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Lagrange Multipliers

Optimization 

with Constraints

“As long as algebra and geometry have been separated, their progress have been slow and their uses limited; 

but when these two sciences have been united, they have lent each mutual forces, and have marched together towards perfection .”
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Motivation

Many problems in bioinformatics require us to 

find the maximum or minimum of a 

differentiable function f.

For example, in this course we want to find the 

optimal rotation that causes one protein to be 

superimposed over another in 3D space.

We will also need to do a type of optimization when we 

look at classification problems.
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Introduction (1)

The points in the domain of f where the 

minimum or maximum occurs are called the 

critical points (also the extreme points).

You have already seen examples of critical 

points in elementary calculus:

Given f(x) with f differentiable, find values of x such 

that f(x) is a local minimum (or maximum).

Usual approach: 

We assume these x values are such that f’ (x) = 0.

That is the derivative is zero at this critical point in the x

domain.
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Introduction (2)

 Our optimization problems will be more 
complicated for two reasons:

1. The function f depends on several variables, that 
is, f(x1, x2, …, xn).

2. In many applications, we will have a second 
equation g(x1, x2, …, xn) = 0 that also must be 
satisfied.
 We still want a point in        that is an extreme point for f

but it must also lie on the line or surface defined by g.

 We will consider three optimization problems 
corresponding to  n = 1, 2, 3 with no constraint and with a 
constraint (6 examples altogether).

n
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Three Optimization Problems (1)

Problem 1 (n = 1):

Find x that will minimize

Since

it is clear that the minimum is at 

x = 2 and the f  value is 4. 

Note also that 

and setting this to zero also 

gives us x = 2.
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Three Optimization Problems (2)

Problem 2 (n = 2):

Minimize 

Because the squared terms

cannot be negative, the 

minimum occurs when they 

are both zero, i.e. when

x1 = 0, x2 = 0 and at this

critical point the f  value is 8. 

Note also that 

and

Setting both of these to zero 

also gives us x1 = 0, x2 = 0.
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Three Optimization Problems (3)

Problem 3 (n = 3):

Minimize 

We can rewrite this as 

Because the squared terms cannot be negative, the 

minimum will occur when they are all zero, that is, when 

x1 = 0, x2 = 1, x3 = 0 and at this critical point the f  value is 20. 

Note also that 

and

Setting all of these to zero also gives us x1 = 0, x2 = 1, x3 = 0.

Unfortunately, a graph of f versus x1, x2, x3 would be in a 

four dimensional space and impossible to visualize.
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Optimization Via Derivatives

For these simple cases (no constraint function) 

the general strategy is to compute the 

derivatives with respect to all the independent 

variables:

Setting these to zero:                           gives n

equations in n unknowns.

Solve the equations to get the critical points.
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Level Sets (1)

Level sets provide a visual aid for some of the 

geometric arguments that we will need to 

make.

Given some particular real value, for example,  

r, a level set is a set of points in the domain of 

f such that f is equal to this value r.

Formally:

For Problem 1, the level set consists of two points when   

r > 4 and a single point when r = 4 (empty otherwise). 

For Problem 2, the level set is an ellipse when r > 8.

For Problem 3, the level set is an ellipsoid when r > 20.
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Level Sets (2)

 The level sets for our three optimization Problems:

?
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Gradient

Given a scalar function f mapping a vector 
to a real value, that is

we define the gradient of f or grad(f) as:

Note that it is a column vector.
But its entries are functions of

We really have a vector “field”: one vector defined for 
each point in the         space.

SO: to get a critical point we find those
such that         

 
T

1 2
, , ,

n
x x x x  f x 

T

1 2

, , , .
n

f f f
f

x x x

   
   

   

0.f  
T

1 2
, , ,

n
x x x x

 
T

1 2
, , , .

n
x x x x

n

1 2 3

.
f f f

f i j k
x x x

  
   

  

Alternate notation for n = 3:
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Gradients and Level Sets (1)

A gradient essentially tells us how level sets 

change as r increases.  

Consider a gradient vector at                            

where x is a level set point.
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They point in the direction of increasing r.
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Gradients and Level Sets (2)

 In some cases a diagram will show a set of gradient 

vectors taken at regular intervals from the 

background field along with a set of level curves:

Problem 2

with an array of

gradient vectors

and 4 level curves:
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Gradients and Level Sets (3)

 THEOREM:  The gradient of f is normal to 

the level set of f at that point.

 Proof sketch:

 Consider a point p in the level set and a gradient vector 

that is defined at p.

 The level set going through p is 

 Assume C is any differentiable curve that:

1. Is parameterized by t

2. Lies within the level set of f

3. Passes through p when t = tp
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Gradients and Level Sets (4)

 THEOREM:  The gradient of f is normal to the level set of f at that point.

 Proof sketch  continued:

 The second assumption gives us

 But using the chain rule on the LHS we can write: 

 At t = tp this can be written as:
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Gradient vector at p.

Tangent to C at p.
So, the gradient at p is normal to any tangent at p in the 

level set implying the gradient is normal to the level set.
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Problems with Constraints (1)

 We now consider the same problems but 

with constraints:

 Recall: We still want to minimize or maximize f but 

now the point must also satisfy the equation     

g(x1, x2, …, xn) = 0.

 Let us go through the various problems and 

consider the effects of a constraint:

 Problem 1:

• Minimize 

subject to g(x) = 0.

• Find x values such that g(x) = 0

then find which of these x

values produces the minimal f.
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Problems with Constraints (2)

Problem 2 with a constraint:

Minimize

subject to:

In this case we can solve 

for x1 in g(x) to get x1 = 4 – 2x2. 

Then f becomes:

So x2 = 1 and x1 = 2 giving

a value for f that is 16.

  2 2

1 2
4 8f x x x  

  1 2
2 4 0.g x x x   

f

x1
x2

  1 2
2 4 0g x x x   

(4,0)
(2,1) (0,2)

 
22

2 2 2
8 16 24 8 1 2 .x x x     

 

Lagrange Multipliers
18

Problems with Constraints (2)

In the last problem we were “lucky” because     
g(x1,x2) = 0 could be solved for x1 or x2 so that a 
substitution could be made into f(x1,x2) reducing it to 
a minimization problem in one variable.

In general, we cannot rely on this strategy.
The constraint g(x1,x2) = 0 could be so complicated that it is 

impossible to solve for one of its variables.

Note that the previous visualization in “f vs x space” 
cannot be carried over to Problem 3.

We need a new approach.
This will require level curves, gradients, and eventually the 

Lagrange multiplier strategy.
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A Different Approach (1)

 Consider viewing the f vs x scenario from above, along 

the f axis: We would see a series of level sets:

The constraint                                   appears as the green line.

There are 3 cases to analyze when considering the relationship 

between a level set and the constraint.  

Case 1: For low values of r

the level set does not meet

the constraint. So, even 

though the f values are very

small we must reject these

points because they do not

satisfy the constraint.

  1 2
2 4 0g x x x   
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A Different Approach (2)

Case 2: As r increases the

level set will eventually 

just meet the constraint 

in a tangential fashion.

This is the red ellipse.

Case 3: As r continues to 

increase the level set will 

cut the constraint in two 

places as illustrated by the

blue ellipse.

These two points satisfy the constraint but we can do better!

There are points between them on the constraint that 

correspond to intersections of the constraint with level sets of f

having lower r values.

So, Case 2 is the situation that we want to discover.
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A Different Approach (3)

Case 2 is characterized by having the level curve of f(x1,x2)

tangent to the constraint curve g(x1,x2) = 0.

 In other words: The normal to both f and g at the point of 

contact are in the same direction.

Lagrange Multipliers
22

A Different Approach (4)

Notice that this visualization will also work for our Problem 3:

 In this case the level sets are ellipsoids that keep expanding 

until they meet the constraint surface.

As before we want the normal to the constraint surface to be 

parallel to the normal of the level surface.
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The Lagrange Formulation (1)

 Parallel normals at the point p can be expressed as:

The Lagrange formulation states:

To find the extreme points of a function

f(x) = f(x1, x2, …, xn) that are also subject to the 

constraint that they lie on g(x) = g(x1, x2, …, xn) = 0

we form the Lagrangian

and find points x such that 
• Such a point p will be one of the required extreme points.
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( , ) 0.L x  

That is: The gradient

of f at p is a constant

multiple of the gradient

of g at p.
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The Lagrange Formulation (2)

 Recall:

 Note the significance of

 To compute the gradient of L we are taking partial 

derivatives with respect to all the xi and also    .

 This gives us: 

 The first set of equations is actually stating: 
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Now solve

n + 1 equations in

n + 1 unknowns.
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Importance of the Lagrange Formulation

 Recall the requirement:

when x is an extreme point p.

 The previous slide shows that this is equivalent to

with 

 Why is this important?

 Finding critical points of                         is a problem that 

does not mention the constraint as a separate issue.

 In that sense our problem is simpler.

 The tradeoff is that we are now dealing with a higher 

dimensional space (n + 1 instead of n dimensions). 

   ( , ) .L x f x g x  ( , ) 0L x  

      0f x g x g x   

( , ) 0L x  
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Constrained Problem 2  à la Lagrange

 Recall Problem 2 with a constraint:

Minimize

subject to:

The Lagrangian is:

Setting                        gives:
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Extra Constraints (1)

For some applications we will have several 

constraints.

To motivate this, we go back over our three 

problems this time imposing 2 constraints, call them 

g1(x) = 0 and g2(x) = 0.

Problem 1:  Both constraints g1(x) = 0 and g2(x) = 0 would 

have to have at least one point on the real axis that 

simultaneously satisfied these conditions (very unlikely!).

• We would then consider the value of f at this point or these 

points, if they exist. 

• This variation of problem 1 is essentially over-constrained and 

the analysis will usually come up with the result that there is no 

solution.  
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Extra Constraints (2)

 Problem 2:  The enforcement of both constraints g1(x1, x2) = 0

and g2(x1, x2) = 0 leads to a set of discrete points in the (x1, x2)

plane where the constraints are satisfied.

We would then consider the value of f at this point or these points. 

While not over-constrained, this variation of problem 2 is not very 

interesting because of the discrete nature of the investigation (as in 

Problem 1 with one constraint).

 Problem 3:  The enforcement of the two constraints          

g1(x1, x2, x3) = 0 and g2(x1, x2, x3) = 0 leads to a curve containing 

points in the (x1, x2, x3) plane where the constraints are 

satisfied.

 Now that our feasible set contains an infinite number of points we are 

back to an interesting situation.

 The curve is a 2D continuum that is the intersection of g1= 0 and g2= 0.
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Extra Constraints (3)

 Problem 3 Recap:  The enforcement of the two constraints          

g1(x1, x2, x3) = 0 and g2(x1, x2, x3) = 0 leads to a curve containing 

points in the (x1, x2, x3) plane where the constraints are 

satisfied.

 Intuitively, we would want to increase the level set parameter r until the 

level surface contacts the intersection curve in a tangential fashion.

 But how do we express this requirement in terms of the gradient of f?

 Asking for points p such that        is parallel to both and       is a 

“show stopper” because        and       could be different from each other 

for all p (consider two intersecting planes). 

 Going back to the single constraint case, here is another way to 

express the requirement that gradient of f is parallel to the gradient of g: 

We ask that        is in the subspace defined by 

 This immediately generalizes for our immediate needs:  We ask that 

lies in the subspace defined by linear combinations of       and
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Extra Constraints (4)

 Problem 3 Recap:  The enforcement of the two constraints g1(x1, x2, x3) = 0

and g2(x1, x2, x3) = 0 leads to a curve containing points in the (x1, x2, x3) plane where 

the constraints are satisfied.

We ask that       lies in the subspace defined by linear combinations 

of       and

f

Note that three

constraints: g1=0,

g2=0, g3=0 for 

Problem 3 leads to

the discrete case

again.

1
g 2

.g
1

g

2
gf

g1(x1, x2, x3) = 0

g2(x1, x2, x3) = 0Points satisfying 

both constraints.

Note that the line of intersection

is tangent to the ellipsoid but the

planes are not necessarily tangent.

In fact, at least one plane 

intersects the ellipsoid.
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Extra Constraints: Lagrange Formulation

Our previous requirement is formalized as:

As before x is really (x1, x2, …, xn)
T.

To avoid the over-constrained or discrete points 

case we assume that the number of constraints k < n.

This gives the Lagrangian:

Setting

leads to n + k equations in n + k unknowns. 
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Extra Constraints: Lagrange Formulation

Summary:

To find extreme points of f(x) subject to the 

constraints gi(x) = 0 for i=1,2,…,k with k < n:

(the notation x represents (x1, x2, …, xn)
T)

We form the Lagrangian:

where

Then the extreme points are calculated by solving 

the  n + k equations in n + k unknowns derived from
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Inertial Axes (1)

An application of Lagrange multipliers:

Very often in a structural analysis, we want to 

approximate a secondary structural element with a 

single straight line.

Protein Geometry
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Here we have a straight 

line that acts as the 

longitudinal axis of a helix.

Inertial Axes (2)

The diagram gives us an indication of a reasonable 

strategy for the determination of the axis:  We should 

have the straight line positioned among the atoms so 

that it is closest to all these atoms in a least squares 

sense.  

Our objective is to find this “best” helix axis.  

A reasonable strategy would be to have the axis pass 

through the centroid of all the atoms with a direction 

chosen to minimize the sum of the squares of the 

perpendicular distances from the atoms to the helix axis.

Protein Geometry
34
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Inertial Axes (3)

Mathematical derivation of the axes:

If represents the perpendicular distance 

between atom a(i) and the helix axis, then we chose 

the axis direction so that it minimizes the sum:

Protein Geometry
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Inertial Axes (4)

 It should be stated that such an axis could 

also be computed to go among the atoms of a 

beta strand, in fact, any arbitrary set of atoms.

Protein Geometry
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Inertial Axes (5)

We now provide an analysis that shows how 

the axis is dependent on the coordinates of 

the chosen atoms.  

To make the analysis simpler, we first consider one 

atom, call it a, with position vector                  .  

As noted earlier, this vector is using a frame of 

reference that is an x, y, z coordinate system with 

origin positioned at the centroid of the atoms under 

consideration (see previous figure).
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Inertial Axes (6)

Analysis continued:
The perpendicular distance from 

the atom to the axis is illustrated 

in the figure.

We are trying to determine the 

values of wx, wy, and wz that 

define the axis direction.

These are the components of a 

unit vector w and so 

with              .  

38

The required axis is a scalar multiple of w and d represents 

the perpendicular vector going from atom a to this axis. 
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Inertial Axes (7)

Analysis continued:

Some trigonometry defines the square of the norm 

of d as:

So:

Protein Geometry
39

 
2

T

2 2 2 22 2

2 2
sin 1 cos 1

a w
d a a a

a w
 

 
       
  

This = 1.This can be written as:
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This expression for d is quadratic in w.

Inertial Axes (8)

Analysis continued:

Now we replace a and w with their coordinate 

representations:

where:
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Inertial Axes (9)

Analysis continued:

Finally, an elegant representation for d:

Now recall that we want to minimize S which is the 

sum of all such squared norms going across all N 

atoms in the set.
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Inertial Axes (10)

Analysis continued:

We let the coordinates of the ith atom a(i) be 

represented by                            , then 

42
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Inertial Axes (11)

Analysis continued:

Finally, we have the quantity that we want to 

minimize expressed as a function of w and the 

coordinates of the atoms:

where:
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    Physicists call this 

the inertial tensor.
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Analysis continued:

We can now formulate our minimization problem as 

a Lagrange multiplier problem in which we minimize 

S subject to the constraint that               .  

The Lagrangian will be:

where      is the Lagrange multiplier.

Setting the usual derivatives to zero:
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Inertial Axes (13)

Analysis finished:

We now recognize this as an eigenvector problem:

The 3 by 3 tensor matrix T is symmetric and since S is 

always positive for any vector w we see that T is also 

positive definite.

Consequently, all three eigenvalues are positive.  

Note that once we have an eigenvalue, eigenvector 

pair we can write:
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Tw w

T T .S w Tw w w   

Inertial Axes (14)

So, we have the solution to our problem.

Once T is calculated, we compute its eigenvalues 

and the required w (specifying the directions for our 

axis) will be the eigenvector corresponding to the 

smallest eigenvalue.

Recall that we wanted to minimize S.

Protein Geometry
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Inertial Axes (15)

Significance of three eigenvalues:

It should also be noted that there are three 

eigenvectors produced by this procedure and 

because of the symmetry of T, they are mutually 

orthogonal and can be used as an orthogonal basis 

for the set of atoms under consideration.  

In some applications, this inertial frame of reference is a 

useful construct and the eigenvectors are called the 

principle axes of inertia.
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