequence similarity.  

• For example, members of the globin family may have 

low sequence similarity but can show a significant 

amount of structure alignment when the STAMP 

algorithm is applied.  

• There may be some missing segments in the alignment 

but there is still a large percentage of structural overlap. 
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Algorithms Comparing 

Intramolecular Relationships (2)

 When the structural similarity of the proteins is less 

obvious, it becomes much more difficult to specify 

the equivalent residues in the comparison.  

• For example, there may be two domains in P that are 

structurally similar to two domains in Q even though the 

sequence similarity is weak.  

• If the physical separation of these two domains in P is 

quite different from the separation of the corresponding 

domains in Q, or if the domains have a very different 

spatial orientation, then the superposition strategy will not 

do well since there will be a poor overall fit between the 

topologically equivalent substructures.
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Algorithms Comparing 

Intramolecular Relationships (3)

 We need a strategy that works with local structural

alignments just as the local sequence alignment 

algorithm depends on local sequence matching.

 We look at two algorithms:

 DALI (Distance ALIgnment) does an optimal pair 

wise structural alignment of protein structures 

based on the similarity of local patterns extracted 

from distance maps. 

 SSAP (Secondary Structure Alignment Program) 

produces a structural alignment using double 

dynamic programming to generate an alignment of 

local “views” that are common to both proteins. 62
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Distance Maps (1)

 Before discussing DALI we consider distance maps.

 The map is a square matrix of cells that are indexed 

by the residues of the protein being studied.  

• In simple versions of a distance map the cell D[i, j] at row 

i and column j is colored black if the distance between 

alpha carbon [i] and alpha carbon [j] is less that some 

particular threshold (say 10 Å), otherwise it is left as 

white.  

• Note that cell D[i, j] will have the same coloration as cell 

D[i, j] and so the matrix is symmetric.  

• A more informative map is shown next.
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Distance 

Maps (2)
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 Distance map 

(above the main diagonal)

generated by the 

Moltalk server.

 http://i.moltalk.org.

 PDB id: 2FIF

http://i.moltalk.org/
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DALI (1)

1. Distance maps (stored as matrices) are computed

for both P and Q.

2. Extract a full set of overlapped hexapeptide

submatrices from each matrix.

Each submatrix is a square 6 by 6 array taken from the

distance map. These are also called contact patterns.

3. Each of the contact patterns obtained from

the distance matrix for P is compared with the

contact patterns obtained from the distance

matrix for Q. Each contact pattern of P is paired with its

most similar partner in Q. This produces a pair list.
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2

5P 

 
2

5Q 

DALI (2)

4. The list is sorted with respect to strength of 

contact pattern pair similarity.  Pairs with low 

similarity are eliminated. 

5. Contact patterns from P are connected to form 

chains and contact patterns from Q are also 

connected to form chains.  

Chain forming connections are not made arbitrarily.  

The connections are generated so that the two 

chains represent a more extended structural 

alignment of P and Q. 
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DALI (3)

 Matching DALI

contact patterns:
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DALI (4)

 Chain formation:
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DALI (5)

 Monte Carlo:

 The complexity of the processing arises from the 

possibility of generating chains in many different 

ways not all of them useful in the pursuit of a 

structural alignment.  

 To increase the chances of meaningful chain 

formation, the algorithm favors the utilization of 

contact patterns that are ranked high in the sorting 

step.  

 Nonetheless, the algorithm must search a very 

large space of possibilities and this is facilitated by 

means of a Monte Carlo algorithm. 69

DALI (6)

 Monte Carlo (continued):

 The Monte Carlo optimizing strategy involves a 

type of random walk exploration of the search 

space containing all the chaining possibilities.

 Moves in this space are randomly chosen.  

 A move corresponds to a change of chain 

formation and can be evaluated by means of a 

scoring function.
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DALI (7)

 Monte Carlo (continued):

 The probability p of accepting a move is given by

where      is the new score and S is the old score.

• Parameter     must be carefully chosen.  

• Moves with higher scores are always accepted.  

• Moves with poor scores are sometimes accepted and this 

helps the algorithm to get out of local minima that may 

trap the procedure resulting in less satisfactory structural 

alignments.
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DALI (8)

 Reorganizing 

contact 

patterns:

72
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DALI (9)

 “Rewiring”  (Reorganizing contact patterns):

 DALI has the ability to detect the similarity of two 

hydrophobic cores even though the secondary 

structure components of a core have been 

“rewired”.  

 DALI will analyze the extended contact pattern and 

recognize that an interchange of fragments c and b

in Q will give a better alignment.  

 After this is done, both sets of patterns are 

collapsed to a representation that reveals the final 

structural alignment of the three strands in P with 

the three strands in Q. 73

SSAP (1)

 An approach to the structural alignment problem, 

that cleverly handles insertions and deletions of 

residues, was developed by Taylor and Orengo 

in 1989.  

 Their SSAP (Secondary Structure Alignment 

Program) algorithm relies on the notions of local 

views.  

 These views are used to create an overall 

structural alignment by means of double dynamic 

programming.  
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SSAP (2)

 A visual example 

of views:

75

The list for a particular view includes all the alpha 

carbons in a protein.  

For clarity, these illustrations only have partial lists.

SSAP (3)

 The idea of double dynamic programming is to use 

a high level dynamic programming algorithm to find 

a structural alignment that is comprised of the 

largest number of pairs of similar views. 

 However, the evaluation of the similarity of two 

particular views is itself an optimization problem.  

This is solved by using a “low level” dynamic programming strategy.

 The score matrix used at this low level will be called 

a view level matrix.  

There will be many of these matrices; at most              .

 The single high level score matrix will be called the 

consensus matrix. 76

 *P Q
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SSAP: Overview (1)

 Again we assume that P and Q are represented by:

 SSAP steps:

1. Calculate a view for each alpha carbon atom of 

both P and Q. 

For a particular alpha carbon p(i) the view is a list of vectors.  

Each vector in the list goes from p(i) to another alpha carbon 

of the same protein.  

Formally, the view for p(i) is the set                   where

designates the vector going from p(i) to p(r).

We use the same notation for q(j). 77

     
1 1

P Q
i j

i j
p q

 

  ,

1

P
i r

r
p



 ,i r
p

SSAP: Overview (2)
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LYS 42 is designated by

p(93,42) = p(42) – p(93) in the

view from HIS 93.

     ,i r r i
p p p 

 Example: LYS 42 as a 

typical alpha carbon in 

the view from HIS 93:
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SSAP: Overview (3)

 SSAP steps (continued):

2. Build the |P|x|Q| view matrices:

For each combination of p(i) and q(j),                           , compare 

vector views using a dynamic programming strategy that fills in 

a view level matrix with values that are based on the “similarity 

of vectors”. 

We refer to the view level matrix as:        .

• The entry in cell (r, s) is denoted by        .

• This entry specifies the similarity of vectors        and        .

• We will discuss “similarity” later.
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SSAP: Overview (4)

 SSAP steps (continued):

3. Build a consensus matrix

For each view matrix, a dynamic program is used to compute an optimal 

path score equal to the sum of all view similarity evaluations along the 

path minus any gap penalties.  (Details given later).

If the total path score is above a specified threshold, then the alignment 

scores on the path are added to accumulating similarity evaluations of the 

consensus matrix.

80
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SSAP: Overview (5)

 SSAP steps (continued):

4. Compute an optimal path in the consensus matrix

Using dynamic programming, derive a set of 

equivalent residues by finding an optimal path in the 

consensus matrix.

 There are many variations on these ideas.

 We now provide more details:
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SSAP: Building the consensus matrix (1)

 Step 2 asks for         matrices.

 We can reduce this by filtering the potential pairs.

• For example, we would not compare the views of p(i) and 

q(j) if p(i) is in a helix and q(j) is in a strand.  

• However, this type of secondary structure filtering 

requires that we have a reliable assessment of the 

secondary structure status of a residue.  

• To avoid the discretization error that this implies, one 

may resort to a filtering strategy that compares the 

dihedral angles on either side of p(i) with the 

corresponding dihedral angles of q(j). 

• Authors of SSAP also filtered with respect to solvent 

accessibility.
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SSAP: Building the consensus matrix (2)

 Recall: the view level matrix is:        .

 The entry in cell (r, s) is denoted by        .

 This entry specifies the similarity of vectors       

and        .

• Initially the authors simply compared the lengths of 

these two vectors but abandoned this idea because it 

was not sensitive to direction of the vectors involved.

• Instead they establish                 in a frame of reference 

that has the alpha carbon p(i) at the origin.

• The same is done for 
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SSAP: Building the consensus matrix (3)

 Frame of reference at the alpha carbon p(i) :

 The three atoms: C along with the C and N atoms bonded 

to it define a plane.  

 With the origin at C, we let the

C – N bond be the x-axis.  

 Then the y-axis is in the plane and 

perpendicular to the x-axis.  

• Choose the positive direction of 

y to lie in the same direction as C.  

 The z-axis is perpendicular to the plane and in the same 

direction as the C atom of the residue attached to C.  

• We use the hydrogen atom that replaces C in the case of glycine.  

 Each axis is represented by a normalized vector.
84
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SSAP: Building the consensus matrix (4)

 By calculating the inner product of                 with 

each these orthonormal vectors we get the 

coordinates of                 in this local frame of 

reference.  

 In the same fashion, a local frame of reference is 

constructed for q(j) and the coordinates of                

are calculated with respect to this frame of 

reference.

 We can now treat these newly computed 

coordinates as if they are relative to the same

frame of reference.
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SSAP: Building the consensus matrix (5)

 Suppose                 in this computed frame of 

reference is represented by the column vector 

.

 Suppose

is
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SSAP: Building the consensus matrix (6)

 Define:

87

      

            

, , , ,

T
, , , , , ,

1 1 2 2 3 3 .

i j r s i r j sP Q

i r j s i r j s i r j sP Q P Q P Q

d d

d d d d d d

  

   

Note:  A small norm for

would indicate that 

the view at p(i) is similar to the 

view at q(j) at least as far as 

the vectors p(r) and q(s)

are concerned.

Note, for later:

  , ,i j r s


      , , , ,

0 0 0.

i j i j i i j jP Qd d  

  

SSAP: Building the consensus matrix (7)

 Our goal is to establish more indications of vector 

similarity for several other values of r and s.  

 The dynamic program at this view level will 

essentially extract an alignment of the residues in 

such a way as to maximize the number of similar 

pairs of vectors p(r) and q(s).

• NOTE: we never have to rely on getting a sequence 

alignment first!
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SSAP: Building the consensus matrix (8)

 In the original paper, the authors decided to avoid 

the square roots involved in the calculation of a 

Euclidean distance in order to save computation 

time.  

 Consequently, the norm squared is used in place 

of the vector length.  

 They also needed to convert a measure of 

difference into a measure of similarity.  

• This was done by using a hyperbolic formula for the 

view matrix entries (see next slide).  
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SSAP: Building the consensus matrix (9)

 The entry at cell (r, s) in view matrix V(i,j) is given 

by:

 Experiments have determined that a = 50 and b = 2

give good results.  

• Note that with these parameter settings,         is always 

a/b = 25.
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SSAP: Building the consensus matrix (10)

 Recall that the view matrix V(i,j) was built assuming 

that p(i) would be put into an equivalence with q(j).  

 So: all residues prior to p(i) can only be aligned 

with residues prior to q(j) and all residues after p(i)

can only be aligned with residues after q(j).  

 This gives the view matrix V(i,j) a rather peculiar 

appearance.  

• An entry in cell (r,s) with r < i and s > j will be 

undefined.  

• As well, an entry in cell (r,s) with r > i and s < j will be 

undefined. 
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SSAP: Building the consensus matrix (11)

 A typical view matrix:

• There will be many of these…

 The dynamic program to compute an optimal path in the 

view matrix is an adaptation of the dynamic program 

used for the global sequence alignment problem. 
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In this example we use

the peptide sequences:

P = “NEEDLEMAN”

and
Q = “WATERMAN”.
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SSAP: Building the consensus matrix (12)

 We start at location (i, j) of the score matrix S(i, j)

and fill in the bottom right submatrix using the 

following recursion which is valid for r > i and s > j :
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SSAP: Building the consensus matrix (13)

 We start at location (i, j) of the score matrix S(i, j) and 

fill in the top left submatrix “going in the opposite 

direction” using the following recursion which is 

valid for r < i and s < j :
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SSAP: Building the consensus matrix (14)

 After the matrix is filled we locate the maximum 

element in the upper left submatrix and initiate a 

trace-back from this cell to cell (i, j).  

 Similarly, starting at the maximum element is the 

lower right submatrix we initiate another trace-

back that ends in cell (i, j).  

• In the next figure, each score in the trace-back path is 

set in bold font and enclosed by an ellipse.  

• In the examples given we are working with a gap 

penalty of g = 4.
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SSAP: Building the consensus matrix (15)

 Score matrix for the previous example:
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SSAP: Building the consensus matrix (16)

 The score for this path is the sum of the two 

maximum scores (96 in this score matrix).  

 If this path score is above a pre-selected 

threshold, then the path elements  that represent 

matches in the alignment are added to the 

corresponding elements of the consensus matrix.

• This is shown in the next figure.  
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SSAP: Building the consensus matrix (17)

 The first matrix is V(4,5), from 

the views for p(4) and q(5).  

 The alignment to get the 

optimal path (marked by a 

black dotted line) is given 

just above the matrix.  

 The second matrix 

represents V(5,3).  

 Its optimal alignment is also 

shown above the matrix and 

the path is designated with a 

gray dashed line.  

 Of course we will need 

many such additions to the 

consensus matrix before we 

are ready for the next step.
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SSAP: Computing the alignment

 Compute the optimal path in the consensus 

matrix:

 After the consensus matrix has been constructed, 

an optimal path is derived using a conventional 

Smith-Waterman algorithm.  

 The result of the SSAP algorithm is an alignment 

that gives an equivalence set for the various 

segments of P and Q that are presumed to have 

structural similarity. 
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